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Abstract

Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina,

(Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens.

Malassezia are typically isolated from warm-blooded animals, are dominant members of the

human skin mycobiome and are associated with common skin disorders. To characterize

the genetic basis of the unique phenotypes ofMalassezia spp., we sequenced the genomes

of all 14 accepted species and used comparative genomics against a broad panel of fungal

genomes to comprehensively identify distinct features that define theMalassezia gene rep-

ertoire: gene gain and loss; selection signatures; and lineage-specific gene family expan-

sions. Our analysis revealed key gene gain events (64) with a single gene conserved

across allMalassezia but absent in all other sequenced Basidiomycota. These likely hori-

zontally transferred genes provide intriguing gain-of-function events and prime candidates

to explain the emergence ofMalassezia. A larger set of genes (741) were lost, with enrich-

ment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to

skin’s carbohydrate-deficient environment. Gene family analysis revealed extensive turn-

over and underlined the importance of secretory lipases, phospholipases, aspartyl prote-

ases, and other peptidases. Combining genomic analysis with a re-evaluation of culture

characteristics, we establish the likely lipid-dependence of allMalassezia. Our phylogenetic

analysis sheds new light on the relationship betweenMalassezia and other members of
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Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study

provides a unique genomic resource for understandingMalassezia niche-specificity and

potential virulence, as well as their abundance and distribution in the environment and on

human skin.

Author Summary

Malassezia are the dominant eukaryotic residents of human skin and are associated with

the most common skin disorders, including dandruff, atopic dermatitis, eczema, and oth-

ers. Despite significant effort, the role ofMalassezia in skin disease and homeostasis

remains unclear.Malassezia are also unique among fungi by requiring lipids for growth,

but the breadth and genetic basis of their lipophilic lifestyle has not been comprehensively

studied. Here we report the complete genomes of all 14Malassezia species (including mul-

tiple strains of the most common species found on humans) and systematically identify

features that define the genus and its sub-lineages, including horizontally transferred

genes likely to represent key gain-of-function events and which may have enabled evolu-

tion of the genus from plant to animal inhabitants. Genus wide expansion of lipid hydro-

lases and loss of carbohydrate metabolism genes underscore the entire genus’ gradual

evolution to lipid-dependency, which was confirmed even in the previously thought to be

lipophilicM. pachydermatis, via genomics with experimental confirmation. Finally, these

reference genomes will serve as a valuable resource for future metagenomic investigations

into the role ofMalassezia species in normal healthy skin and diseases.

Introduction

Over 100 years agoMalassezia was recognized as an inhabitant of human skin and implicated

in a common skin disorder i.e. seborrheic dermatitis [1]. Since then,Malassezia has been

found on the skin of all tested warm blooded animals [2,3], including dogs, horses, pigs, goats,

cats and lambs [4–8], and associated with other common skin disorders including dandruff

[9], atopic eczema/dermatitis, pityriasis versicolor, seborrheic dermatitis, and in systemic dis-

ease [10]. Recent investigations of the skin microbiome using culture-free approaches have

highlighted the overwhelming dominance ofMalassezia among eukaryotes on all human sur-

face body sites, with only the exception of three foot sites [11,12]. Other studies have suggested

that they are abundant in body sites beyond skin, including the human oral microbiome [13],

but a systematic characterization ofMalassezia species and their functional repertoires repre-

sented in metagenomic datasets has been hampered by the lack of reference genomes (only 2

out of 14 known species have reference genomes i.e.M. globosa [2] andM. sympodialis [14]).

In addition, several reports have suggested thatMalassezia-like organisms are found in a wide

range of environmental habitats, from deep sea sediments, hydrothermal vents and arctic soils,

to marine sponges, stony corals, eels, lobster larvae, and nematodes [15]. These studies have

relied on high-identity DNA sequence matches to short amplified barcode regions, but con-

cerns about amplification bias or laboratory contamination raise doubts about the results and

the lack of a comprehensive genus-wide genomic resource for known species has made it chal-

lenging to investigate this question further.

Malassezia belong to the class Malasseziomycetes in the subphylum of Ustilaginomycotina,

(phylum of Basidiomycota, Kingdom of Fungi) [16], which are otherwise comprised
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exclusively of more than 1,500 species of plant pathogens [17]. Other known fungal residents

on human skin, such as Candida albicans and the dermatophytes are in distant branches of the

fungal tree of life and are likely to have evolved independently to adapt to life on animal skin

[18,19]. The genetic basis of the unique lipophilic nature ofMalassezia and its adaptation to

animal skin (putatively starting from an ancestral state as a plant or soil resident) is thus an

intriguing and open question. Answers to this question could also serve as the basis for devel-

oping new anti-fungals and therapeutics for associated skin disorders. Analysis of the two exist-

ingMalassezia genomes [2,14] highlights that their small genomes (among the smallest for free

living organisms in the fungal kingdom) likely contain only the minimal complement of infor-

mation necessary for existence in their specific ecological niche. In this context, the expansion

of several gene families as noted before (e.g. lipases, phospholipases, and aspartyl proteases)

may point to their functional importance [2,14]. However, it has not been clear if these obser-

vations are indeed genus-wide features. In addition, the limited availability of reference

genomes has precluded the systematic characterization of genomic features unique toMalasse-

zia (such as gene gain or loss, horizontal gene transfers, linkage between mating type loci, and

regions undergoing positive or negative selection) that could serve as the basis of understand-

ing its unique physiology and niche adaptation.

To address this limitation, we sequenced and assembled high-quality, annotated genomes of

all knownMalassezia species and multiple strains of the species most common on humans

(including a re-annotation of existing references), representing a 7-fold increase in available

reference genomes (from 2 to 14), and providing a comprehensive genomic resource for the

investigation ofMalassezia biology and its ecological distribution (24Malassezia strains in

total). Showcasing this, we established the abundance and surprising diversity ofMalassezia

species on various human skin sites and their scarcity in other environments. We then used

comparative genomic analysis to systematically compareMalassezia genomes with a broad

panel of fungal genomes to reveal genomic features unique toMalassezia, including hundreds

of gene gain and loss events, gene family expansions, and positive selection events. Our analysis

revealed several hallmarks ofMalassezia genomes, including key horizontally transferred genes

(a few of bacterial origin) that we characterized functionally and which may be prime candi-

dates to explain the emergence of host and niche-adaptation inMalassezia. A larger set of

genes (>700) were found to be lost in allMalassezia compared to other Basidiomycota, with

an enrichment for glycosyl hydrolases and genes involved in carbohydrate metabolism, concor-

dant with adaptation to a carbohydrate-deficient environment. Combining genomic analysis

with an experimental re-evaluation of culture characteristics, we revert previous assumptions

and established the likely lipid dependency of allMalassezia species. Finally, our analysis of

lineage-specific gene family expansions revealed extensive turnover in the gene repertoire of

Malassezia and underlined the importance of secretory lipases, phospholipases, aspartyl prote-

ases and other peptidases in the experimentally observed lipid specificity of this genus.

Results

Establishing a comprehensive genomic resource for theMalassezia
genus

Genome sequences for all 14 knownMalassezia species, including multiple strains of the more

widely studies species (24 in total) were obtained by high-throughput sequencing and de novo

assembly (Table 1; see Methods). The high coverage data (median coverage of 322X) was sys-

tematically assembled with an assembly pipeline incorporating parameter optimization, contig

construction, scaffolding and gap closure steps to produce assemblies with a median N50 of 54

kbp and a maximum N50 of 1.4 Mbp (Table 1). In particular, we noted that the N50s of the
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four newM. globosa assemblies were comparable to that of a gold-standard referenceM. glo-

bosa genome [2] obtained previously using Sanger sequencing with significant directed finish-

ing (Table 1). Assembly sizes typically varied from 7.2 Mbp (forM. restricta) to 9.0 Mbp (for

M. globosa) as expected but we noted that 4 out of the 6M. furfur assemblies were twice this

size, suggesting that they might have undergone whole genome duplication or hybridization

events (see S1 Text and S1 Fig for further details).

To assess the completeness of our assemblies we evaluated them using matches to a well-

established set of core eukaryotic genes (CEGs) [20]. As can be seen in Fig 1A, our de novo

assemblies are comparable to the reference genomes ofM. globosa andM. sympodialis [2,14] in

terms of the number of complete and partial CEGs identified. In addition, comparison to the

gold standard Saccharomyces cerevisiae genome suggests that our assemblies are more than

95% complete (Fig 1A). We assessed the correctness of our assemblies by comparing them to

the published reference genomes of the same strains (M. globosa 7966 andM. sympodialis

42132). Overall, we found that our assemblies agreed very well with that of the reference

genomes (Fig 1B, S1 Table), showing a high degree of colinearity (<5 breakpoints per 100 kbp

Table 1. Assembly and annotation statistics forMalassezia genomes in this study. Note the statistics for the previously reportedM. globosa [2] andM.
sympodialis [14] assemblies are provided for reference.

Species Strain Naming source* No. of reads (in millions) Coverage Assembly size (Mbp) N50 (kbp) No. of genes

M. caprae 10434 CBS 18 479X 7.6 110 3925

M. cuniculi 11721 CBS 11 298X 7.5 522 4112

M. dermatis 9169 CBS 13 357X 7.5 189 3890

M. equina 9969 CBS 9 244X 7.7 372 4109

M. furfur 1878 CBS 12 176X 13.5 15 9827

4172 CBS 19 271X 14.0 16 10232

7019 CBS 14 207X 13.4 16 9612

7710 CBS 14 189X 14.8 15 10980

JPLK23 TB 15 389X 7.6 15 5660

7982 CBS 19 500X 7.7 21 5357

M. globosa 7990 CBS 7 168X 8.9 415 4577

7966 CBS 20 460X 8.9 724 4207

7874 CBS 9 191X 8.9 398 4598

reference 7966 CBS NA NA 9.0 654 4223

M. japonica 9431 CBS 15 345X 8.3 66 4715

M. nana 9557 CBS 16 433X 7.6 492 4242

M. obtusa 7876 CBS 18 455X 7.7 23 5028

M. pachydermatis 1879 CBS 19 463X 8.2 957 4328

M. restricta 7877 CBS 11 288X 7.2 403 4001

8742 CBS 28 767X 7.3 667 4122

M. slooffiae 7956 CBS 11 262X 8.3 16 5617

M. sympodialis 42132 ATCC 10 280X 7.5 54 4390

44340 ATCC 15 400X 7.5 60 4295

96806 ATCC 14 360X 7.4 45 4541

reference 42132 ATCC NA NA 7.7 513 4017

M. yamatoenis 9725 CBS 10 235X 8.1 1448 4361

*CBS: CBS-KNAW Fungal Biodiversity Centre, http://www.cbs.knaw.nl/;

TB: Teun Boekhout;

ATCC: The Global Bioresource Center, www.atcc.org.

doi:10.1371/journal.pgen.1005614.t001
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Fig 1. Correctness and completeness ofMalassezia assembly and annotation. A) Assembly completeness in terms of partial and complete core
eukaryotic genes that can be detected in each genome. As shown here, the assemblies from this study are comparable to published references forM.
globosa andM. sympodialis and are very similar to the gold-standard S. cerevisiae genome. B) Whole-genome alignment of the assembly ofM. globosa
7966 in this study as compared to the published reference, highlighting the robust assembly and the lack of clear misassemblies. C) Comparison of an
annotation ofM. globosa 7966 in this study with the reference annotation, using alignments to S. cerevisiae as a gold-standard. Y-axis indicates the BLAST
bitscore difference between the top matches from the new and old annotations to the same S. cerevisiae protein. X-axis indicates the number of S. cerevisiae
proteins. Red circles indicate S. cerevisiae proteins with a better match to the new annotation. Blue circles indicate S. cerevisiae proteins with a better match
to the reference annotation.

doi:10.1371/journal.pgen.1005614.g001
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in our assemblies) and identity (>99.92%) as expected from the comparison of two high-qual-

ity assemblies of the same strain (Fig 1B, S1 Table). Assuming that the reference genome is cor-

rect, we noted that the observed differences in our assembly affected<0.5% of all genes inM.

globosa, indicating that our assembly is of particularly high quality in genic regions.

To systematically annotate the protein-coding complement of the genomes, we used an iter-

ative and automated pipeline that combines transcriptome data (where available), ab initio pre-

dictions, and protein evidence from related species (see Methods). We evaluated results from

this pipeline by comparison to the manually curated annotations for theM. globosa 7966 refer-

ence genome and using the S. cerevisiae annotations as gold standard. As shown in Fig 1C, as a

whole, annotations from our pipeline match the S. cerevisiae proteome better (>1,100 S. cerevi-

siae proteins are better aligned to the new annotation versus ~600 proteins for the reference

annotation) indicating that we have a comparable or better annotation. In addition, the new

annotation has more matches to known domain families than the original annotation (unique

PFam domains and total PFam domains, pfam.xfam.org/ Table 2) as well as improved identifi-

cation of intron-exon boundaries, highlighting the value of the iterative approach employed

here (the utility of transcriptome data is highlighted in S2 Table and the lack of alternative iso-

forms is noted in Methods). As observed before, we found thatMalassezia species code for a

compact proteome of ~4,000 genes with the exception ofM. slooffiae andM. furfur (after

excluding those with doubled genome sizes) which appear to have a somewhat larger set of

genes (Table 1). It is of note that the lower N50 of theM. furfur andM. slooffiae assemblies

may cause a spurious increase in gene count due to coding regions being split.

To showcase the utility of this genomic resource, we studied the distribution and diversity

ofMalassezia species in the environment and in human microbiomes by extensive reanalysis

of publicly available metagenomic datasets. We first used in silico benchmarks to confirm our

analysis pipeline is highly sensitive and specific in identifyingMalassezia species from short,

shotgun metagenomic reads (S2 Fig). We then applied this approach to a wide spectrum of

environmental metagenomic datasets including ocean (www.microb3.eu/osd), marine sedi-

ments [21], soil [22], and rhizosphere samples [23]. Despite recent reports ofMalassezia-like

organisms being widely distributed in the environment [15], we were unable to detect evidence

for this, suggesting they are present in abundances below our detection limit or are sufficiently

diverged from knownMalassezia species to elude our detection based on known genomes.

Table 2. Comparison of annotation quality for the iterative annotation pipeline in this study with a reference annotation. Results shown are for the
M. globosa genome.

Reference Iterative annotation

General Statistics # of genes 4286 4271

Avg. length of genes 1484 1613

# of exons 6377 8214

# nucleotides in exons 6.2 Mbp 6.6 Mbp

Exons per gene 1.5 1.92

Avg. length of exons 975 801

Proteome Completeness PFam domains 7113 7327

Unique PFam domains 2643 2755

Intron-Exon Junctions # of introns 2092 3943

Introns per gene 0.5 0.92

Avg. length of introns 76 79

Junctions 2091 3940

Supported junctions 1785 (85%) 2995 (76%)

doi:10.1371/journal.pgen.1005614.t002
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Similarly, we re-analyzed oral microbiome samples from six different oral sites (five samples

from each site) and found no evidence for the presence ofMalassezia, in contrast to a recent

report [13]. These results are consistent with either contamination artefacts orMalassezia

being presented at lower abundance in the oral mycobiome and thus being detectable only

using more sensitive 18S rRNA sequencing approaches which utilize an amplification step

[13]. In contrast, analysis of metagenomic datasets from different sites on healthy human skin

[12] readily revealed the abundance and diversity ofMalassezia (detected in 247 out of 280

samples analyzed, from 18 sites on 15 adults and two children; Fig 2A). In general, our analysis

reconfirmed thatM. globosa andM. restricta are the two most abundant species on human

skin, found in 199 samples on 16 individuals and 247 samples on 17 individuals, respectively.

M. sympodialis is a distant third, detectable in 69 samples on 12 individuals, though it is the

most abundant species in several samples (Fig 2A). In addition, nine other species were also

found either less frequently or in lower abundance. For example,M. slooffiae, which has previ-

ously not been detected on human skin via ribosomal RNA sequencing [11], was found in high

abundance in several samples, mostly from one individual (Fig 2A). It is also accompanied in

three samples byM. obtusa (in one individual) and apparently excludingM. sympodialis (in

two individuals) (Fig 2A).

We further probed the relative abundance of various genes from theMalassezia pan-

genome in skin metagenomic samples [12] to identify those that are highly variable, likely

reflecting strain-level variations in the commensal population [24]. AsM. restricta is the most

abundant species on human skin, we were readily able to find samples with sufficient read cov-

erage of the genome (>5X) for robust analysis (see Methods). Genome-wide we found signifi-

cant copy number variations in>100 genes across 6 skin samples and 4 body sites (Fig 2B, S3

Table), though analysis of more samples is likely to reveal even more variable genes. Our

proof-of-concept analysis revealed several highly variable genes including genes of unknown

function, a glutathione S-transferase (known to be involved in detoxification of xenobiotic sub-

strates), a peptidase and a sugar transporter (Fig 2B). As changes in carbohydrate and lipid

metabolism are key features ofMalassezia genomes (see Results below), this analysis suggests

our reference genomes will serve as an important resource for characterizing strain variations

contributing to different phenotypes on human skin.

Identifying genetic features that define theMalassezia genus

Leveraging the comprehensiveness of our genomic resource forMalassezia, we set out to com-

pare it against a broad panel of 16 fungal genomes (including all sequenced species in Ustilagi-

nomycotina, a few other Basidiomycetes and several Ascomycetes as outgroups). Using a

genome-wide multi-gene approach we first established a robust phylogenetic view ofMalasse-

zia’s relationship with other fungi and each other (Fig 3A and 3B; see Methods). In contrast to

earlier reports placingMalassezia among the Exobasidiomycetes [17] or Ustilaginomycetes

[25], our analysis suggests that it may be an isolated group (namely the class Malasseziomy-

cetes) in the subphylum of Ustilaginomycotina, in agreement with Wang et al [16]. However,

Wang et al placed Ustilaginomycetes close toMalassezia, and placed Exobasidiomycetes as the

basal group [16]; our tree placedMalassezia as the basal group, indicating early divergence

from its plant-pathogenic relatives. WithinMalassezia, our phylogeny supports three main

clusters (Fig 3B): Cluster A consists of fungemia-causing speciesM. furfur [26] and three other

species (M. japonica,M. obtusa, andM. yamatoensis), rarely found on healthy human skin (Fig

2A); Cluster B includes a sub-cluster of the most common human skin residentsM. globosa

andM. restricta [11], the slightly less commonM. sympodialis [14]) as well as related species in

another sub-cluster; Cluster C consists of two outliers,M. cuniculi andM. slooffiae (Fig 3B),

Complete Genus-WideMalassezia Comparative Genomics
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Fig 2. Characterizing the diversity ofMalassezia in skin samples. A) The relative abundance of variousMalassezia species (y-axis) in skin samples from
different body sites (labels on the x-axis) and individuals (separated by white columns) is depicted. Samples where >99% of reads came fromM. globosa and
M restricta are not shown here. The numbers of samples and the numbers of individuals in which each species was found is indicated in the legend on the
right. B) Z-score transformed normalized read counts for the top 10 copy number variable genes inM. restricta 7877 (measured in terms of coefficient of
variation of normalized counts) across six skin samples.

doi:10.1371/journal.pgen.1005614.g002

Complete Genus-WideMalassezia Comparative Genomics

PLOS Genetics | DOI:10.1371/journal.pgen.1005614 November 5, 2015 8 / 26



Fig 3. Phylogenetic relationships and lineage specific events in theMalassezia genus. A) The relationship of theMalassezia genus with respect to
other fungi with sequenced genomes.Malassezia seem to form a distinct group in the subphylum of Ustilaginomycotina contrary to earlier reports. B) An
expanded phylogeny ofMalassezia that includes all known species in the genus. Major lineages of the genus are annotated with the number of lineage
specific events that were identified in this study (G: gene family gain; L: gene family loss based on PFam analysis; see S3 Table for details). Horizontal
numbers on each branch are bootstrap values.

doi:10.1371/journal.pgen.1005614.g003
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both of which are rare on human skin (Fig 2A). Notably, while broadly in agreement, our phy-

logeny disagrees with the placement of several species compared to a four-gene tree [27] and

an earlier AFLP based tree [28], though its concordance with the mitochondrial phylogeny as

well as alternative approaches to reconstruct phylogeny (S3 Fig) suggest that it is likely to be

more reliable. Note that, as expected, our phylogeny also confirms the definition and molecular

distinctness of variousMalassezia species as well as the entire genus.

We then used comparative genomics to reveal genomic elements unique toMalassezia,

identifying a small set of 13 functional domains (PFam families [29]) to beMalassezia-specific,

compared to a much larger set of 741 domains likely lost in the common ancestor to allMalas-

sezia (Fig 3B, S3 Table; see Methods), in addition to gene family expansions and signatures of

selection (S3 Table). The set ofMalassezia-specific genes contains mainly genes of unknown

function and is not enriched for a specific functional category (S3 Table). On the other hand,

the set of genes lost in allMalassezia varies widely in function, from genes encoding enzymes

to transcriptional regulators to known accessory genes (S3 Table). However, we did detect sig-

nificant enrichment for two lost functional categories, specifically, enzymes involved in carbo-

hydrate metabolic process (q-value< 4.5×10−4) and in hydrolysis activity (hydrolyzing O-

glycosyl compounds; q-value< 4.5×10−4), as expected for a genus of skin-adapted fungi that

use lipids as their main carbon source. In addition, we also noted that the gene encoding the

fatty acid synthase (FAS) was missing in allMalassezia, indicating that the genus is lipid-

dependent and not just lipophilic as suggested earlier [30]. The idea that a subset ofMalassezia

is not lipid-dependent is based on the observation that someM. pachydermatis isolates can

grow in media (Sabouraud-dextrose agar) without added lipids, though it does require fatty

acids to grow in simple defined media [31]. We experimentally re-investigated the contents of

Sabouraud-dextrose agar media and noted that the added peptone contains 0.6% lipid, with

6 μg of palmitic acid per gram of peptone and lesser amounts of other fatty acids. Furthermore,

in 2 X YNB defined media,M. pachydermatis strains (1879 and 7550) were able to grow only in

the presence of added lipids confirming the unique lipid-dependent nature of allMalassezia

species (S2 Text).

At the structural level we confirmed linkage between the two mating loci (MAT) in three

Malassezia species (belonging to clusters A and B, S4 Fig; i.e. likely a pseudo-bipolar configura-

tion), a feature that is hypothesized to contribute to pathogenesis [32], but is unique toMalas-

sezia among Basidiomycetes (S3 Text, S4 Fig and S4 Table). We also noted a loss of the RNAi

pathway and a concomitant reduction in transposon element density in allMalassezia genomes

(S4 Text). Finally our selection analysis revealed a diverse set of noteworthy genes undergoing

positive selection (S5 Text and S3 Table), with the strongest signal being observed in a protein

(with match to the PFam domain PF12481) known to be induced by aluminum, a common

component of deodorant, shaving cream and gel [33].

Acquisition and function of horizontally transferred genes in the
Malassezia genus

TheMalassezia-specific gene families identified using known domain families (PFam) contain

many interesting candidates for horizontally transferred genes (HTGs). We also used a cluster-

ing based approach to expand this analysis to gene families with or without PFam domains,

obtaining an additional set of 44Malassezia-specific gene clusters, most of which have

unknown function (S3 Table). Finally, we used two additional approaches based on similarity

searches and phylogenetic analysis to catalog genes with more subtle evidence of horizontal

transfer from bacteria intoMalassezia [34,35] to identify 6 additional genes, many of which
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appear to be associated to oxidative stress response (including two oxidoreductases and one

catalase; S3 Table and S6 Text).

We further investigated the role and function of three specific gene families that likely repre-

sent key gain-of-function events inMalassezia. The first of these is unique as it is the only one

found to be conserved in allMalassezia. This gene family is defined by matches to the PFam

domain PF06742 (a domain of unknown function) and is present in a single gene copy in all

Malassezia, except for theM. furfur hybrids andM. slooffiae which have two gene copies. Its

universal presence in allMalassezia and absence in all other Basidiomycetes suggests that a lat-

eral gene transfer event in the ancestor of allMalassezia is the most parsimonious explanation.

In addition, while the likely source of this gene could not be determined due to its ancient ori-

gin, we noted that it is seen in diverse and often pathogenic bacteria (e.g.Mycobacterium tuber-

culosis, Listeria monocytogenes and Salmonella enterica) and fungi (e.g. Aspergillus flavus) and

is surprisingly well conserved (http://pfam.xfam.org/). Furthermore, we noted that the gene in

M. globosa is significantly up-regulated in nutrient deficient conditions (Fig 4A) while its

ortholog in Chlamydomonas reinhardtii is dramatically up-regulated under sulfur depletion

conditions (http://tinyurl.com/nyjd3md), suggesting that they might serve an essential biologi-

cal role. Proteomics evidence fromM. sympodialis [14] indicates that this gene is likely trans-

lated (Fig 4C) and secreted (based on a signal peptide match). Homology modeling predicted

its likely function to be a glycosyl hydrolase (EC 3.2.1.x, www.genome.jp/kegg/) (Fig 4D, S7

Text). The exact substrate remains to be determined but based on structural considerations

there is slightly higher similarity to beta-galactosidases or mannosidases near the predicted

substrate binding site (S7 Text). In addition, hydrolyzing activity on fungal cell wall glucans,

which have been determined to be mainly (1->6) beta-D-glucans inM. sympodialis [36], can-

not be excluded based on profile sequence searches (S7 Text). Adding to the functional context,

co-expression analysis inM. globosa revealed that this putative hydrolase gene’s expression is

highly correlated with that of an aspartyl protease (mgl_641, Pearson Correlation = 0.955,

FDR = 2.16×10−20). Interestingly, in another fungus, Candida glabrata, an aspartyl protease is

required for pH-change-induced reduction in total beta-glucan levels in the cell wall [37]

which could be achieved by coordinating with a beta-glucan hydrolase. Further experimental

work should help clarify this hypothesis and the gene’s impact onMalassezia biology.

The second gene family, with a match to the PFam domain PF00199, likely represents a case

of inter-kingdom gene transfer (from bacteria) of a catalase gene whose product carries out the

key function of removing the reactive oxygen species H2O2 [38]. Intriguingly our phylogenetic

analysis suggests that while, in general, allMalassezia have one catalase that is more closely

related to bacterial catalases (from Blastomonas and Sphingomonas),M. slooffiae has an addi-

tional, presumably ancestral, catalase that is more closely related to fungal catalases (S5 Fig).

The acquisition of a bacterial catalase inMalassezia could have provided a selective advantage

in adapting to life on a new host, especially considering the numerous secreted proteins (for

example, GMC oxidoreductases) that could generate hydrogen peroxide [2]. Within the genus,

catalase genes are missing in two species,M. restricta andM. pachydermatis, and this was con-

firmed by BLAST search [39] to both genomes and proteomes. ForM. restricta, absence of cat-

alase enzyme activity has been confirmed by enzyme test [40]; given the fact thatMalassezia

live in an aerobic environment on skin [1] alternative metabolic pathways might exist to detox-

ify oxygen inM. restricta. ForM. pachydermatis, catalase activity has been observed [40] and

alternative catalases might exist which are sufficiently diverged from catalases in otherMalasse-

zia species.

The third gene family, defined by matches to the PFam domain PF13367 (a family of puta-

tive PrsW proteases), was found to be present in all genomes ofMalassezia cluster B (contain-

ing species commonly found on human skin) while being absent in otherMalassezia and
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Fig 4. Functional characterization of novel, putative horizontally transferred genes inMalassezia. A) Upregulation of the gene containing the PFam
domain PF06742 in nutrient deprived conditions inM. globosa. B) Downregulation of the gene containing PF13367 in nutrient deprived conditions inM.
globosa. C) Peptide evidence for the genes containing PF06742 and PF13367 inM. sympodialis. D) Structural model of representative gene containing
PF06742 (MGL_833 fromM. globosa 7966 reference). Right side: full model with domains in different colors. Left side: zoom to Jelly Roll domain with
predicted glycosyl hydrolase function (Coloring shows relative similarity to known hydrolase enzymes. Purple: structurally different; Gray: structurally same,
amino acid different; Yellow: structurally same, amino acid identical, hydrophobic; Blue, Red, Green: structurally same, amino acid identical, non-
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Basidiomycetes (S3 Table), suggesting that it may have been horizontally acquired in the line-

age leading to cluster B. Genes belonging to this gene family were readily found in skin resident

bacteria (e.g. Propionibacterium, Streptococcus and Staphylococcus) as well as a few parasitic

protists (e.g. Toxoplasma gondii, Neospora caninum, Cryptosporidium and Plasmodium)

(http://pfam.xfam.org/). In Bacillus subtilis, PrsWs sense antimicrobial peptides and then

cleave the anti-ϬW factor to activate the ϬW factor [41]. However, in the absence of the anti-ϬW

factor or the ϬW factor inMalassezia, these genes are likely to have a different role. We con-

firmed that this gene is expressed and translated (Fig 4B and 4C) and significantly down-regu-

lated in nutrient deficient conditions (Fig 4B). PrsW-like proteases belong to the

endopeptidase family M82 that is related to the family M79 (that includes Rce1 peptidases)

(Fig 4E) [41,42] with a recently resolved crystal structure [43]. Homology modeling confirmed

the known catalytically important residues [41,43] to be conserved between these two families

(S6 Fig, S7 Text) and located in the center of the transmembrane bundle forming the active site

(Fig 4E). The Rce1 peptidases typically cleave C-terminal tripeptides from isoprenylated pro-

teins (e.g. fungal mating factor a) [43]. However, this is not likely the function ofMalassezia

PrsW-like family due to the presence of direct Rce1 homologs inMalassezia (e.g. MGL_3383,

Fig 4E).

Gene family expansion and extensive turnover underlie niche specificity
inMalassezia

Malassezia are known to have varying host tropism and highly specific preferences for environ-

mental niches and food sources [3,44]. For example, some highly sebaceous sites such as scalp

(including occiput) and back are typically dominated byM. globosa [11]. To further under-

stand niche-specificity inMalassezia, we evaluated their preference for growth in various lipid

media using “Lipid Assimilation Assays” (see Methods). These experiments highlight a strong

specificity inMalassezia’s preference for lipids (S4 Table) that is not well correlated with their

phylogenetic relatedness. For example,M. furfur andM. sympodialis are functionally similar as

the most robust of the lipid-dependent species in culture, sharing the broadest range of lipids

that support growth (Fig 5A, S5 Table). However, they are not closely related and are placed in

different sub-clusters of theMalassezia phylogeny (Fig 3B). Also, the closely related speciesM.

globosa andM. restricta have different lipid assimilation profiles (Fig 5A, S5 Table). To under-

stand the genetic basis of these phenotypes, we reexamined the list of gene family expansions

and selection inMalassezia. Strikingly, the most expanded gene family inMalassezia was

found to be a phospholipase family, and a secretory lipase family was also among the list of 13

families with a 2-fold increase in median copy number inMalassezia compared to other fungi

(S3 Table). Lipase and phospholipase activities have been detected in multipleMalassezia spe-

cies [45,46]. Their genes are highly expressed in vivo on human scalp [2,45,47], and are thought

to play an essential role in supporting their growth. Therefore, we hypothesized that expansion

of these gene families might explainMalassezia niche-specificity. Other than lipases, many

peptidases in multiple families are found in the most expanded gene families inMalassezia,

underlining their importance inMalassezia biology (S3 Table, S8 Text).

hydrophobic [blue: positive charge; red: negative charge; green: polar]; Cyan: substrate sugar). E) Left side: Maximum likelihood phylogenetic tree of the
Malassezia PrsW-like family (green) with representatives from PrsW (blue) and Rce1 (brown) families including one resolved structure (red). Gene IDs are
specified behind species names and strain IDs. Right side: homology model of a PrsW-like protease (MG7966_4204 fromM. globosa 7966; contains the
PFam domain PF13367) with red arrow indicating conserved glutamates and histidines coming together to form the active site. Coloring: Blue: structurally
different; Gray: structurally same, amino acid different; Yellow: structurally same, amino acid identical (all types).

doi:10.1371/journal.pgen.1005614.g004
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Fig 5. Lipid specificity and extensive turnover in the lipase gene family. A) Representative lipid assimilation assay images. Letters correspond to lipid
wells (S5 Table). White letters indicate no growth, while green letters indicate growth on visual scale. B) Gene gains and losses in phosphoesterase family
PF04185, where “+” indicates the number of gene gain events while “-” indicates the number of gene loss events. Shaded numbers indicate the estimated
gene copy number in the most recent common ancestor and gene copy numbers in the observed species.

doi:10.1371/journal.pgen.1005614.g005
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To understand the evolution of these families, we inferred parsimonious reconstructions of

gain and loss events (see Methods). In particular, the most expanded gene family, a family of

phospholipases (phosphoesterases, PF04185) showed a striking pattern of extensive turnover,

with a dramatic expansion of the family in the ancestor of cluster B species followed by lineage

specific losses (Fig 5B). Recent duplications were also observed inM. japonica,M. slooffiae and

M. cuniculi while cluster A species seem to have experienced a significant contraction in this

gene family that is thought to be relevant to fungal pathogenesis [48]. Extensive turnover in the

lipase gene repertoire ofMalassezia was also seen in the secretory lipases (PF03583) (S7 Fig).

Species-specific duplication events were found in seven species and, in particular, there has

been rapid recent expansion of the family inM. slooffiae andM. pachydermatis (S7 Fig). We

observed frequent lineage-specific duplication and loss of genes in other lipase families as well

(e.g. PF01764) and together these could explain the complex patterns of lipid-specificity

observed inMalassezia. Further experiments should help establish the exact roles specific lipase

genes play in the process of human colonization and pathogenesis.

Discussion

Malassezia, while found on all humans and associated with many common human skin dis-

eases, are poorly understood in large part due to a lack of genomic tools. Here, we report gener-

ation and analysis of the genomes of all 14 acceptedMalassezia species, including multiple

strains of those most commonly found on human skin (for a total of 24 strains).Malassezia are

unique in several ways, including their adaptation to life on animal skin, their dominance as

eukaryotic residents on human skin (in contrast to the diversity seen among prokaryotic com-

mensals), and their lipid-dependent lifestyle. Even withinMalassezia, we noted there is sub-

stantial variability in preference for food sources and thus environmental niches. As a first step,

the analysis in this study serves to systematically catalog and characterize genomic features

unique toMalassezia and its lineages, which could then be associated with the observed pheno-

types. This was aided by the characterization of all known species in the genus as well as multi-

ple strains for key species, allowing robust conclusions to be drawn despite potential analysis

pitfalls. Correspondingly, several of the genes identified in this study are prime candidates for

further experimental study. It is tempting to speculate, for example, that the gene containing

the PFam family PF06742 serves an essential function inMalassezia such that loss of the gene

could be lethal. As this gene was likely horizontally acquired by the ancestor of allMalassezia,

its function could also be tied to the origin of the genus, particularly if it relates to utilizing

energy sources from the host. Similarly, the role of PF13367 could be linked to the ability of

cluster BMalassezia to thrive on human skin. In general,Malassezia are not facile experimental

systems as they are challenging to cultivate and typically recalcitrant to genetic manipulation.

In this context, recent success in performing gene deletion inM. furfur is encouraging (Giu-

seppe Ianiri and Alexander Idnurm, personal communication) and could enable in vivo func-

tional characterization.

Among other gene families of interest, particularly due to their association with niche-speci-

ficity, are several lipase families. Interestingly, there are a total of 25 lipases found in the two

major lipase families (PF03583 and PF01764) inM. slooffiae, a species found on both animals

and humans [9,49] with little known about its involvement in diseases. This is the most in any

haploidMalassezia strain (S3 Table), with the closely relatedM. cuniculi having only 16 lipases

andM. globosa 14 (S3 Table). Many lipases inM. slooffiae are derived from unique species-spe-

cific duplication events (S7 Fig). However, it remains an open question ifM. slooffiae is indeed

able to leverage this large arsenal of lipases to utilize a wider range of lipids and hence live in

more diverse ecosystems. Intriguingly, we observed in our skin metagenomic datasets that the
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only three samples with relatively high abundance ofM. obtusa are in co-occurrence withM.

slooffiae (Fig 2A), suggesting the possibility thatM. slooffiae breaks down lipids for utilization

byM. obtusa, a rare and hard-to-culture species. Further studies are needed to establish this

relationship but it is clear that the availability of genomes for allMalassezia species will be criti-

cal to understanding their distribution and role in human diseases.

The question of whetherMalassezia orMalassezia-like species are abundant in habitats

other than on the skin of warm-blooded animals is an intriguing one. Our analysis of samples

from varying habitats suggests that they are either not common or not similar enough to

knownMalassezia species. With the availability of a catalog ofMalassezia-specific genes, sensi-

tive models can be built to detect remote homologies to these sequences [29] as a way to search

for distantMalassezia-like species in the environment. This in turn should help clarify the

emergence and role ofMalassezia as a skin-adapted fungus.

Fungal mating is hypothesized to play an important role in pathogenesis by increasing

genetic diversity [32,50]. The observation that mating loci are linked in three species in cluster

A and B, suggests that bipolar or pseudo-bipolar mating systems may be present in allMalasse-

zia. The former is observed in most human pathogenic fungi [32] and in ascomycota, and the

latter is observed inM. sympodialis [14], despite the fact that the tetrapolar mating system is

more common in basidiomycota [32]. Further studies using sequencing technology which

enables longer read lengths and hence analysis of larger genomic structural elements are

needed to define the presence and impact of pseudo-bipolar mating systems inMalassezia and

any role in their pathogenesis.

Methods

Malassezia culture, extraction of DNA and RNA, and library preparation

Malassezia was grown on mDixon media for DNA extraction, andM. globosa was grown on

mDixon or minimal media for RNA extraction. Sequencing was done using Illumina HiSeq

2000. Please see S9 Text for details.

De novo genome assembly

Genomes were assembled using an in-house pipeline. Specifically, we used a conservative trim-

ming approach (removing Q2 bases and all following bases and discarding paired-end reads

with one or both ends shorter than 50 bp) as recommended by Illumina. After read-trimming,

de novo assemblies (contiging and scaffolding) were constructed using SOAPdenovo [51] (ver-

sion 1.05, maximum insert length = 300bp). A range of assembly options were explored includ-

ing testing various k-mers (41, 51, 61, 71, 81) and down-sampling of coverage on an

exponential scale down to 50X to identify an optimal assembly in terms of contiguity statistics

(N50). An example of this can be seen in S6 Table. The resulting assembly was then re-scaf-

folded using the program Opera version 1.4 [52] with default parameters and we attempted to

close remaining gaps in the assembly in silico using FinIS [53]. Details of assembly statistics

can be found in S7 Table.

RNA-seq assembly forM. globosa

Illumina paired-end reads were first trimmed using fastq_quality_trimmer (-t 20 -l 10) in

FASTX (http://hannonlab.cshl.edu/fastx_toolkit/). Reads that could not be paired were dis-

carded. Then, reads were assembled into transcripts using Trinity [54] (—jaccard_clip—

SS_lib_type FR). The jaccard_clip option was turned on to avoid fusion of transcripts. Assem-

bly was done individually for each sample and all assemblies were combined to generate a
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complete set of 727,354 transcripts. After removing redundant transcripts that were identical

to another transcript, a total of 716,864 transcripts were left. Then, transcripts that were fully

contained in another transcript were also removed to generate a set of 402,757 transcripts.

Gene annotation

TheM. globosa 7966 reference genome was originally annotated by combining in silico predic-

tion and a limited number of EST sequences [2]. Therefore, we re-annotated this genome to

improve quality with the aid of RNA-seq datasets from two growth conditions and the applica-

tion of newer ab initio gene prediction programs [55,56]. We used the MAKER pipeline [57] to

integrate ab initio gene prediction (SNAP [55] and AUGUSTUS [56]), transcript evidence

(from our RNA-seq dataset), and protein evidence to predict genes in an iterative manner. For

protein sequences, we downloaded several fungal genomes from Genbank, including Saccharo-

myces cerevisiae [58], Ustilago maydis [59], Candida albicans [60],M. globosa [2], andM. sym-

podialis [14]. The protein sequences ofM. globosa andM. sympodialis were not used in their

own annotation process, respectively. Four sets of annotation were generated using the

MAKER pipeline [57] in an iterative manner to improve ab initio gene prediction. First,

MAKER was run with protein evidence and ab initio predictors trained with core eukaryotic

genes predicted by CEGMA [20]. Then, MAKER was re-run twice additionally. For each time,

ab initio predictors were retrained with gene models predicted by the previous run.

The first annotation was generated without transcripts. Compared to the reference annota-

tion, this annotation retrieved longer genes and identified more exons and introns. The num-

ber of PFam domains identified in this annotation was slightly higher than that of the reference

annotation, suggesting that it annotation captured more sequences with coding potential. The

number of supported intron-exon junctions also increased, indicating that a large portion of

the newly identified junctions were likely real (S2 Table, 1st set). These results suggest that even

without transcript evidence, our annotation captured more coding sequences and more com-

plete genes. Upon addition of transcript evidence in the second set, the number of introns

increased, while the number of genes decreased, likely due to the false merging of genes by

transcripts spanning two genes (S2 Table, 2nd set). Since theM. globosa genome is compact,

with 4,223 genes (Table 1) in a 9.0 Mbp genome, false merging of genes during transcriptome

assembly is likely. The number of PFam domains in the protein sequences also decreased.

Therefore, we removed any transcript that overlapped with two or more gene models in order

to generate the third annotation set (S2 Table, 3rd set). The full set of transcripts was aligned to

theM. globosa reference genome using BLAT with minimum identity of 99% [61] and any

transcript that overlapped with more than one gene model were removed to generate the

reduced set of transcripts. This reduced the transcript set from 402,757 transcripts to 322,251

transcripts. We also noted that very few genes exhibited evidence for alternatives isoforms (10

with two isoforms and one with four isoforms). Then, gene models in the second set that do

not overlap with any gene in the third set were added to generate the fourth annotation set (S2

Table, 4th set). Adding these transcripts led to an increased number of supported junctions, but

the number of unique PFam domains and total PFam domains did not increase further (S2

Table), suggesting that ab initio prediction is sufficient to capture sequences with coding poten-

tial. For genomes other thanM. globosa 7966, we used the same iterative approach for annota-

tion without transcript evidence.

Phylogenetic analysis

Species trees were constructed using the concatenated sequences of 164 core eukaryotic genes

(CEGs) predicted by CEGMA [20] that are present in allMalassezia genomes, U.maydis
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genome, and the S. cerevisiae genome, and theMalassezia sequences are at least 90% the length

of their S. cerevisiae orthologs. Sequences were aligned using MUSCLE [62] and the phylogeny

was constructed using maximum likelihood (ML) approaches as implemented by RAxML [63].

RAxML was run using “–f a –m PROTGAMMAJTT” with 400 bootstraps. (Ustilaginomyco-

tina tree was built using the same approach.) To test the robustness of ourMalassezia phylog-

eny beyond bootstrap values, we applied a Bayesian approach on the same concatenated

sequences using MRBAYES [64]. MRBAYES was run using “prset aamodelpr = mixed” and

“mcmc nchains = 1 ngen = 300000”. We also merged individual ML gene trees for CEGs into a

supertree [65]. Individual gene trees were constructed using the same approach and they were

merged into a supertree using Clann [65]. Using this approach, more genes could be incorpo-

rated into the final tree, as missing a strain in a gene tree could be tolerated. Both approaches

yielded the same phylogeny as the concatenated ML tree (Bayesian tree in S3A Fig). We also

generated a species tree derived from the mitochondrial genomes (Jack Kennell, personal com-

munications, S3B Fig). Despite differences observed on an intra-species level within theM. fur-

fur,M. globosa, andM. sympodialis lineages, we found that the two trees correspond perfectly

on an inter-species level.

ForM. furfur-specific tree (S1 Fig), MCL clusters (described later) with two genes in each of

the hybrids (M. furfur 7710,M. furfur 1878,M. furfur 4172, andM. furfur 7019) and one gene

in each of the haploids (M. furfur 7982 andM. furfur JPLK23) were used. Nucleotide sequences

were used instead of amino acid sequences. The genes from hybrid strains were separated into

two groups based on their similarity to the genes of the two haploid strains as measured by

BLAST bitscore [39]. Only clusters with less than 5% of total alignment as indels were used to

minimize the effect of assembly and annotation errors. A total of 1,306 clusters were

concatenated and aligned using MUSCLE [62]. To generate a maximum likelihood tree,

RAxML was used with “-f a -# 400 -m GTRGAMMA” [63].

Gene family analysis

PFam domains [29] were identified in allMalassezia strains and other fungal protein sequences

using hmmscan (HMMER 3.1b1) with trusted cutoffs (http://hmmer.org).Malassezia-specific

PFam domains are defined as present in at least sevenMalassezia species and in at most two

other fungi. This approach is limited to the study of protein families having at least one PFam

domain. MCL clustering [66] was used to clusterMalassezia and other fungal genes based on

their pairwise sequence similarity to construct gene families. This approach does not rely on

PFam and can include all genes regardless whether they have PFam domains or not. Yet, unre-

lated genes with no orthology can be clustered together if they both have a good match to a

third gene. BLAST [39] was used to alignMalassezia and other fungal protein sequences in an

all-against-all fashion with an e-value cutoff of 10−5. MCL was used to cluster protein

sequences based on their E-values with–I 2.0. Sequences shorter than 90% of the median length

in the cluster were excluded.Malassezia-specific clusters were defined as present in at least

sevenMalassezia species and not present in other fungi). To infer gain and loss in PFam fami-

lies, PFam family phylogenies were constructed using MUSCLE and RAxML as described ear-

lier. Then, species phylogeny and gene family phylogenies were reconciled using NOTUNG

[67] to infer gain and loss events that took place along theMalassezia phylogeny.

For selection tests, we choose singleton PFam families inMalassezia species. Protein

sequences were first aligned using MUSCLE (described earlier) and nucleotides were then

substituted back in the sequences. PAML [68] was used for selection tests (CODEML, M7M8

mode), and genes with bonferroni-corrected p-value< 0.05 were tabulated (χ2 test, two degrees

of freedom).
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Malassezia and lipid dependence

ForMalassezia growth in 2X YNB media, cultures were incubated in 2X YNB at 31°C for

24, 48, 72, and 144 hours. Four strains,M. furfur 7982,M. sympodialis 42132,M. pachyderma-

tis 1879 and 7550 (also named by CBS, http://www.cbs.knaw.nl/), were used. For each

strain, two cultures, one with and one without Tween 40 at 1%, were included in this

experiment.

Two separate methods were used to extract lipids from the Bactopeptone media. Please

refer to S9 Text for details.

Lipid assimilation assays

Briefly, Sabouraud broth was melted with 3% Sea Plaque GTG (low-melt) agarose and equili-

brated to 45°C.Malassezia cells were counted and diluted to 1x105 cells/ml in Sabouraud broth

with chloramphenicol, and equilibrated to 31°C. Cell suspension (30ml) and melted agar broth

(30ml) were quickly mixed and poured into 150 mm dishes. Once solidified, 18 holes were

made with a 2 mm punch biopsy. To each hole, 5 μl of test compound was added and the plates

were incubated for 17 days at 34°C. Test compounds are listed in S5 and S6 Tables. Please refer

to [69,70] for artificial sebum.

MAT loci analysis

We examined the two mating type loci (P/R and HD) for allMalassezia species. We used the

gene sequences from the reference strains forM. sympodialis andM. globosa, as queries to

BLAST [39] against the genome assemblies of allMalassezia species to identify the locations of

theMAT loci in these genomes. The alignments ofMAT loci betweenMalassezia species were

generated through WebACT (http://www.webact.org/WebACT/generate) using blastn with an

E-value cutoff of 0.0001.

Horizontal gene transfers inMalassezia

M. sympodialis 42132 protein sequences were compared to UniProtKB v2015_02 [71] and the

NCBI Nucleotide Collection database using NCBI Blast [72]. Proteins with the most significant

BLAST hit against bacteria in both databases were analyzed further. Bacterial and fungal

homologs of each HGT candidate were retrieved from GenBank [73]. Multiple sequence align-

ments were generated using MUSCLE v3.8.31 [62]. Poorly aligned or divergent regions in the

alignments were identified and excluded from further analysis using Gblocks v0.91 (with

options –u = y –t = p) [74]. Phylogenetic trees and 1000 bootstraps for each alignment were

generated using PhyML v20120412 (with options –m JTT –d aa) [75]. Phylogenetic trees were

manually inspected and candidate horizontally transferred genes were chosen, if they were

closer relatives to their bacterial orthologs than their fungal orthologs.

Malassezia profiling from shotgun metagenomics datasets

We used PathoScope 2.0 [76] to estimate the abundances of the 14Malassezia species in differ-

ent shotgun metagenomics datasets (strain 7982 used forM. furfur, strain 7877 forM. restricta,

strain 7966 forM. globosa, and strain 42132 forM. sympodialis). Before mapping to the refer-

ence genomes, the reads were filtered against a set of non-Malassezia fungal genomes (all fun-

gal genomes from ftp://ftp.ncbi.nlm.nih.gov/genomes/Fungi/ plus Ustilago maydis [59]) using

PathoScope 2.0's MAP module. To further account for potential false positives from Patho-

Scope analysis,Malassezia genomes were divided into 1 kb bins and a species was considered

present only if>10% of the bins were covered by at least one read. Abundances ofMalassezia
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species were renormalized after removing false positives using this filter. The performance of

PathoScope 2.0 was benchmarked by mapping the original reads of eachMalassezia strain to

the genomes of allMalassezia species using the protocol described here.

Accession numbers for the datasets studied in this paper are summarized in S9 Text.

To identify genes with variable copy number inMalassezia, we focused onM. restricta

(usingM. restricta 7877 genome), the most abundant species in skin samples [12]. We selected

six samples with highestM. restricta genome coverage (MET0202, MET0207, MET0259,

MET0270, MET0276, MET0278) [12]. Read counts for each gene were obtained from Patho-

Scope [76] and normalized across all genes in each sample. Normalized read counts were used

to compute the coefficient of variation (= sample standard deviation divided by sample mean).

The top 10 genes with highest coefficient of variation are shown in Fig 2B and the top 15 are

listed in S3 Table.

Supporting Information

S1 Fig. Phylogeny ofM. furfur.MF stands forM. furfur. The upper clade includes MF7982

and the haploids within the diploidM. furfur hybrids that are more similar to MF7982. The

lower clade includes MFJPLK23 and the haploids within the diploidM. furfur hybrids that are

more similar to MFJPLK23.

(TIF)

S2 Fig. Benchmarking metagenomic analysis pipeline. Genomic reads from each strain

(x-axis) were mapped to selected genome assemblies (one genome per species, see Methods).

On y-axis, percentage of reads mapped to each genome is shown in (A), indicating most geno-

mic reads are mapped to the correct species (sensitivity); relative abundance of total mapped

reads is shown in (B), indicating that after filtering with genomic bins (see Methods), our pipe-

line is highly specific.

(TIF)

S3 Fig.Malassezia phylogenies generated with alternative approaches. A) Bayesian

approach; B) mitochondria gene-based (only nineMalassezia species, branch length not to

scale). Numbers indicate bootstrap values.

(TIF)

S4 Fig.MAT loci inMalassezia. A)MAT loci linkage inMalassezia. Strains in which the link-

age between the mating type P/R and HD loci has been confirmed are indicated with a “�”.

The red “�”s indicate the strains in which the linkage between the P/R andHD loci are

likely established through a single common event (the red star); the blue “�” indicates the link-

age between P/R and HD loci inM. yamatoensis, which is likely established independently,

based on the different configuration of the twoMAT loci, as well as the enlarged, and highly

diverged chromosomal region between the P/R and HD loci in this species. B) Comparison of

chromosomal regions encompassing the P/R and HD loci in differentMalassezia species.

Shown here are alignments of the chromosomal regions encompassing the P/R and HD loci in

the genomes of the four isolates in which the twoMAT loci are linked. Blue lines connect

homologous regions with same orientation and red lines connect homologous regions

with opposite orientations. Block arrows indicate genes located within the P/R and HD (bE and

bW) loci.

(TIF)

S5 Fig. Phylogeny of catalase gene family (PF00199). A) phylogeny includingM. globosa and

M. slooffiae catalases, closely related bacterial catalases, and other fungal catalases. Red letters
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indicateMalassezia catalases; green shaded area includes threeMalassezia catalases and their

close bacterial relatives; B) phylogeny only includingMalassezia catalases.

(TIF)

S6 Fig. Multiple Sequence alignment using MAFFT E-INS-I forMalassezia proteins with

PF13367 domains. Sequences are aligned to PrsW and Rce1 representatives (including struc-

ture entry 4cadF). Only one conserved region is shown that harbors the characteristic fully con-

served “EE” and “H”motifs (pink arrows) as well as additional “E” and “H” conserved only

amongMalassezia genes with PF13367 and PrsWs (green arrows).

(TIF)

S7 Fig. Gene gains and losses in lipase family PF03583. “+” indicates number of gene gain

events while “-” indicates number of gene loss events. Shaded numbers indicate estimated gene

number in the most recent common ancestor and gene numbers in current species.

(TIF)

S8 Fig.Malassezia growth in 2X YNB media. Cultures were incubated in 2X YNB at 31°C for

the indicated time. Tween 40 was included at 1% in cultures shown in the right half of the panel.

(TIF)

S9 Fig. Summary of interkingdom gene transfer toMalassezia. The bottom two are identi-

fied by presence/absence of PFam domain and the rest are identified by similarity-based

approaches.

(TIF)

S10 Fig. Structural models and conservation ofMalassezia proteins with PF06742 domain.

A) Domain hit regions mapped to MGL_833 (fromM. globosa 7966 reference) structure

model with the original PF06742 domain hit colored green and the unaligned ends from the

HHpred hit in magenta using YASARA. B) comparison of models fromM. globosa andM. sym-

podialis (magenta: structurally different, likely only approximate modeling accuracy in this

region; gray: structure reliable and similar; yellow: structure reliable and amino acid physical

property similar). C) Conservation pattern among allMalasseziamembers of this protein family.

Evolutionary conservation is calculated with RVET over a MAFFT E-INS-I alignment and

shown in CONSURF-like coloring with gradient from cyan (low) to purple (high conservation).

(TIF)

S11 Fig. Distribution of enzymatic functions among 12 enzymes sharing a Jelly Roll and an

Immunoglobulin-like fold. Left: all 12 enzymes; right: eight hydrolases out of the 12 enzymes.

(TIF)

S12 Fig. Structural superimposition of Jelly Roll domain inM. globosa PF06742 gene

model with enzymes of known function. A) comparison with beta-galactosidase, PDB:1yq2.

B) comparison with beta-1,4-mannanase in complex with mannohexaose, PDB:1pmh. Color-

ing: Purple: structure different; Gray: structure same, amino acid different; Yellow: structure

same, amino acid identical hydrophobic; Blue, Red, Green: structure same, amino acid identical

non-hydrophobic.

(TIF)

S13 Fig. Phylogenetic tree of selectedMalassezia PF06742 genes, their close orthologues,

and glucan hydrolases with annotated EC numbers. Shaded area includesMalassezia

PF06742 genes and their close orthologues while the rest are glucan hydrolases. The two closest

EC numbered genes are marked.

(TIF)
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S14 Fig. Transmembrane (TM) region classification plot of MG7966_4204 (containing

PF13367) fromM. globosa 7966. Comparison of the predicted TM regions with known TM

types. Blue: membrane anchors; red: functional TM helices; green: SCOP Alpha helices; black:

predicted TMs numbered in the query protein, which mostly grouped with the functional TM

helices (red).

(TIF)

S1 Text. Evolution ofM. furfur strains.

(DOCX)

S2 Text. Lipid dependence inMalassezia.
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S3 Text. Mating loci inMalassezia.

(DOCX)

S4 Text. Concomitant RNAi/transposon loss inMalassezia.

(DOCX)

S5 Text. Positively selected genes inMalassezia.

(DOCX)

S6 Text. Horizontal gene transfers from bacteria toMalassezia.

(DOCX)

S7 Text. Structural modeling and function prediction forMalassezia genes with PFam

domains PF06742 or PF13367.

(DOCX)

S8 Text. Gene family expansions.

(DOCX)

S9 Text. Supplementary Methods.

(DOCX)

S1 Table. Evaluation of de novo assemblies from this study by comparison to correspond-

ing reference genomes.

(DOCX)

S2 Table. Comparison of annotation quality with and without transcriptome sequencing

data. Results shown are for theM. globosa 7966 reference genome. Note that the addition of

transcriptomics data (in v2, v3 and v1+v3) does not seem to improve the completeness of the

identified proteome (measure by the number of PFam domains identified) but slightly

improves the identification of intron-exon junctions.

(DOCX)

S3 Table. Gene families inMalassezia and other fungi.

(XLSX)

S4 Table. The distance between PR andHD loci in differentMalassezia strains.

(DOCX)

S5 Table. General results ofMalassezia lipid assimilation assay. Gray area denotes “Not

Determined”. The symbols +, ++ and +++ denote low but detectable, moderate, and maximal

growth, while—denotes no growth.

(DOCX)
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S6 Table. Selected lipid assimilation assay results corresponding to Fig 5A.Well/row letters

correspond to lipid well in Fig 5A. All lipids delivered in either triolien or propylene glycol (-)

controls. (-) equals no growth, 1–3 indicate low to maximal growth on a visual scale.

(DOCX)

S7 Table. Assembly statistics for the parameters tested for isolate MR8742. The underlined

assembly was found to be the optimal one (100X coverage and k-mer = 51) based on the N50

reported (the number in parentheses is the number of contigs greater than that length).

(DOCX)

S8 Table.Malassezia genome assembly statistics.

(DOCX)

S9 Table. Detailed transmembrane region analysis for complexity and hydrophobicity as

well as highlighting positions of likely functional relevance within the helices.

(DOCX)
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