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Abstract

Summary: Visualizing and summarizing data from genomic studies continues to be a challenge.

Here, we introduce the GenVisR package to addresses this challenge by providing highly customiz-

able, publication-quality graphics focused on cohort level genome analyses. GenVisR provides a

rapid and easy-to-use suite of genomic visualization tools, while maintaining a high degree of flexi-

bility by leveraging the abilities of ggplot2 and Bioconductor.

Availability and Implementation: GenVisR is an R package available via Bioconductor (https://bio

conductor.org/packages/GenVisR) under GPLv3. Support is available via GitHub (https://github.

com/griffithlab/GenVisR/issues) and the Bioconductor support website.

Contacts: obigriffith@wustl.edu or mgriffit@wustl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The continued development of massively parallel sequencing tech-

nologies has led to an exponential growth in the amount of genomic

data produced (Kodama et al., 2012). This growth has in turn

enabled scientists to investigate increasingly large, cohort-level gen-

omic datasets. Generating intuitive visualizations is a critical compo-

nent in recognizing patterns and investigating underlying biological

properties in cohorts under study. A significant bottleneck exists,

however, between data generation and subsequent visualization and

interpretation (Good et al., 2014). Additionally, generating

publication-quality figures for effective communication of these

data typically requires ad hoc methods such as manual creation or

extensive graphic manipulation with third party software. This pro-

cess is both time intensive and difficult to automate/reproduce.

Further, the absence of software supporting multiple species can

make this process even more demanding. Here, we present

GenVisR, a Bioconductor package to address these issues. GenVisR

provides a user-friendly, flexible and comprehensive suite of tools

for visualizing complex genomic data in three categories (small

variants, copy number alterations and data quality) for multiple spe-

cies of interest.

2 Visualization of small variants

The identification of small variants (SNVs and indels) within a gen-

omic context is of paramount importance for the elucidation of the

genetic basis of disease. Numerous tools and resources have been

created to identify variants in sequencing data (Wang et al., 2013).

Conversely, few tools exist to visually display and summarize these

variants across sample cohorts. Given a gene of interest, it is often

useful to view variant occurrences in the context of the translated

protein product (Zhang et al., 2012). A variety of options exist to

achieve this; however tools that offer both automation and flexibil-

ity to perform this task are lacking (Supplementary Table S1)

(Griffith et al., 2015; Leiserson et al., 2015; Nilsen et al., 2012; Yin

et al., 2012; Zhou et al., 2015). The function lolliplot was developed

to allow for precise control over visualization options (Fig. 1A).

This includes the ability to choose Ensembl annotation databases for
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protein domain displays and to plot multiple tracks of mutations

above and below the protein representation. Another common ob-

jective of genomic studies is to identify variant recurrence across

multiple genes within a cohort. The GenVisR function waterfall was

developed to calculate and rapidly illustrate the mutational burden

of variants on both a gene and sample level, and further differenti-

ates between variant types (Fig. 1B) (Krysiak et al., 2016; Ma et al.,

2016; Wagner et al., 2016). Mutually exclusive genomic events at

the variant level are emphasized in this visualization by arranging

samples in a hierarchical fashion such that samples with mutations

in the most recurrently mutated genes are ranked first. Finally, it is

often informative to investigate the rate of transition and transver-

sion mutations observed across a set of cases. For example, lung

tumors originating from patients with a history of tobacco smoke

exposure display a pattern of enrichment for C to A or G to T trans-

versions (Govindan et al., 2012). The function TvTi (transversion/

transition) was developed to improve recognition of these types of

patterns within a cohort.
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Fig. 1. Selected representation of GenVisR visualizations. (A) Output from lolliplot for select TCGA breast cancer samples (Cancer Genome Atlas Network, 2012)

shows two mutational hotspots in PIK3CA within the accessory and catalytic kinase domains. (B) Output from waterfall shows mutations for five genes across 50

select TCGA breast cancer samples with mutation type indicated by colour in the grid and per sample/gene mutation rates indicated in the top and left sidebars.

(C) Output from genCov displays coverage (bottom plots) showing focal deletions in sample A (last exon) and B (second intron) within a gene of interest. GC con-

tent (top plot) is encoded via a range of colours for each exon. (D) Output from lohSpec for HCC1395 (Griffith et al., 2015), HCC38 and HCC1143 (Daemen et al.,

2013) breast cancer cell lines shows LOH events, across all chromosomes, shaded as dark blue. (E) Output from covBars shows cumulative coverage for 10 sam-

ples indicating that for each sample, at least �75% of targeted regions were covered at� 35� depth. (F) Output from compIdent for the HCC1395 breast cancer

cell line (tumor and normal) shows variant coverage (bottom plot) and SNP allele fraction (main plot) indicating highly related samples. Note that 4/24 positions

are discrepant and likely result from extensive LOH in this cell line
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3 Visualization of copy number alterations

Copy number alterations occurring within the genome are impli-

cated in a variety of diseases (Beroukhim et al., 2010). The function

GenCov illustrates amplifications and deletions across one or more

samples in a genomic region of interest (Fig. 1C). A key feature of

GenCov is the effective use of plot space, especially for large regions

of interest, via the differential compression of various features (in-

trons, exons, UTR) within the region of interest. For a broader view

the function cnView plots copy number calls, and the corresponding

ideogram, for an individual sample at the chromosome level. The

function cnSpec displays amplifications and deletions on a still

larger scale via copy number segments calls. This information is dis-

played as a heat map arranged in a grid indexed by chromosomes

and samples. Alternatively, cnFreq displays the frequency of samples

within a cohort that are observed to have copy number gains or

losses at specific genomic loci. In addition to copy number changes,

loss of heterozygosity (LOH) often plays an important role in gen-

omic diseases. For example, in acute myeloid leukemia copy neutral

LOH has been associated with shorter complete remission and

worse overall survival (Gronseth et al., 2015). The function lohSpec

displays LOH regions observed within a cohort (Fig. 1D) by plotting

a sliding window mean difference in variant allele fractions for

tumor and normal germline variants.

4 Visualization of data quality

In genomic studies, the quality of sequencing data is of critical im-

portance to the proper interpretation of observed variations.

Therefore, we provide a suite of functions focused on data quality

assessment and visualization. The first of these, covBars, provides a

framework for displaying the sequencing coverage achieved for tar-

geted bases in a study (Fig. 1E). A second function, compIdent, aids

in the identification of mix-ups among samples that are thought to

originate from the same individual (Fig. 1F). This is achieved by dis-

playing the variant allele fraction of SNPs in relation to each sample.

By default, 24 biallelic ‘identity SNPs’ (Pengelly et al., 2013) are

used to determine sample identity.

5 Example usage

GenVisR was developed with the naı̈ve R user in mind. Functions are

well documented and have reasonable defaults set for optional param-

eters. To illustrate, creating Figure 1B was as simple as executing the

waterfall function call on a standard MAF (version 2.4) file contain-

ing variant mutation data and choosing which genes to plot:

genes ¼ c(“PIK3CA”, “TP53”, “USH2”, “MLL3”, “BRCA1”)

GENVISR::WATERFALL(X ¼ MAF_FILE, PLOTGENES¼GENES)

The MAF file format originally developed for The Cancer

Genome Atlas project (Cancer Genome Atlas Research Network,

2008) is the default file format accepted by waterfall. This format

was chosen based on its simplicity and accessibility. A number of re-

sources exist to convert VCF files common to most variant callers to

MAF format. In the interest of maintaining flexibility, the waterfall

and other GenVisR functions are able to accept alternative file types

as input.

6 Conclusion

GenVisR provides features and functions for many popular genomic

visualizations not otherwise available in a single convenient package

(Table S1). By leveraging the abilities of ggplot2 (Wickham, 2009) it

confers a level of customizability not previously possible. Virtually

any aspect of a plot can be changed simply by adding an additional

layer onto the graphical object. Thus, GenVisR allows for publica-

tion quality figures with a minimal amount of required input and

data manipulation while maintaining a high degree of flexibility and

customizability.
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