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Abstract 

The inappropriate parking of free-floating shared bikes is a critical issue that needs to be addressed to realize the 
potential environmental, socioeconomic, and health benefits of this emerging green mode of transport. To address 
this challenge, this paper developes a Geographic Information Systems (GIS) based Multi-Criteria Decision Analysis 
(MCDA) framework for geo-fence planning of dockless bike-sharing systems based on openly accessible data. The 
Analytic Hierarchy Process (AHP) and the VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje) method are 
applied in the proposed framework to derive optimal geo-fence locations. The proposed framework is validated in a 
case study using a dataset of dockless bike-sharing trips from February 2020 in the City of Zurich and comparing the 
selected geo-fence locations with the existing bike-sharing stations. The assessment results show that the calculated 
geo-fence locations have a smaller average distance of 1395 m than that of 1692 m, and a larger demand coverage of 
81% than that of 77% for bike-sharing stations. Overall, the proposed framework and the insights from the case study 
can help transport planners better implement shared micro-mobility hence facilitating the uptake of this sustainable 
mode of urban transport.
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1 Introduction
Over the past two decades, bike-sharing, as an environ-
mentally friendly urban transport mode, has become 
increasingly popular in many cities all over the world. 
Bike-sharing systems allow users to check out a bike at 
one location and return it at another within the same 
city (DeMaio, 2009; Frade & Ribeiro, 2015), which can 
mitigate greenhouse gas emissions from fossil fuel vehi-
cles, improve travel convenience of citizens by solving 
the first/last-mile problem, and have positive effects on 
people’s health (Guo & He, 2020; Li, Gao, et  al., 2021; 
Otero et al., 2018). Modern bike-sharing systems can be 
split into two categories, namely docked and dockless. 

Compared with the bikes fixed at rental stations in 
docked bike-sharing systems, dockless bike-sharing 
allows users to rent a bike via a mobile application or 
website and return the bike anywhere within the ser-
vice area (Shen et al. 2018; Lazarus et al., 2020; Li, Zhao, 
et al., 2021). Due to its flexibility and convenience, dock-
less bike-sharing is attracting more attention and being 
embraced by city managers as one of the effective ways 
to promote sustainable transportation in urban contexts 
(Gao et al., 2021; Ma et al., 2020).

Although dockless bike-sharing can bring various 
environmental, socioeconomic, and health benefits, the 
unrestricted nature of the dockless bike-sharing system 
also causes some critical urban problems (e.g., Hirsch 
et al., 2019). One of the most serious issues is the user’s 
random and inappropriate parking behavior. On the 
one hand, random and irregular bike parking activities 
make cities messy, such as blocking sidewalks and public 
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spaces. On the other hand, parking bikes at inappropriate 
places (e.g., the entrance of the viaduct, expressway isola-
tion zone) sometimes may cause traffic accidents. There-
fore, effectively dealing with the inappropriate parking of 
dockless bike-sharing requires more research to eventu-
ally achieve sustainable transportation and smart cities 
objectives.

Geo-fencing has been proposed and analyzed as a 
possible solution to the parking issue mentioned above 
(Hirsch et  al., 2019; Shui & Szeto, 2020; Zhang et  al., 
2019). Geo-fencing is a technology used for monitor-
ing mobile objects (e.g. persons, vehicles) with location-
based technology like Global Navigation Satellite System 
(GNSS), which can check whether the tracked objects 
are inside or outside the geo-fenced areas (Reclus & 
Drouard, 2009). A geo-fence for dockless bike-sharing 
is a predetermined virtual fence, which can be used as 
a parking zone for dockless bikes. Users who park bikes 
outside the allowed geo-fences cannot return them and 
will continue to be charged (Zhang et al., 2019). A sche-
matic diagram of geo-fence for dockless bike-sharing is 
presented in Fig. 1. Compared with the coarse-scale park-
ing areas of the existing dockless bike-sharing systems at 
a city scale, geo-fence can help operators to specify where 
bikes can be parked properly at a road level, thereby pre-
venting dockless bikes from being locked randomly and 
disorderly.

In recent years, various optimization models have been 
developed to determine the locations of bike-sharing sta-
tions sharing (e.g., Conrow et al., 2018; Frade & Ribeiro, 
2015; García-Palomares et  al., 2012; Mix et  al., 2022; 
Nikiforiadis et al., 2021). For instance, Frade and Ribeiro 
(2015) developed a maximal covering location approach 
to determine the locations of bike-sharing stations that 

maximizes the demand coverage and takes the available 
budget as a constraint. Conrow et  al. (2018) applied an 
optimization approach to defining the site selection of 
bicycle share stations across an urban region, which 
considers the tradeoff between demand coverage and 
users’ access. Zhang et  al. (2019) developed a location-
allocation model to determine parking zones based on 
the big data of bike trips in Shanghai, which primarily 
considers the distribution of parking demand. Nikifori-
adis et  al. (2021) presented a methodological approach 
to determine the optimal locations of bike-sharing sta-
tions, which maximizes the demand from the user’s side 
and minimizes the need for bike redistribution from the 
operator’s side. Mix et al. (2022) proposed an integrated 
approach to determine the optimal location of stations 
in the bike-sharing system based on the built environ-
ment and accessibility-based variables. Overall, the exist-
ing studies are mainly concentrated on optimizing the 
locations of bike-sharing stations by developing spatial 
optimization models to maximize demand coverage. 
However, bike-sharing trip data are normally provided by 
operators, which are not always available for developing 
such optimization models.

Moreover, the site selection of geo-fences involves mul-
tiple evaluation criteria. Various geographical and social 
constraints (e.g., proximity to cycling paths, proximity 
to public transit, population density) should be consid-
ered during the planning process. Hence, a multi-criteria 
decision-making methodology could be applied to solve 
this problem. Multi-criteria Decision Analysis (MCDA), 
as a typical method to solve complex decision-making 
problems (Hwang & Yoon, 1981), has been widely used 
to deal with site selection problems (e.g., Dang et  al., 
2021; Erbaş et  al., 2018; Jelokhani-Niaraki & Malcze-
wski, 2015; Latinopoulos & Kechagia, 2015; Veronesi 
et al., 2017; Yesilnacar et al., 2012). MCDA has also been 
used to determine the optimal bike-sharing stations 
in recent years. For instance, Kabak et  al. (2018) devel-
oped a GIS-based MCDM approach for the evaluation 
of bike-sharing stations in Karsiyaka, Izmir based on 12 
criteria. By comparing to the existing stations, the sug-
gested locations were demonstrated to be superior. Guler 
and Yomralioglu (2021) investigated the determination 
of locations of bike-sharing system stations and bicy-
cle lanes simultaneously by proposing a workflow that 
integrates GIS and MCDM methods. Eren and Katanalp 
(2022) developed a hybrid model based on fuzzy-based 
GIS, AHP, and VIKOR for the site selection of bike-
sharing stations. Compared with the existing studies on 
optimizing the locations of bike-sharing stations with 
GIS-based MCDA, this study takes into account the 
capacity of geo-fences in the site selection process.

Fig. 1 An exemplary geo-fence for dockless bike-sharing1 Source: 
https:// commo ns. wikim edia. org/ wiki/ File: Dockl ess_ bike_ parki ng_ 
area_ on_ Lonsd ale_ Street_ August_ 2018. jpg

https://commons.wikimedia.org/wiki/File:Dockless_bike_parking_area_on_Lonsdale_Street_August_2018.jpg
https://commons.wikimedia.org/wiki/File:Dockless_bike_parking_area_on_Lonsdale_Street_August_2018.jpg
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In this paper, a GIS-based MCDA framework was 
developed for geo-fence planning of dockless bike-
sharing systems based on openly accessible data. 
Firstly, the evaluation criteria for optimizing the site 
selection of geo-fences were determined according to 
the literature review and expert opinions, which con-
sist of eight criteria. The criteria include one criterion 
in the user dimension (i.e. population density), three 
criteria in the transportation dimension (i.e. proximity 
to large public transit, proximity to small public tran-
sit, proximity to cycling paths), and four criteria in the 
urban life dimension (i.e. proximity to sports facilities 
and parks, proximity to higher education organiza-
tions, density of commercial facilities, density of enter-
tainment facilities). Secondly, the importance of each 
criterion is weighted by the AHP method. Then, can-
didate locations of geo-fences were ranked using the 
VIKOR method. Last, the determined geo-fences were 
evaluated based on the bike-sharing demand coverage. 
Using real dockless bike-sharing data from the city of 
Zurich, the validity of the developed framework was 
tested. It should be noted that the proposed method 
is not only applicable to Zurich but all cities where the 
related data are available for our framework. Since the 
framework is not constrained by the real bike-sharing 
trip/demand data, it could serve as a planning tool for 
municipal urban planners that aim at managing bike-
sharing activity in their city as well as for bike-sharing 
companies that want to establish bike-sharing systems 
in new cities. The objectives of this research are listed 
as follows:
● To propose a methodological framework to sup-

port geo-fence planning for dockless bike-sharing 

services, which can be applied in any urban context 
without dependence on bike-sharing trip data.
● To apply the framework in the case study of Zurich 

and present the determined geo-fences.
● To evaluate the performance of the selected geo-

fences based on real bike-sharing trip data and the exist-
ing bike-sharing stations.

2  Study area and data used
The case study was conducted in the city of Zurich, Swit-
zerland. Zurich is the largest Swiss city with a population 
of over 435,000 Inhabitants (Stadt Zurich 2021). Zurich 
has high levels of cycling with 15% of its population 
cycling daily and 20% cycling 2–5 times per week. The 
vehicle availability data from one dockless bike-sharing 
system was collected from February 1 to 23, 2020 to vali-
date the proposed GIS-based MCDA framework in this 
study. The dataset was obtained by scanning the available 
bikes in each area every 30 s on average. The trip iden-
tification method in the study by Zhao et al. (2021) was 
utilized to identify trips from the collected vehicle avail-
ability data. After data processing, 5321 biking trips were 
obtained, which contain information on longitude, lati-
tude, and timestamp of origin and destination for each 
trip. As shown in Fig. 2, the spatial distribution of origins 
and destinations is visualized in the study area.

To quantify and model the criteria that affect bike-
sharing suitability, a dataset including train stations, tram 
and bus stops, cycling paths, sports facilities and parks, 
education facilities, entertainment facilities, commer-
cial facilities, and population density was collected from 
various data sources (e.g. OpenStreetMap, governmental 
organizations). In addition, to determine the candidate 

Fig. 2 Origin and destination of the extracted trips in the study area
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locations of geofences, a publicly accessible dataset on 
bike racks was collected from the city of Zurich, which 
comprises 1932 bike and motorcycle parking spaces. A 
dataset of existing bike-sharing stations was acquired 
and used to evaluate the suggested geofences in the 
experiment.

3  Methodology
This section introduces the developed GIS-MCDA 
framework for the selection of geo-fence locations for 
dockless bike-sharing. The framework is divided into four 
main steps, as shown in Fig.  3. Firstly, the criteria that 
influence bike-sharing demand and parking suitability 
are determined based on authors, experts, and literature 
review. Secondly, geographic data collection is conducted 
based on the selected criteria. Thirdly, the GIS-MCDA 
framework is developed and implemented, which 
involves four subsequent analyses: (1) criteria layer gen-
eration using GIS, (2) derivation of criteria weights using 
AHP, (3) suitability map generation using a weighted 
linear combination, and (4) the ranking of the candidate 
locations using VIKOR. Lastly, the obtained geo-fences 
are evaluated by examining the degree to which the 

actual bike-sharing usage is covered by the geo-fences. A 
brief description of the key steps is given below.

3.1  Identifying evaluation criteria
Various studies have investigated what factors contrib-
ute to the decision of people to use bike-sharing and 
bikes as means of transportation. Early studies focused 
mainly on the use of bicycles for commuting (e.g., Bue-
hler & Pucher, 2012; Eren & Uz, 2020; Krizek & Johnson, 
2006). With the rise of bike-sharing, research shifted 
towards exploring various factors that affect the usage 
of bike-sharing systems (Faghih-Imani & Eluru, 2015; 
Fuller et al., 2011; Guo et al., 2017; Li et al., 2020; Wang 
et  al., 2018). Based on the literature review and expert 
opinions, eight criteria are determined and used for the 
site selection of geo-fences, which have been demon-
strated to have a significant influence on bike-sharing 
usage and demand. The eight criteria almost cover all the 
main urban facilities related to bike-sharing usage and 
activities, including public transit, cycling paths, sports 
facilities and parks, education organizations, commercial 
facilities, and entertainment facilities. The selected crite-
ria are described as follows:

Fig. 3 Flowchart of the methodology
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1) Population density (POP). Population density refers 
to the number of people per unit of area, usually 
quoted per square kilometer. Intuitively, a region 
with a high density of residents should have cycling 
demand, which has been indicated to have a positive 
influence on bike-sharing usage (e.g., Faghih-Imani 
et al., 2017; Li et al., 2020).

2) Proximity to public transit large (PTL). It is well 
known that public transit transports a large number 
of passenger flows, which has been demonstrated by 
many studies (e.g., Conrow et al., 2018; Faghih-Imani 
& Eluru, 2015). Due to the remarkable difference in 
passenger flows between large and small public tran-
sits, public transits are considered in two criteria 
separately according to their sizes. The close distance 
to large public transit like train stations normally cor-
responds to higher biking demand.

3) Proximity to public transit small (PTS). Although the 
passenger flow of small public transit (i.e. tram and 
bus stops) is not so high as that of large public transit, 
the proximity to small public transit can still facilitate 
the usage of bikes due to the first- and last-mile prob-
lem in transportation (Martin & Shaheen, 2014).

4) Proximity to major bike/cycling paths (MBP). Previ-
ous studies indicate that a strong and complete bike 
infrastructure can increase the usage of bikes (Eren 
& Uz, 2020; Schoner & Levinson, 2014). Especially, 
cycling paths can create a more reliable space for 
cyclists and play an important role in promoting 
cycling since they are separated from motor vehicle 
traffic. Therefore, the locations with long distances 
to bike paths should be omitted while planning geo-
fences.

5) Proximity to sports facilities and parks (SP). Several 
studies indicate that nearby areas with recreational 
facilities like sports facilities and parks have high 
bike-sharing usage (Mateo-Babiano et al., 2016; Tran 
et  al., 2015). Thus, the proximity to sports facilities 
and parks can also lead to bike-sharing usage for rec-
reational activities.

6) Proximity to higher education organizations (EDU). 
Considering that young people are the main user 
group of bike-sharing systems, it is common to plan 
bike-sharing stations in higher education organiza-
tions (i.e. universities and colleges) to meet the high 
bike-sharing usage and demand (Faghih-Imani et al., 
2017). Accordingly, the proximity to higher education 
organizations could also have high cycling demand.

7) Density of commercial facilities (COM). Differ-
ent land-use types might attract users with differ-
ent travel purposes. The areas with a high density of 
commercial facilities such as shopping malls, tend 
to promote bike-sharing ridership and lead to high 

bike-sharing usage of cycling activities in commercial 
areas (Wang et al., 2017; Zhang et al., 2017).

8) Density of entertainment facilities (ET). Entertain-
ment facilities like theaters, stadiums, and cinemas 
can also facilitate bike-sharing usage (Chen & Ye, 
2021; Lin et al., 2020). Hence, the areas with a high 
density of entertainment facilities could have high 
cycling demand.

3.2  Creating layers of each criterion using GIS
After determining the criteria, the criteria layers to be 
used should be created for the site selection of geo-fences 
with the GIS-MCDA approach. Criteria layers are cre-
ated by implementing various spatial analyses within 
the GIS environment based on the collected geographic 
data. GIS is capable of displaying the criteria information 
on multiple criteria layers in the format of digital maps. 
For each criterion, a separate layer is created. Each pixel 
value in a layer quantifies the suitability of the criterion in 
the corresponding spatial area. All the criteria layers will 
be used to generate a suitability map.

For each criterion layer, a target raster covering the 
study area with a spatial resolution of 50 m is created in 
this work. It is assumed that the suitability would not sig-
nificantly change over this small distance. This resolution 
was chosen as a compromise between detail and process-
ing time. Considering that geo-fence location should be 
along a road or cycling path for the convenient use of 
bikes, a 10 m buffer along the bike network within the 
study area is calculated to select the suitable and quali-
fied cells. Only the cells that have an overlap with the 
buffer will be used to further analysis. To achieve this, a 
network graph of cycling paths is created from OSM data 
using the OSMnx Python module (Boeing, 2017). For 
the proximity layers, the shortest path from each cell in 
the target raster to the instance of each criterion is cal-
culated. For the density layers, a neighborhood analysis 
is performed for each cell in each raster layer, in which 
all instances (e.g. restaurants, theaters, shops, or office 
buildings) within a 2 km buffer around the cell center are 
registered. The buffer size is derived from previous stud-
ies that found that 90% of the bike trips in dockless and 
station-based bike-sharing are shorter than 2 km (e.g., 
Liu et al., 2018; Ma et al., 2020). It can be assumed that 
criteria facilities outside of the 2 km buffer are not of high 
relevance for the suitability of a location as most of the 
bike trips will not reach them.

3.3  Prioritising criteria weights using AHP
Based on the selected criteria, the AHP method is imple-
mented to assess the influence level of the individual cri-
teria and to quantify them as priority weights. The AHP 
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was proposed by Saaty (1988) as a method for structuring 
decision problems in social, economic, and management 
sciences. The method consists of four steps: (1) the struc-
turing of the decision problem, (2) the pair-wise compari-
son, (3) the calculation of weights and consistency of the 
pair-wise comparison, and (4) the aggregation of local 
weights for each alternative. The main strength of AHP is 
that it can structure the partly strongly diverging views of 
different stakeholders, which has been the most common 
MCDA method with growing usage (Kabir et al., 2014).

Based on the problem of planning geo-fences for dock-
less bike-sharing systems, the pair-wise comparison of 
the selected criteria is conducted. Potential experts for 
this study are contacted by studying the bike-sharing 
market, relevant municipal and research activity related 
to bike-sharing. To ensure that the experts have good 
knowledge of the study area, only people who are active 
in Zurich are approached. The experts are asked to fill 
out a survey and give a ranking for each pair of criteria. 
This ranking scale varied from the intensity scale used in 
AHP, ranging from 1 to 9. It is decided to use a simpler 
and shorter scale for the survey to make it easier for the 
respondents to answer the survey. Before compiling the 
rankings into a pair-wise comparison matrix, they are 
transformed into the scale used in the AHP, as displayed 
in Table 1.

The pair-wise comparison rankings assigned by the 
experts are aggregated by computing the geometric mean. 
The means are entered in an n × n pair-wise comparison 
matrix A. wi and wj are the intensity weights of each pair-
wise comparison. In the next step, the pair-wise intensity 
weights are aggregated by obtaining the normalized eigen-
vector of the comparison matrix. This vector is called the 
priority vector and contains weights for each criterion that 
sum up to 1. These weights are used for the following parts 
of the GIS-MCDA.

By integrating the GIS process and AHP process, the 
criteria layers can be combined using a Weighted Linear 
Combination (WLC) which is one of the most common 
algorithms for GIS-MCDA. The core operation of the 
algorithm is intuitive to understand, which is described 
by Eq. (2) (Pereira & Duckstein, 1993):

where V (Ai) is the combined suitability value, wk is the 
weight, and v (aik) is the value function for the criterion. The 
raster layers comprising the standardized values are multi-
plied with the corresponding weights that will be determined 
using AHP. Thus, a suitability map is generated, which can be 
used to find alternative locations for geo-fences.

3.4  Ranking candidate locations using VIKOR
The placement of candidate locations can be challenging 
for the selection of the final geo-fences, particularly when 
the limited urban space is being used for many different 
purposes. Previous studies on the planning of bike-shar-
ing stations and geo-fences have either placed poten-
tial locations with an even spacing along with a road 
network, utilized bike-trip data, or manually selected 
potential locations (Conrow et  al., 2018; Kabak et  al., 
2018; Zhang et  al., 2019). The framework developed in 
this study is designed to function even in cities where no 
bike-trip data is available. The study by García-Palomares 
et al. (2012) used the existing infrastructure such as pub-
lic transit stations for placing candidate locations. In this 
study, a dataset of bike parking spots was acquired and 
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Table 1 Conversion of ranking weights used in the survey to intensity weights used in AHP

Survey ranking AHP intensity weights Definition

1 1/9 Criterion i contributes extremely less than criterion j.

2 1/7 Criterion i contributes very strongly less than criterion j.

3 1/5 Criterion i contributes strongly less than criterion j.

4 1/3 Criterion i contributes moderately less than criterion j.

5 1 Both criteria contribute equally.

6 3 Criterion i contributes moderately more than criterion j.

7 5 Criterion i contributes strongly more than criterion j.

8 7 Criterion i contributes very strongly more than criterion j.

9 9 Criterion i contributes extremely more than criterion j.
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used as a source for candidate locations of geo-fences. 
The ranking of candidate locations is realized in a dis-
crete location selection model that applies a suitability 
ranking of the alternatives using VIKOR.

VIKOR (VIseKriterijumska Optimizacija I Kompro-
misno Resenje) is developed for the multi-criteria analy-
sis of complex systems by Opricovic and Tzeng (2004), 
which aims to reach a compromise solution that is closest 
to the ideal solution by ranking the candidate locations. 
It expresses the suitability of an alternative in terms of its 
closeness to the ideal solution in the compromise decision 
index  Qj. As  Qj represents the closeness to the ideal solu-
tion, smaller values are more suitable. The VIKOR ranking 
can be divided into a four-step process:

(1) The first step is to find the best 
(

f ∗i
)

 and worst 
(

f −i
)

 
score among the candidate locations for each crite-
rion. For criteria that should be minimized, the best 
score is equal to the lowest criteria value and the 
worst score is the highest one. The opposite applies 
to criteria that should be maximized.

(2) The measures Sj and Rj are computed for each 
candidate location. These measures are the 
weighted normalized Manhattan distance L1 and 
the weighted normalized Chebyshev distance L∞ 
respectively. They are used as boundary measures 
for the ranking of alternatives in VIKOR. Sj can be 
interpreted as the distance in criteria space of the j-
th alternative to the ideal solution and is computed 
according to Eq. (3).

where xij is the criteria score of the i-th criterion and the 
j-th alternative, and wi is the i-th criterion’s weight that 
was determined in the AHP. Selecting the alternative 
with the smallest Sj as a solution would mean maximiz-
ing group utility. Rj is computed by Eq. (4) which returns 
the largest summand of eq. 9. This can be interpreted as 
the closeness of the worst-performing criterion for the j-
th alternative to the ideal solutions criteria score for this 
criterion.

(3) The measure Qj that aims to balance Sj and Rj is 
calculated for each candidate location, which is 
expressed as Eq. (5):

(3)Sj =

n
∑

i=1

wi

(

f ∗i − fij
)

f ∗i − f −i

(4)Rj = max
j

[

wi

(

f ∗i − fij
)

f ∗i − f −i

]

where the weight v is set according to a strategy of maxi-
mum group utility. A value of 0.5 represents a consensus-
driven strategy and is commonly used in VIKOR. S∗, S−, 
R∗, R− are the minimum and maximum values of Sj and Rj 
among all alternatives:

(4) The last step is to order the candidate locations 
according to their  Qj ranking. As  Qj is a measure 
of closeness to the ideal solution, a small value is 
favored.

3.5  Selecting final geo‑fences and determining their 
capacities

The selection of locations for the geo-fences is con-
ducted by taking the spatial distribution of the candidate 
locations relative to each other and their suitability into 
consideration. It is realized in a novel discrete location 
selection model that applies a suitability ranking of the 
alternatives and a variable minimum distance constraint 
between the candidate locations. First, the candidate 
locations are ranked using VIKOR, then they are itera-
tively added to the final set of geo-fences. Specifically, 
it is initialized by adding the highest-ranking candidate 
location to the geo-fence selection. Next, the second-
highest-ranking candidate location is evaluated by check-
ing its distance to the previously added location. If the 
distance exceeds a minimum distance, the current can-
didate location is added to the final set. This is repeated 
for all other candidate locations by checking the distance 
to all geo-fences previously added to the final geo-fence 
set. The minimum spacing is determined based on stud-
ies by Fuller et al. (2011) and Tran et al. (2015) who found 
a spacing of 200 to 500 m between bike-sharing facilities 
suitable for optimizing usability and increasing usage of 
bike-sharing systems. Therefore, for the most and least 
suitable candidate locations, distance constraints of 
200 m and 500 m are set respectively in this study. The 
spacing values between these thresholds are determined 
by defining a linear function between spacing and suit-
ability. The least suitable candidates are regarded as 
unsuitable and excluded from the selection process as 
they are entirely located on the outskirts of the study 
area.

Regarding the determination of capacities of the final 
geo-fences, the previous research by Zhang et al. (2019) 

(5)Qj = v

(

Sj − S∗
)

(

S− − S∗
) + (1− v)

(

Rj − R∗
)

(

R− − R∗
)

(6)

S∗ = min
j
Sj , S

−
= max
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and Cheng et  al. (2019) showed that the capacity plan-
ning of bike-sharing stations can be transferred to geo-
fence capacity determination. However, these approaches 
are based on bike-sharing trip data. To develop a more 
generalizable and applicable approach, this study adopts 
the suitability ranking as a proxy for demand to derive 
the geo-fence capacity instead of using the bike trip 
data directly. Hence, the proposed approach can also be 
applied to a city where bike-sharing trip data is not avail-
able. According to Zhang et  al. (2019), in practice, it is 
common to select a fixed number of bikes for each geo-
fence for instance 10 or 20. The range between 10 and 
20 is used in this study as well. The capacity is computed 
based on the available bike racks and the suitability rank-
ing. The high-ranking candidate locations correspond 
to a large geo-fence capacity. However, in order to avoid 
conflict with regular bike users, it is decided to include 
the available number of bike racks at the geo-fence loca-
tions in the capacity determination. The maximum num-
ber of shared bikes parked at a geo-fence is limited to 50% 
of the bike racks available at a location. This is because 
bike-sharing should not compete with normal bike users 
who also seek bike parking.

3.6  Evaluating geo‑fence locations
To assess the proposed geo-fence locations, the actual 
bike-sharing demand computed from the trip data is uti-
lized. Bike-sharing demand studies are commonly con-
ducted by aggregating the origins and destinations of 
trips on a zonal level. In this study, the demand covered 
by the geo-fences is evaluated on the geo-fence level by 
computing the number of bike trip origins and destina-
tions (OD) within a 500 m buffer around each geo-fence. 
This buffer size was determined according to the service 
area of bike-sharing stations with a 500 m radius (Frade 
& Ribeiro, 2015; Wang et al., 2018. Additionally, the pro-
portion of ODs that are within 500 m network distance 
is calculated for each geo-fence. To assess the general 

accessibility of the geo-fence locations, the average net-
work distance from any point within the street network 
of the study area is computed. This aims to test the extent 
to which the demand for bike-sharing is covered by the 
determined geo-fences. Furthermore, the determined 
geo-fence locations are compared with the existing bike-
sharing stations in the study area to examine how well 
the geo-fence locations perform.

4  Results
4.1  Determination of weights of criteria
The implementation of AHP is based on the responses 
from five experts to determine the criteria weights. 
Regarding the five experts, two came from the bike-
sharing industry, one was active in related research, one 
worked at the municipal traffic planning administration, 
and one was from a non-governmental organization 
working to promote cycling. The pair-wise compari-
son matrix was aggregated from the expert ranking, as 
shown in Table  2. The criteria EDU and PTL are found 
to contribute more to bike-sharing usage than the other 
criteria, which receive priority weights of 0.23 and 0.21 
respectively. They are followed by the criteria ET, COM, 
POP, and SP, the corresponding weights range from 0.10 
to 0.14. The criteria that receive the lowest weights are 
PTS and MBP, the latter obtains a marginal weight of 
0.04. The consistency analysis shows that the comparison 
matrix is consistent with a consistency ratio of 0.017. This 
expresses that the rankings are 1.7% as inconsistent as if 
they were made randomly. According to Saaty (1980), 
a consistency ratio smaller than 0.1 can be accepted. 
Hence, the results of the AHP conducted in this study 
can be used for the GIS-MCDA analysis.

4.2  Creation of criteria layers and suitability map
According to section 3.2, the map layers were produced 
for each criterion. The criteria layers were further stand-
ardized for visualization by applying Keeney’s value 

Table 2 Pair-wise comparison matrix with intensity weights aggregated from the expert ranking. The priority weights are shown in 
the right-most column

MBP PTL PTS EDU SP COM POP ET Priority weights

Major Bike paths (MBP) 1.00 0.23 0.68 0.22 0.34 0.30 0.32 0.25 0.04
Public Transit large (PTL) 4.36 1.00 3.16 0.80 2.37 1.90 1.53 2.29 0.20
Public Transit small (PTS) 1.48 0.32 1.00 0.40 0.53 0.52 0.64 0.35 0.06
Higher education (EDU) 4.58 1.25 2.54 1.00 3.32 2.54 1.93 1.72 0.23
Sports facilities and parks (SP) 2.95 0.42 1.904 0.30 1.00 0.80 1.64 0.58 0.10
Commercial areas (COM) 3.32 0.53 1.93 0.39 1.25 1.00 0.95 1.00 0.11
Population density (POP) 3.16 0.65 1.55 0.52 0.61 1.05 1.00 0.73 0.11
Entertainment (ET) 4.08 0.44 2.85 0.58 1.72 1.00 1.38 1.00 0.14
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function (Keeney, 1996). Standardizing the criteria layer 
within the range between 0 and 1 also makes it possi-
ble to compare their suitability values. The standardized 
criteria layers display a clear spatial distribution of high 
and low suitability for bike-sharing, as shown in Fig.  4. 
All criteria layers indicate higher suitability for bike-
sharing towards the city center which is located north 
of the lake. This is most prominent for the criteria COM 
and ET, which have very high suitability exclusively in the 

city center and a drammatic decreasing suitability toward 
the suburbs. Other criteria such as MBP and PTS have 
mostly high suitability in large parts of the study area. 
The remaining three criteria layers for PTL, SP, and EDU 
exhibit high suitability for most parts of the study area 
except for some patches of low suitability mostly at the 
edge of the city.

The overall suitability was calculated via the weighted 
linear combination based on the criteria layers and their 

Fig. 4 Maps of each criterion. The standardized criteria values with 1 representing high and 0 representing low criteria scores
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weights, as shown in Fig.  5. The suitability map reflects 
the suitability distribution in different parts of the study 
area for potential geo-fences. It can be observed that the 
high suitability areas are concentrated in the city center 
and northwest of Zurich. Most areas on the outskirts of 
the study area receive rather low suitability values.

4.3  Determination of final geo‑fence locations
VIKOR was used to rank the candidate locations accord-
ing to their closeness to the ideal solution. Figure  6(a) 
shows the statistical distribution of the Qj measure that 
was used for the ranking. As Qj represents the closeness 
to the ideal solution, smaller values are more suitable. 
The distribution is left-skewed with a mean of 0.3 and a 
median of 0.26. The minimum and maximum values are 
0.03 and 0.89 respectively. The 90% percentile was used 
as a threshold to filter unsuitable stations. This resulted 

in 120 candidate locations being excluded from the selec-
tion process. The majority of these candidates were in the 
outskirts of the study area, in the South, North-West, and 
South-East. Furthermore, 114 candidate locations were 
located outside of the criteria layers, which were also 
excluded from the selection process.

To test how well the suitability ranking related to actual 
bike-sharing demand, the number of ODs in a 500 m 
buffer around each candidate location was computed. 
The OD count per candidate location was plotted as a 
function of the Q suitability measure to test how well 
the suitability ranking related to bike-sharing levels, as 
shown in Fig.  6(b). The plot supports the assumption 
that a relationship between the Q value of a geo-fence 
and the high bike-sharing level in its vicinity exists. Q 
values larger than the 90% percentile of 0.512 have low 
OD counts with a mean of 49, whereas the overall mean 

Fig. 5 Suitability map for geo-fences

Fig. 6 Ranking results with VIKOR. a Statistical distribution of the Q value assigned to the candidate locations, and b the number of origins and 
destinations of bike trips (OD) in a 500 m buffer around a candidate location as a function of the candidate location’s Q value. A low Q value 
represents high suitability
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is 281. The relationship between OD count and Q yielded 
a Spearman coefficient of − 0.81 which indicates a high 
negative correlation. The correlation was significant with 
a p-value smaller than 0.001.

According to the statistical distribution of Qj values, 
the candidate locations with Q values larger than 0.512 
were filtered out. As shown in Figs. 7, 155 candidate loca-
tions were selected for geo-fences. The geo-fence loca-
tions with high Q values are mainly distributed in the city 
center.

5  Discussion
5.1  Assessment of geo‑fence locations and capacities
In this section, the selected geo-fence locations were 
further evaluated based on the real bike-sharing OD 
data and the existing bike-sharing stations. We explored 
the statistical distribution of  Qj suitability values of 
the selected geo-fences and the shortest distance to a 

geo-fence from the ODs, as shown in Fig.  8. As shown 
in Fig. 8(a), the geo-fences have a minimum  Qj suitabil-
ity value of 0.03 and a maximum of 0.51. The mean and 
median are 0.26 and 0.24 respectively. Fig. 8(b) displays 
the statistical distribution of the shortest distance to a 
geo-fence from the origins and destinations. The distance 
analysis shows that nearly 80% of the origins and destina-
tions are within a 500 m buffer of at least one geo-fence. 
Only 5% of the ODs are out of the 1000 m buffers of geo-
fences. The result indicates that the selected geo-fences 
have good coverage on the bike-sharing demand without 
impacting the convenient use of bikes for users.

The selected geo-fence locations were further com-
pared to the existing bike-sharing stations in the study 
area in terms of accessibility and demand coverage. 
We measured the accessibility based on two metrics, 
namely the nearest distance from origin/destination to 
geo-fence/station (Distance from OD), and the distance 

Fig. 7 The selected geo-fence locations

Fig. 8 Assessment results. a Statistical distribution of the Qj suitability measure for the selected geo-fence locations. b Statistical distribution of the 
network distance to the closest geo-fence from origins and destinations of bike trips in the study area
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from vertices of road segments in the road network to 
the nearest geo-fence/station (Distance from road net-
work). The demand coverage was measured by calculat-
ing the number of origins and destinations within the 
500 m buffer   (network distance )of geo-fence/station. 
Table  3 displays the statistics of the three metrics. In 
terms of Distance from OD, the selected geo-fences have 
slightly smaller average distances to the ODs with 341 m 
compared to 374 m for the bike-sharing stations. With 
regards to Distance from the road network, the average 
distance of 1395 m for geo-fences is also smaller than that 
of 1692 m for bike-sharing stations. By calculating the 
demand coverage based on geo-fences and bike-sharing 
stations respectively, the selected geo-fences have on 
average fewer ODs but cover a slightly larger proportion 
of the total count within a 500 m buffer of any geo-fence 
or station. It should also be noted that the number of the 
geo-fences is less than that of the bike-sharing stations, 
which implies a lower construction cost from an eco-
nomic perspective. In summary, the assessment results 
demonstrate the superiority and validity of the proposed 
framework.

5.2  Sensitivity analysis
In the GIS-MCDA framework, the selection of the spatial 
resolution to discretize the study area has an influence on 
the final results. In this section, the effect of the param-
eter cell size is examined by conducting a sensitivity 
analysis while keeping other parameters fixed. In the sen-
sitivity analysis, we attempted a finer resolution of 10 m, 
the assessment of the selected geo-fences is displayed in 
Table  4. Compared with the determined 155 geo-fence 

locations at 50 m resolution, 137 geo-fence locations are 
determined at 10 m resolution. As aforementioned, the 
selection process starts with the most suitable candidate 
location and continues down to the less suitable loca-
tions. Due to the change of suitability map resolution, it 
can cause the cases that the location located in a 50 m 
cell can fall into different 10 m cells. Hence, the suitability 
value Q which was formerly the same in a single 50 m cell 
becomes different in 10 m cells. Thus the selection will 
follow a different order and might result in a different set 
of locations. By comparing the assessment results at 50 m 
resolution (in Table 3) and 10 m resolution (in Table 4), 
it can be observed that the descriptive statistics at the 
two resolutions are close in terms of distance-based met-
rics. With regards to demand coverage, the results at 10 
m resolution show higher demand coverage.

5.3  Limitations
This study has two limitations that deserve to be further 
studied in future work. First, we mainly consider the 
geographic and built environment factors that influence 
bike-sharing demand and social factors as the criteria in 
geo-fence planning, some other factors, such as the cost 
of geo-fences and land cost, could also be taken into con-
sideration. By considering these economic criteria, the 
calculated geo-fence locations would be more realistic. 
Second, the framework involves the threshold settings 
for another two parameters. One is regarding the calcula-
tion of the density-related criteria, which are computed 
in a 2 km radius around a cell based on previous studies 
(e.g., Liu et al., 2018; Ma et al., 2020). The attempt of dif-
ferent buffer sizes could help determine the appropriate 

Table 3 Descriptive statistics to assess the selected geo-fences at 50 m resolution by comparing them with the existing bike-sharing 
stations

Count Distance from OD (m) Distance from road network 
(m)

Demand coverage

Mean Std. Dev Mean Std. Dev. Median Std. Dev. Total (%)

Geofences 155 341 311 1395 1051 262 347 81

Stations 170 374 340 1692 1076 269 361 77

Table 4 Descriptive statistics to assess the selected geo-fences at 10 m resolution by comparing them with the existing bike-sharing 
stations

Count Distance from OD (m) Distance from road network 
(m)

Demand coverage

Mean Std. Dev Mean Std. Dev. Median Std. Dev. Total (%)

Geofences 137 387 382 1489 1054 281 187 90

Stations 170 374 340 1692 1076 269 361 77
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search radius for the density computation and examine 
its effects on the site selection results. The other thresh-
old setting is related to determining the buffer size while 
evaluating geo-fence locations. In this study, the service 
areas of bike-sharing stations are determined as 500 m 
network distance buffers (Frade & Ribeiro, 2015; Wang 
et  al., 2018). The assumption is that users would prefer 
not to use bike-sharing services when the walking dis-
tance exceeds 500 m. Understanding the effects of walk-
ing distance on the evaluation results is also desirable. 
Third, the spacing of geo-fences is determined using an 
assumed linear relationship between spacing and suit-
ability in this study. This assumed relationship with suit-
ability is unknown, a variation in spacing between more 
and less suitable locations can be explored and aimed for 
based on non-linear relationships.

6  Conclusion
Although dockless bike-sharing systems have become 
increasingly popular worldwide to facilitate sustain-
able transportation, the inappropriate parking of shared 
bikes also brings serious urban problems (e.g., the illegal 
and irregular parking concerns on free-floating bikes). 
Geo-fence planning provides an effective way to man-
age the parking of shared bikes while maintaining their 
convenience. This study aims to provide a multi-criteria 
decision analysis framework for geo-fence planning of 
dockless bike-sharing systems based on openly accessi-
ble data. Unlike the existing optimization-based models, 
the framework is independent of the real bike-sharing 
demand data. The whole framework was tested by apply-
ing it to a dataset in Zurich. The results demonstrate 
that the framework is effective in determining the sites 
for geo-fences by quantifying the bike-sharing demand 
coverage of the final geo-fence locations and comparing 
them with the existing bike-sharing stations. The pro-
posed framework can be applied to plan gen-fences for 
shared micro-mobility systems (e.g., shared bikes and 
e-scooters) where parking is an important issue. The 
main contributions are summarized as follows:

First, the proposed framework can help quantify the 
weights of various influencing criteria and determine the 
optimal locations of geo-fences for better decision-mak-
ing. In this work, a scheme for effectively managing free-
floating bikes in cities is provided, which is beneficial for 
establishing geo-fence facilities to mitigate the above-
mentioned illegal parking issues while introducing them 
to cities. Second, compared with the previous studies that 
rely heavily on bike-sharing trip data, the proposed GIS-
MCDA framework is implemented to quantify the related 
criteria based on the openly accessible data. In particular, 
it is more appropriate for cities where bike-sharing data 

is not available. Hence, the proposed framework is more 
applicable than the methods based on bike-sharing trip 
data. When introducing dockless bike-sharing systems 
to cities, geo-fence facilities can be established simulta-
neously. This study can help transport planners better 
implement shared micro-mobility systems to facilitate 
the development of sustainable transportation.
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