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Abstract Oxygen fugacity (fO2) is a fundamental thermodynamic property governing redox potential in
solid Earth systems. Analysis of magmatic fO2 aids our understanding of the valence state and solubility of
multivalent elements during magma evolution. Specialized software, Geo‐fO2, was developed for
calculating magmatic fO2 on the basis of oxybarometers and thermobarometers for common minerals
(amphibole, zircon, and biotite) in intermediate‐silicic magmas. With user‐friendly interfaces, it is easy to
input files (.csv or Excel files), output data in Excel files, and plot results as binary diagrams that can be
saved as vector graphics and modified using image‐processing software.

1. Introduction

Oxygen fugacity (fO2) is defined as the partial pressure of oxygen within a system (e.g., Carmichael, 1991;
Frost, 1991; Lee et al., 2005) and is a fundamental thermodynamic property governing redox potential in
solid Earth systems. In particular, during magma evolution the fO2 controls valence states of multivalent ele-
ments (e.g., Fe, Cu, Au, V, S, and C), which in turn controls their crystal/melt partitioning (e.g., Brounce
et al., 2014; Canil, 2002) and solubility in silicate magmas (e.g., Carmichael, 1991; Evans & Tomkins,
2011; Rowe et al., 2009). This is particularly crucial for ore mineralization in magmatic‐hydrothermal sys-
tems (e.g., porphyry‐type deposits; Jugo, 2009; Richards, 2015; Sillitoe, 2010; Simon & Ripley, 2011; Yang
et al., 2016; Zajacz et al., 2011) and speciation of volatiles during magma degassing (e.g., Burgisser &
Scaillet, 2007; Clémente et al., 2004; Iacono‐Marziano et al., 2012; Jugo et al., 2005; Mathez, 1984; Moretti
& Ottonello, 2005; Pawley et al., 1992).

Two early models for the calculation of magmatic fO2 involved bulk Fe3+/Fe2+ (or Fe3+/ΣFe) ratios (e.g.,
Kennedy, 1948; Kilinc et al., 1983; Kress & Carmichael, 1991; Sack et al., 1981) and the Fe‐Ti oxide
oxybarometer (e.g., Andersen & Lindsley, 1985; Buddington & Lindsley, 1964; Carmichael, 1966; Ghiorso
& Sack, 1991). Corresponding programs include QUILF (Andersen et al., 1993), MELTS (Ghiorso et al.,
2002; Ghiorso & Sack, 1995; Smith & Asimow, 2005), ILMAT (Lepage, 2003), and Petrolog3
(Danyushevsky & Plechov, 2011). However, bulk Fe3+/Fe2+ ratios in rocks are highly susceptible to
alteration by weathering, hydrothermal modification, and degassing and also susceptible to early fractional
crystallization of mafic minerals (e.g., olivine; Cottrell & Kelley, 2011). The Fe–Ti oxide oxybarometer is
limited to magmas that precipitate both ilmenite and magnetite solid‐solution during cooling.
Additionally, Fe–Ti oxides tend to reequilibration at subsolidus temperatures during slow cooling or due
to hydrothermal alteration (Venezky & Rutherford, 1999). Consequently, the oxybarometer is typically
applied to volcanic rather than intrusive systems.

Recently, some newmineral oxybarometers have been calibrated on the basis of the composition of relatively
stable and common minerals, which are often found in intermediate‐silicic magmas, such as zircon (Ballard
et al., 2002; Burnham & Berry, 2012; Smythe & Brenan, 2016; Trail et al., 2011, 2012, 2015) and amphibole
(Ridolfi et al., 2010; Ridolfi & Renzulli, 2012). These oxybarometers, plus previously calibrated
oxybarometers for other minerals (e.g., biotite; Wones, 1972, 1981; Wones & Eugster, 1965), make it possible
to track initial magmatic fO2 and its subsequent variations (e.g., Li et al., 2019). A few programs developed for
individual minerals are available for simple estimations of magmatic fO2 (e.g., Ridolfi et al., 2010; Yavuz,
2003a, 2003b; Yavuz & Öztaş, 1997); however, specialized software integrating previously and recently
calibrated oxybarometers that can systematically calculate and visualize magmatic fO2 is lacking.
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In this study, we developed user‐friendly interfaces for the first version of integrated software, “Geo‐fO2,”
written in Python (van Rossum & Drake, 1995, 2011). Geo‐fO2 includes oxybarometers and thermobarom-
eters of zircon (Ferry &Watson, 2007; Miller et al., 2003; Trail et al., 2011; Watson &Harrison, 1983), amphi-
bole (Ridolfi et al., 2010; Schmidt, 1992), and biotite (Henry et al., 2005; Uchida et al., 2007; Wones, 1972). It
is designed to (1) calculate cations in minerals; (2) calculate thermodynamic parameters of magma (e.g., fO2,
temperature, and pressure) during magma ascent and fractional crystallization; and (3) visualize calculated
results through a plotting interface.

2. Methods

2.1. Amphibole Oxybarometer, Thermobarometer, and Hygrometer

Amphibole is an important mineral in hydrous magmas and is stable across a wide P‐T range (700–1100 °C;
0.1–25 kbar; Allen & Boettcher, 1978; Eggler, 1972; Nandedkar et al., 2014). Based on electron microprobe
analysis (EMPA) data of amphibole, Ridolfi et al. (2010) produced the ΔNNO–Mg* oxybarometer (ΔNNO
is the deviation of logfO2 from the Ni–NiO buffer [NNO; O'Neill & Pownceby, 1993]), Si*‐sensitive thermo-
meter, AlT‐sensitive barometer, and VIAl*‐sensitive hygrometer to estimate fO2, temperature, pressure, and
H2O contents of magma, respectively, from which amphibole crystallizes, as described by the following
formulae:

ΔNNO ¼ 1:644×Mg*
� �

−4:01 σest ¼ ±0:22 log unitð Þ; (1)

where Mg* = Mg + (Si/47) − (AlVI/9) − (1.3 × TiVI) + (Fe3+/3.7) + (Fe2+/5.2) − (BCa/20) − (ANa/
2.8) + ((1 − ANa − AK)/9.5); Mg, Si, AlVI, TiVI, Fe3+, and Fe2+ represent the number of atoms of each per
formula unit based on 13 cations; AlVI and TiVI are the numbers of Al and Ti atoms in octahedral sites;
ANa and AK are the Na and K contents of A sites; and BCa is the Ca content of B sites. The σest represents
the standard error of the calibration (Ridolfi et al., 2010); the same below.

T °C
� �

¼ −151:487×Si*
� �

þ 2041 σest ¼ ±22°C
� �

; (2)

where Si* = Si + (AlIV/15) − (2 × TiIV) − (AlVI/2) − (TiVI/1.8) + (Fe3+/9) + (Fe2+/3.3) + (Mg/26) + (BCa/
5) + (BNa/1.3)− (ANa/15) + ((1− ANa− AK)/2.3); AlIV and TiIV are the numbers of Al and Ti atoms in tetra-
hedral sites; BNa is the Na content of B sites.

P kbarð Þ ¼ 0:19209×e 1:438AlTð Þ
σest ¼ ±0:54 kbarð Þ; (3)

where AlT is the total number of Al atoms per amphibole unit formula.

H2O wt:%ð Þ ¼ 5:215 ×VIAl*
� �

þ 12:28 σest ¼ ±0:4 wt:%ð Þ; (4)

where VIAl* = AlVI + (AlIV/13.9) − ((Si + TiVI)/5) − (CFe2+/3) − (Mg/1.7) + ((BCa + 1 − ANa − AK)/
1.2) + (ANa/2.7) − (1.56 × AK) − (Fe#/1.6); CFe2+ is the Fe2+ content of C sites; Fe# = Fe3+/
(Fe3+ + Fe2+ + + Mg + Mn).

The classical Al‐in‐amphibole barometer of Schmidt (1992) is also provided:

P kbarð Þ ¼ −3:01þ 4:76×AlTð Þ σest ¼ ±0:6 kbarð Þ; (5)

where AlT is the total number of Al atoms per amphibole unit formula.

2.2. Zircon Oxybarometer, Thermometer, and Ce4+/Ce3+ Ratios

Zircon is an exceptionally durable mineral that retains primary chemistry for most elements and isotopes
from the time of its igneous crystallization (Cherniak et al., 1997). Zircon saturation temperature can be
obtained by using the Zr saturation thermometer of Watson and Harrison (1983):

lnDzircon=melt
Zr ¼ −3:8– 0:85× M−1ð Þð Þ þ 12; 900= T þ 273:15ð Þð Þ; (6)

where D
zircon=melt
Zr is the Zr concentration ratio between zircon and melt, T is temperature (°C), and

M = (Na + K + 2Ca)/(Al × Si) is the cation ratio of the bulk components. If the Zr contents of zircons are
unknown, an approximate content of 496,000 ppm is used for magmatic zircons (Miller et al., 2003).
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Another revised Ti‐in‐zircon thermometer (Ferry & Watson, 2007) allows calculation of zircon crystalliza-
tion temperature (°C) using the Ti content (ppm) of zircon (Tizircon) and activities of SiO2 (aSiO2) and TiO2

(aTiO2) in host melt:

logTizircon ¼ 5:711±0:072ð Þ– 4; 800±86ð Þ= T þ 273:15ð Þ– logaSiO2 þ logaTiO2: (7)

For quartz‐saturated melts, aSiO2 is set to 1.0, and aTiO2 can be estimated using the activity model of Ghiorso
and Gualda (2013). In Geo‐fO2, a manual input box allows the user to input appropriate values of aSiO2 and
aTiO2 as described in section 3.

Trail et al. (2011) provided a zircon oxybarometer for determining the redox state of magmas based on the Ce
anomaly in zircon. The Ce anomaly is defined as the degree to which the calculated Ce partition coefficient
differs from that expected based on partition coefficients of its neighboring elements, La and Pr. It is
expressed as (Ce/Ce*)D

Ce=Ce*
� �

D ¼ Dzircon=melt
Ce = Dzircon=melt

La ×Dzircon=melt
Pr

� �1=2
; (8)

ln Ce=Ce*
� �

D ¼ 0:1156±0:0050× lnfO2ð Þ þ ð 13; 860±708ð Þ= T þ 273:15ð ÞÞ– 6:15±0:484ð Þ; (9)

where Dzircon=melt
Ce , Dzircon=melt

La , and Dzircon=melt
Pr are partition coefficients of Ce, La, and Pr between zircon and

melt, respectively, and T is temperature (°C). If components of the melt are not available, bulk components
of host rock are allowed to be used as an alternative.

However, the accurate determination of Ce anomalies based on La and Pr contents is often problematic
due to the low La and Pr concentrations in zircon (e.g., Dilles et al., 2015; Qiu et al., 2013; Trail et al.,
2012; Wang et al., 2014). Studies of natural zircon/melt partitioning have suggested that it can be reason-
ably assumed that (Ce/Ce*)D ≈ (Ce/Ce*)CHUR (e.g., Hinton & Upton, 1991; Sano et al., 2002; Thomas et al.,
2002). However, Ce anomaly in the melt during zircon crystallization may have been influenced by some
magmatic processes, that is, calculated (Ce/Ce*)CHUR values may be overestimated under oxidized condi-
tions due to fractional crystallization (e.g., monazite; Skora & Blundy, 2010; Stepanov et al., 2012) or con-
tamination (Elderfield et al., 1981; Trail et al., 2012). As an alternative, the lattice‐strain model (LSM;
Blundy & Wood, 1994) may be used to estimate zircon Ce anomalies (expressed as (Ce/Ce*)LSM) using
more enriched rare Earth elements (REEs; e.g., Nd, Sm, and Gd–Lu; Qiu et al., 2013; Trail et al., 2012)
with better statistics (Burnham & Berry, 2012; Smythe & Brenan, 2016; Zou et al., 2019). (Ce/Ce*)D
was therefore set at (Ce/Ce*)D = (Ce/Ce*)LSM for Ce anomalies in this study. Specifically, the partition
coefficient of cation i between zircon and melt is related to the lattice‐strain energy created by substitut-
ing a cation with an ionic radius (ri) different to the optimal value for that site (r0; Blundy & Wood, 1994).
The corresponding expression is

lnDi ¼ lnD0– 4π×E×NA× ri=3þ r0=6ð Þ× ri−r0ð Þ2
� �

= R× T þ 273:15ð Þð Þ; (10)

where D0 is the strain‐compensated partition coefficient, E is Young's modulus, NA is Avogadro's number, R
is the gas constant, and T is temperature (°C). Plotting lnDi versus the term (ri/3 + r0/6) × (ri − r0)

2 yields a
linear relationship for isovalent series of cations. If the ionic radii of Ce4+ and Ce3+ are known, their parti-
tion coefficients can be determined by interpolation (see also in Smythe & Brenan, 2016). The value of
Dzircon=melt

Ce lies between the partition coefficients of the two valence‐state end‐members (Ce4+ and Ce3+),
and the magmatic fO2 can be determined by combination of equations (8) and (9). REE ionic radii were
taken from Shannon (1976).

Zircon Ce4+/Ce3+ ratios (Ballard et al., 2002) offer another method for estimating magma redox states. The
ionic radius of Ce4+ (0.87 Å) is similar to that of Zr4+ (0.72 Å) and smaller than Ce3+ (1.01 Å; Shannon,
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1976), so Ce4+may substitute for Zr4+ in zircons. Under oxidized conditions, Ce occurs mainly as Ce4+, and
high Ce4+/Ce3+ ratios thus indicate oxidized conditions:

Ce4þ=Ce3þ ¼ Cemelt−Cezircon=D
zircon=melt
Ce3þ

� �

= Cezircon=D
zircon=melt
Ce4þ

−Cemelt

� �

; (11)

Ce4þ ¼ Cemelt−Cezircon=D
zircon=melt
Ce3þ

� �

= 1=Dzircon=melt
Ce4þ

−1=Dzircon=melt
Ce3þ

� �

; (11:1)

Ce3þ ¼ Cezircon− Cemelt−Cezircon=D
zircon=melt
Ce3þ

� �

= 1=Dzircon=melt
Ce4þ

−1=Dzircon=melt
Ce3þ

� �

; (11:2)

where Cezircon and Cemelt represent Ce concentrations in zircon and melt and Dzircon=melt
Ce4þ

and Dzircon=melt
Ce3þ

represent partition coefficients of Ce4+ and Ce3+ between zircon and melt. The Ce4+/Ce3+ ratio is obtained
by calculating Ce4+ and Ce3+ separately using the LSM.

2.3. Biotite Oxybarometer and Thermobarometer

Biotite is commonly present in igneous rocks and reacts sensitively to changes in physicochemical condi-
tions such as temperature, pressure, halogen fugacity, fO2, and magma composition (Speer, 1984).
Although biotite tends to reequilibrate at subsolidus temperatures or due to hydrothermal alteration
(e.g., Li et al., 2019), equilibrium assemblage biotite‐magnetite‐sanidine (K‐feldspar) can be used to esti-
mate magmatic fO2 during crystallization according to the equilibrium reaction and empirical equation
(Wones, 1972):

KFe3AlSi3O10 OHð Þ2 þ 0:5O2 ¼ KAlSi3O8 þ Fe3O4 þH2O

logfH2O ¼ 7; 409= T þ 273:15ð Þð Þ þ 4:25þ 0:5× logfO2ð Þ þ 3× logxð Þ− logaKAlSi3O8− logaFe3O4
(12)

where fH2O is water fugacity, T is temperature (°C), x is the mole fraction of Fe2+ in the octahedral site
of biotite, and a is the activity of the subscripted components indicated. Waldbaum and Thompson
(1969) have shown that alkali feldspar solid solutions are distinctly non‐ideal. Here aKAlSi3O8 is calcu-
lated from the ternary feldspar (anorthite‐albite‐orthoclase) model of Elkins and Grove (1990). For the
calculation of fH2O, if either the partial pressure PH2O, the fugacity coefficient γH2O, or the mole
fraction in the fluid Xfluid

H2O is known, the remaining two parameters for H2O can be solved by using
the relationships:

PH2O ¼ fH2O=γH2O ¼ f
pure
H2O×X

fluid
H2O

� �

=γH2O; (13)

where f pureH2O is the fugacity of the pure H2O. The γH2O can be calculated by using the modified Redlich‐Kwong
equation (Holloway & Blank, 1994), given critical temperature, critical pressure, and the acentric factor ω
(Iacovino, 2014; Prausnitz et al., 1998). Detailed calculation process for γH2O can be found in the
Appendix of Holloway and Blank (1994).

The solid‐solution model of Woodland and Wood (1994) is used to calculate aFe3O4:

aFe3O4 ¼ Xmag
� �2

×γmag; (14)

R×T× ln γmag

� �

¼ 10; 580þ 63; 060×Xmag
� �

× 1−Xmag
� �2

; (15)

where R is the gas constant, Xmag is the mole fraction of the magnetite endmember in the magnetite‐
ulvöspinel solid solution (Carmichael, 1966), and γmag is the activity coefficient of magnetite. Xmag is
calculated using the similar algorithm as in the QUILF program (Andersen et al., 1993). The temperature
of biotite crystallization can be obtained by the Ti‐in‐biotite geothermometer (see below). By substituting
Xmag and temperature into equation (15), γmag can be calculated. Combination of equations (14) and (15)
gives the value of aFe3O4.

10.1029/2019GC008273Geochemistry, Geophysics, Geosystems

LI ET AL. 2545



Ti‐in‐biotite geothermometer is from Henry et al. (2005):

T °C
� �

¼ lnTiþ 2:3594þ 1:7283× XMg
� �3

� �

= 4:6482×10–9
� �

� �0:333
: (16)

This empirical equation is strictly valid only for XMg=Mg/(Mg + Fe) = 0.275–1.000, Ti = 0.04–0.60 atoms of
each per formula unit calculated on the basis of 22 oxygen atoms, and T= 480–800 °C. Standard deviation of
the Ti‐in‐biotite geothermometer is estimated to be ±24 °C at temperatures of 480–600 °C, ±23 °C at 600–
700 °C, and ±12 °C at 700–800 °C (Henry et al., 2005). Calibration of this geothermometer was based on com-
positions of biotite in metamorphic rocks. To check its applicability to igneous rocks, experimental data for
magmatic biotites (Andújar et al., 2008; Andújar & Scaillet, 2012; Fabbrizio et al., 2006; Fabbrizio & Carroll,
2008; Mutch et al., 2016; Nandedkar et al., 2014) were used to calculate crystallization temperature using
equation (16). Differences between calculated and experimentally measured temperatures were in the range
of −26 °C to +65 °C (see supporting information Table S1). In addition, a large number of published biotite
data collected from intermediate‐silicic intrusions worldwide (e.g., Helmy et al., 2004; Hossain & Tsunogae,
2014; Sarjoughian et al., 2012; Wang et al., 2014) were used to check the applicability of this geothermometer
in igneous systems. In the same intrusion, calculated crystallization temperatures of biotites (magmatic Mg‐
biotites) are 5 °C to 228 °C lower than crystallization temperatures of amphiboles (Mg‐amphibole and
Tschermakites; supporting information Table S1), which match the magmatic crystallization sequence
determined by petrographic observations of each intrusion.

The pressure of magmatic biotite crystallizationmay be estimated using the TAl‐geobarometer (Uchida et al.,
2007):

P kbarð Þ ¼ 3:03×AlT−6:53 σest ¼ ±0:33 kbarð Þ; (17)

where AlT is the total number of Al atoms in biotite calculated on the basis of 22 oxygens.

3. Software Description

Geo‐fO2 is packaged as an installation‐free .exe file that can run in Windows platforms. Under Mac OS plat-
forms, the user can also use Geo‐fO2 through an application such as Wine or Winebottler. Control panel
interfaces consist of one main interface and three mineral subinterfaces (Figure 1). The main interface
has four buttons, “Amphibole,” “Zircon,” “Biotite,” and “Quit” (Figure 1a). Clicking a mineral button brings
up a corresponding mineral subinterface (Figures 1b–1d). The user is able to exit the software by clicking
“Quit” or the “×” button in the upper right corner of the main interface. The mineral subinterfaces
(Figures 1b–1d) are divided into two parts, which are the left OPERATION panel and right preview window
showing calculated results. Main operations in the left panel include “Data input,” “Calculate,” “Save
Result,” “Plot,” and “Quit.” The user can return to the main interface by clicking the “Quit” or “×” button.

3.1. Data Input

In the Data input subpanel, the user loads the data file from the desired folder. The user may view and select
the input file (i.e., .csv, .xlsx, or .xls files) by clicking the “Open” button. The first column of the input file
must contain the names of the oxides and/or trace elements. After selection of the input file, the program
automatically extracts and rearranges data. Although this is automatic, we suggest the user uses the
recommended model input Excel tables as the input files in order to avoid calculation errors caused by
special characters (see supporting information tables: Table S2—model input Excel table of amphibole;
Table S3—model input Excel table of zircon; Table S4—model input Excel table of host melt (or host rock)
components of corresponding zircon grains used in Table S3, only one set of melt components (or bulk
components) is allowed to be used per calculation; Tables S5, S6, and S7—model input Excel tables of biotite,
K‐feldspar, and magnetite, respectively).

3.2. Calculation

Calculation is executed by clicking the “Calculate” button in the three mineral subinterfaces
(Figures 1b–1d).
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3.2.1. Amphibole

Calculations for amphibole use the EMPA data, with a process as shown in Figure 2. Mineral formulae for
amphibole were calculated following the International Mineralogical Association recommendation for
calcic amphiboles, where Fe3+/Fe2+ ratios are determined by charge balance after adjusting total tetrahedral
(Si, Al, and Ti) plus octahedral (Al, Ti, Cr, Fe, Mn, and Mg) cations to 13 (Leake et al., 1997; Ridolfi et al.,
2010). Because the 13 cation calculation determines the minimum alkali content in A site (i.e.,
A(Na + K)) and AlVI, and the maximum Fe3+, calculation on the basis of 15 cations is also provided to get
the maximum A(Na + K) and AlVI, and the minimum Fe3+ (Ridolfi et al., 2010). The calculated cation data
are then used in amphibole classifications according to the principle of Leake et al. (1997, Figure 3 therein)
and following calculations of different parameters.

Another four parallel calculations (Figure 2) based on calculated amphibole cation data include P, T, ΔNNO
value, and H2O content. Calculations of Si*‐sensitive thermometer and ΔNNO‐Mg* oxybarometer are very
stable within the conditions of 550–1120 °C and −1 ≤ ΔNNO ≤ +5 (Ridolfi et al., 2010). The calculated
ΔNNO is converted into ΔFMQ and ΔHM values (ΔFMQ and ΔHM are the deviation of logfO2 from the
fayalite‐magnetite‐quartz buffer [FMQ; O'Neill, 1987] and the hematite‐magnetite buffer [HM; Nasir,
1994]), based on two sets of combined values of calculated temperatures and pressures (Figure 2). The
program also translates ΔNNO into absolute logfO2. Although calculated standard error of AlT‐sensitive
barometer is 0.54 kbar, it strongly decreases to 0.39 kbar at P < 4.5 kbar, where the average relative error is
±14% (Ridolfi et al., 2010). At 1 GPa, the relative error can be as high as 33%, but it decreases to 8% for the
amphiboles at the physical‐chemical stability boundaries (Ridolfi et al., 2010). The relative error of this bar-
ometer is <11% near the P‐T stability curve, whereas for crystal‐rich (i.e., porphyritic index > 35%) and
lower‐T magmas, the relative error increases up to 24%, consistent with depth relative error of ±0.4 km at

Figure 1. The main interface (a) and three mineral subinterfaces (b–d) of Geo‐fO2 illustrating major features of this software.
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0.9 kbar (~3.4 km) and ±7.9 km at 8.0 kbar (~30 km). As a result, we strongly suggest using this barometer
with amphibole compositions having AlVI/AlT ≤ 0.21 and Mg/(Mg + Fe2+) > 0.5 (Ridolfi et al., 2010). The
user may preview all results in the right preview window for each mineral subinterface (Figures 1b–1d).
3.2.2. Zircon

Zircon calculations are based on elemental contents of zircon (i.e., trace element) and host rock (i.e., major
and trace elements). Calculation processes are shown in Figure 3. By default, Geo‐fO2 only allows the user to
calculate zircon data from one rock sample at one time because Geo‐fO2 has no automatic matching func-
tion. For example, if the user has two groups of zircon trace element data from two different rock samples,
Samples 1 and 2, fO2 values of the two groups should be calculated separately, using the corresponding
combination of zircons and host rock. More specifically, by inputting bulk components of Sample 1 and trace
element data of zircons yielded in rock Sample 1, the user can obtain fO2 values of Sample 1. If the user wants
to get fO2 values of Sample 2, the user has to repeat above calculation procedure. In this case, the user
therefore cannot get two groups of fO2 values through one calculation.

The Zr saturation temperature is calculated from the partitioning of Zr between zircon and host melt. The
program gives two sets of Zr saturation temperature based on two thermometers (Miller et al., 2003;
Watson & Harrison, 1983). Before calculation of temperature by the Ti‐in‐zircon thermometer, the program
requires the user to manually set aSiO2 and aTiO2 values through input boxes in the “Input aSiO2 & aTiO2”
subpanel (Figure 1c). The initial values are set to 1.0 and 0.6, respectively (0.6 is almost the minimum in
silicic melts; Ferry &Watson, 2007; Hayden &Watson, 2007; Watson et al., 2006). Therefore, three tempera-
tures (two Zr saturation and one Ti‐in‐zircon temperatures) are provided in the final output Excel table
based on one set of zircon‐melt data (Figure 3).

The zircon subinterface has an extra subpanel, “Choose Standards,”which serves the (Ce/Ce*)D calculation.
When the input file of melt components is selected, the program automatically extracts REE, Hf, Th, and Zr
data and lists them in corresponding boxes for “Initial melt” in the first dropdown box (Figure 1c). The user
may also choose alternative normalized standards provided in the dropdown box, for example, C1, E‐MORB,
N‐MORB, and OIB standards of Sun and McDonough (1989) and upper, lower, and bulk continental crust
and oceanic crust standards of Taylor and McLennan (1985), to calculate (Ce/Ce*)D values. Ce4+/Ce3+

Figure 2. Flowcharts summarizing the basic workflow for calculating mineral cations and thermodynamic parameters on
the basis of amphibole. White box represents data input and extract process; orange box represents mineral cations
calculation process based on mineral formulae; gray boxes are the calculation process of T, P, and fO2; green boxes
represent the output process of calculated T, P, and fO2 data. NNO = Ni–NiO buffer; FMQ = fayalite‐magnetite‐quartz
buffer; HM = hematite‐magnetite buffer.
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ratios are synchronously calculated with (Ce/Ce*)D values through similar processes. The second dropdown
box in the “Choose Standards” subpanel provides two similar sets of radii data (Shannon, 1976), namely, the
“R(A)‐1” (crystal radius) and “R(A)‐2” (effective ionic radius), for use in calculating (ri/3 + r0/6) × (ri − r0)

2

for the (Ce/Ce*)D calculation (equation (8)). The user may also enter other numbers in the input boxes, from
which the programwill calculate new (Ce/Ce*)D values. Finally, fO2 is calculated on the basis of temperature
and (Ce/Ce*)D (Figure 3).
3.2.3. Biotite

Calculations for biotite are based on EMPA data for biotite, K‐feldspar, and magnetite. Again, the first step
converts oxides to cations on the basis of mineral formulae. Cation data are then used in calculations as
shown in Figure 4.

Then three parallel calculations are performed using cation composition of biotite, for x value, P, and T

(Figure 4). The user can run multiple biotite, magnetite, and K‐feldspar at the same time, and they will
not be cross‐correlated. However, the three minerals must all be from the same rock. Calculated T and P

results by biotite compositions will be averaged and combined in the subsequent calculation of aKAlSi3O8
values with cation components of K‐feldspar (Figure 4). Meanwhile, aFe3O4 values are calculated using aver-
age T and cation components of magnetite, and fH2O is calculated using equation (13) with calculated indi-
vidual temperature and pressure based on each biotite composition (Figure 4). Finally, fH2O, aKAlSi3O8, and
aFe3O4 will be averaged and used to calculate fO2 with x value and T by using equation (12) (Figure 4).

3.3. Data Output

To save calculated results, the user clicks the “Save Result” button for each mineral subinterface
(Figures 1b–1d) and selects the desired folder. The program creates Excel tables (.xlsx files) as default
saved files.

Figure 3. Flowcharts summarizing the basic workflow for calculating thermodynamic parameters on the basis of the
composition of zircon and its host melt (or rock). Meanings of different colored boxes are as in Figure 2. NNO = Ni–
NiO buffer; FMQ = fayalite‐magnetite‐quartz buffer; HM = hematite‐magnetite buffer.
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3.4. Plotting

The user may enter the plotting interface via the “Plot” button (Figure 1). Plotting and graphic capabilities of
the program are based on Matplotlib modules (Hunter, 2007). As an example, the plotting interface for
amphibole is divided into a left “Operation” panel and right plot window (Figure 5). The user selects X
and Y coordinate axes from the dropdown menu in left “Operation” panel, with these axes sharing the same
options, including calculated mineral compositions and thermodynamic parameters (T, P, and fO2). The
user can respectively rename X and Y axes through manual input boxes (i.e., “X Axes” and “Y Axes”) under
dropdownmenu boxes of X and Y (Figure 5), though the initial name of X and Y axes in the rename box is set
to the same as that selected in the dropdown menu. Axes ranges are set in the “X Limits” and “Y Limits”
boxes (Figure 5). A figure title can be entered in the “Title” box, with linear or logarithmic scales set in
the “Scales” box (Figure 5). Symbols of different color and shape can be selected via the “Color” and
“Shape” dropdown menu boxes (Figure 5). After the user chooses linear or logarithmic scale, the program
will automatically judge which axes can be converted to linear or logarithmic scale. Note that the logarith-
mic scale does not apply to all chosen axes. For instance, the calculated logfO2 value is often less than 0, the
logarithmic scale for such a negative logfO2 axis does not work and no data will be shown in the right
plot window.

Once axes and symbols are set, the user clicks the “Plot” button to plot data on the binary diagram in the
right plot window (Figure 5). Axes and symbols can be adjusted in the left panel before saving the image.
However, contents of boxes in left “Operation” panel may be modified many times by the user, clicking
the “Plot” button displays each modified contents in plot window. The “Save Image” button allows saving
of the image in the Scalable Vector Graphics (SVG) format. The SVG image may be edited in Adobe
Illustrator, Adobe Photoshop, CorelDRAW, or other image‐processing software. The commonly used model
diagrams are provided in the supporting information diagram file so that the user can use these when
modifying saved SVG images.

Figure 4. Flowcharts summarizing the basic workflow for calculating mineral cations and thermodynamic parameters on
the basis of biotite, K‐feldspar, and magnetite. Note that the used temperature values in the last step of logfO2 calculation
are the calculated individual temperature based on each biotite composition. Meanings of different colored boxes are
as in Figure 2. NNO = Ni–NiO buffer; FMQ = fayalite‐magnetite‐quartz buffer; HM = hematite‐magnetite buffer.
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4. Calculation Examples

4.1. Amphibole

Take the 91 given amphibole data from Jiru, Qulong, and Jiama deposits in Tibet (Table S8; Wang et al.,
2014) as an example, the user can copy them from Table S8 and paste them into the model input Excel
Table S2 of amphibole and save data. Through the subinterface of amphibole (Figure 1b), the user loads
filled Table S2 and calculates various parameters by clicking the “Calculate” button.

Amphibole of Tibetan samples comprises Tschermakite, Mg‐hastingsite and Mg‐amphibole. The calculated
temperatures and H2O contents for amphiboles are 758–984 °C and 2.9–6.5 wt.%, respectively (Table S8).
Pressure values calculated by equation (3) range from 0.7 to 5.3 kbar (corresponding to a continental depth
of 2–20 km), while values calculated by equation (5) range from 1.1 to 8.0 kbar (corresponding to a continen-
tal depth of 4–30 km). Based on the two pressure values, Geo‐fO2 will provide two sets of fO2 value (ΔFMQ),
respectively, +0.8 to +2.7, and +1.0 to +2.8 (Table S8).

4.2. Zircon

Trace element data and calculated results of zircon from Jiru (JR) and Xueba (XB) area in Tibet (Wang et al.,
2014) are provided in Table S9. Table S9 also contains three corresponding bulk component data of JR‐2,
JR11‐06, and XB‐12. As mentioned above, Geo‐fO2 has no automatic matching function, so the user needs
to calculate fO2 values of JR‐2, JR11‐06, and XB‐12 separately. For example, the user can copy bulk compo-
nent data of JR‐2 and three trace element data of zircons (i.e., JR‐2_3, JR‐2_4, and JR‐2_5) yielded in rock JR‐
2 from Table S9 then respectively paste them into the model input Excel Tables S4 and S3 and save data. By
inputting Tables S4 and S3 through the zircon subinterface, the user can obtain Ce4+/Ce3+ ratio (82–119;
Table S9), temperature, and fO2 values of JR‐2. As Geo‐fO2 contains three thermometers of zircon (Ferry
& Watson, 2007; Miller et al., 2003; Watson & Harrison, 1983), three sets of fO2 values (i.e.,
ΔFMQ = +3.73 to +5.13; +3.69 to +5.09; +3.07 to +4.67; Table S9) therefore will be calculated respectively
based on three temperature results (i.e., 734–735 °C; 733 °C; 708–740 °C; Table S9). Then calculated tem-
perature and fO2 values will be saved in output file by clicking the “Save Result” button in zircon subinter-
face (Figure 1c). Through repeating above calculation procedure, the user can respectively get Ce4+/Ce3+

ratio, temperature, and fO2 values of sample JR11‐06 and XB12‐3 (see results in Table S9). In order to avoid
error caused by incorrect operation, only column B in Table S4 is allowed to input the only one set of bulk
component data at one time, while other columns are locked.

Figure 5. Plotting subinterface of amphibole showing the procedure to plot the binary diagrams. Data source is Table S8.
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4.3. Biotite

Table S10 contains EMPA data and calculated results of biotite, K‐feldspar, and magnetite from the Pulang
deposit (Li et al., 2019). Each example of each mineral are from the same rock sample (i.e., 15PL‐04; Li
et al., 2019).

As calculation in biotite section does not require cross correlation among data of three minerals, the user can
paste the six given EMPA data (Table S10) of biotite into model input Excel Table S5, the five given EMPA
data of K‐feldspar into Table S6, and the three given EMPA data of magnetite into Table S7 and save data in
each table. After input Tables S5, S6, and S7 in biotite subinterface (Figure 1d), the user can get the crystal-
lization temperature and pressure of biotite (T = 731–748 °C; P = 0.9–1.1 kbar; Table S10). The average tem-
perature and pressure (741 °C and 1.0 kbar) will be joined into the calculation of fH2O, aKAlSi3O8, and aFe3O4.
Finally, the fO2 values (△FMQ = +1.1 to +1.5; Table S10) will be calculated through equation (12).

5. Summary

Geo‐fO2 is specialized software for calculating and visualizing magmatic fO2 based on oxybarometers and
thermobarometers for amphibole, zircon, and biotite in intermediate‐silicic magmas. It runs in Windows
platforms and requires no installation. It automatically extracts data from Excel tables or .csv files, with cal-
culated results being displayed in Excel tables. With user‐friendly interfaces, it is able to plot data on many
different binary diagrams, which may be saved in SVG format.
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