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SUMMARY In recent years, concerns about location privacy are in-
creasing with the spread of location-based services (LBSs). Many methods
to protect location privacy have been proposed in the past decades. Es-
pecially, perturbation methods based on Geo-Indistinguishability (GeoI),
which randomly perturb a true location to a pseudolocation, are getting
attention due to its strong privacy guarantee inherited from differential pri-
vacy. However, GeoI is based on the Euclidean plane even though many
LBSs are based on road networks (e.g. ride-sharing services). This causes
unnecessary noise and thus an insufficient tradeoff between utility and pri-
vacy for LBSs on road networks. To address this issue, we propose a new
privacy notion, Geo-Graph-Indistinguishability (GeoGI), for locations on a
road network to achieve a better tradeoff. We propose Graph-Exponential
Mechanism (GEM), which satisfies GeoGI. Moreover, we formalize the
optimization problem to find the optimal GEM in terms of the tradeoff.
However, the computational complexity of a naive method to find the op-
timal solution is prohibitive, so we propose a greedy algorithm to find an
approximate solution in an acceptable amount of time. Finally, our experi-
ments show that our proposed mechanism outperforms GeoI mechanisms,
including optimal GeoI mechanism, with respect to the tradeoff.
key words: location privacy, road network, differential privacy, geo-
indistinguishability, local differential privacy

1. Introduction

In recent years, the spread of smartphones and GPS im-
provements have led to a growing use of location-based
services (LBSs). While such services have provided enor-
mous benefits for individuals and society, their exposure of
the users’ location raises privacy issues. Using the loca-
tion information, it is easy to obtain sensitive personal in-
formation, such as information pertaining to home and fam-
ily. In response, many methods have been proposed in the
past decade to protect location privacy. These methods in-
volve three main approaches: perturbation, cloaking, and
anonymization. Most of these privacy protection methods
are based on the Euclidean plane rather than on road net-
works; however many LBSs such as UBER∗∗ and Waze∗∗∗
are based on road networks to capitalize on their struc-
tures [7], [19], [23], resulting in utility loss and privacy leak-
age when using such methods. Some prior works have re-
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vealed this fact [8], [13], [32] and proposed methods that use
road networks and are based on cloaking and anonymiza-
tion. However, cloaking and anonymization also have weak-
nesses: if an adversary has peripheral knowledge about a
true location, such as the range of a user’s location, no pri-
vacy protection is guaranteed (in detail, we refer to Sect. 7).
In this paper, based on differential privacy [9], we consider
a perturbation method that does not possess such weakness.
First, we review perturbation methods and differential pri-
vacy [9], which are the bases of our work; then, we describe
the details of our work.

Perturbation methods modify a true location to another
location by adding random noise [2], [26] using a mech-
anism. Shokri et al. [25] defined location privacy intro-
duced by a mechanism, and they constructed a mechanism
that minimizes adversaries’ inference attack. However, this
concept of location privacy depends on specific adversarial
knowledge, which cannot guarantee privacy against adver-
saries with different types of background knowledge.

Differential privacy [9] has received attention as a rig-
orous privacy notion that guarantees privacy protection
against any adversary. Andrés et al. [2] defined a formal
notion of location privacy called geo-indistinguishability
(GeoI) by extending differential privacy. A mechanism that
achieves it guarantees the indistinguishability of a true lo-
cation from other locations to some extent against any ad-
versary. However, because this method is based on the Eu-
clidean plane, GeoI does not tightly protect the privacy of
locations on road networks, which results in a loose tradeoff
between utility and privacy. In other words, GeoI protects
privacy too much for people on road networks.

GeoI assumes only that the given data is a location from
a Cartesian plane, which causes a loose tradeoff between
utility and privacy for LBSs over road networks. In this pa-
per, we study how to achieve optimal privacy-utility trade-
offs when a user is located on a road network. We model the
road network using a graph, and we propose a new privacy
definition, called ε-geo-graph-indistinguishability (GeoGI),
based on the notion of differential privacy. Additionally, we
propose the graph-exponential mechanism (GEM), which
satisfies GeoGI. These proposals appeared in the prelimi-
nary version [38], [41] of this paper.

This paper extends the preliminary version [38] by con-
sidering a mechanism optimized with prior knowledge about

∗∗https://marketplace.uber.com/matching
∗∗∗https://www.waze.com/ja/
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a user and an adversary (Sect. 5 and related experiments of
Sect. 6). Existing works [5], [37] proposed optimal mech-
anisms for GeoI to consider utility and privacy with prior
knowledge using Shokri’s notion [25], which we call qual-
ity loss (Qloss) and adversarial error (AE) while guaran-
teeing ε-GeoI. Concretely, Yu et al. [37] proposed a pri-
vacy guarantee based on AE in addition to ε-GeoI, but its
method does not strictly guarantee ε-GeoI as proved by
Shun et al. [27]; Bordenabe et al. [5] optimized Qloss while
guaranteeing GeoI using δ-spanner to improve the runtime
of optimization. We can apply δ-spanner to GeoGI, but the
method requires that the number of possible locations input
to the mechanism is small (e.g., < 100), which causes utility
and privacy loss for a user at a location outside the possible
input locations as described in Sect. 6. In addition, none of
them considers the effects of road networks on the privacy-
utility tradeoffs.

In this paper, we propose a novel method to optimize
Qloss and AE while strictly guaranteeing ε-GeoGI by op-
timizing the output range of GEM. Concretely, although
GEM outputs a vertex of a graph that represents a road net-
work, the output range (i.e., set of vertices) is adjustable,
which induces the idea that there exists an optimal output
range. We analyze the relationship between output range
and Shokri’s notion. Moreover, we formalize the optimiza-
tion problem to search the optimal range for AE and Qloss.
However, the number of combination of output ranges is
2|V |, where |V | denotes the size of vertices, which makes
it difficult to solve the optimization problem in acceptable
time. To this end, we propose a greedy algorithm to find
an approximate solution to the optimization problem. The
method terminates in an acceptable amount of time compar-
ing with Bordenabe’s method [5], which mitigates the utility
and privacy loss for a user at a location on a road network
outside possible input locations as shown in Sect. 6.

Because our definition tightly considers location pri-
vacy on road networks, it results in a better tradeoff between
utility and privacy. To demonstrate this aspect, we compare
GEM with GeoI mechanisms, including the optimal GeoI
mechanisms [5]. In our experiments on three kinds of real-
world data, GEM outperforms the baseline w.r.t. the tradeoff
between utility and privacy. Moreover, we obtained the prior
distribution of a user using a real-world dataset. Then, we
show that the privacy protection level of a user who follows
the prior distribution can be effectively improved by the op-
timization.

In summary, our contributions are as follows:

• We propose a privacy definition for locations on road
networks, called ε-GeoGI (Sect. 3).
• We propose a graph-exponential mechanism (GEM)

that satisfies GeoGI (Sect. 4).
• We analyze the performance of GEM and formalize op-

timization problems to improve utility and privacy pro-
tection (Sect. 5).
• We experimentally show that our proposed mechanism

outperforms the mechanisms proposed in [2], [5] w.r.t.

the tradeoff between utility and privacy (Sect. 6).

2. Preliminaries and Problem Setting

In this section, we first review the formulations for a pertur-
bation mechanism, empirical privacy gain and utility loss.
Next, we describe the concept of differential privacy [9],
which is the basis of our proposed privacy notion. Finally,
we explain a setting where we define privacy.

2.1 Perturbation Mechanism on the Euclidean Plane

Here, we explain the formulations for a perturbation mech-
anism, empirical privacy gain and utility loss [26].

2.1.1 User and Adversary

Shokri et al. [26] assumed that user u is located at location
x ∈ R2 according to a prior distribution πu(x). LBSs are
used by people who wants to protect their location privacy
but receive high-quality services. The user adopts a pertur-
bation mechanism M : R2 → Z that sends a pseudoloca-
tion M(x) = z ∈ Z instead of his/her true location x where
Z ⊆ R2. Assume that an adversary a has some knowledge
represented as a prior distribution about the user location
πa(x) and tries to infer the user’s true location from the ob-
served pseudolocation z. In this paper, we assume that the
adversary has unbounded computational power and precise
prior knowledge, i.e., πa(x) = πu(x). Although this assump-
tion is advantageous for the adversary, protection against
such an adversary confers a strong guarantee of privacy.

2.1.2 Empirical Privacy Gain and Utility Loss

The empirical privacy gain obtained by mechanism M is de-
fined as follows, which we call adversarial error (AE).

AE(πa,M, h, dq) =∑

x̂,x,z

πa(x) Pr[M(x) = z] Pr[h(z) = x̂]dq(x̂, x)

where dq is a distance over R2 and h is a probability distri-
bution over R2 that represents the inference of the adversary
about the user’s location. Thus, intuitively, AE represents
the expected distance between the user’s true location x and
the location x̂ inferred by the adversary. Next, we explain
the model of an adversary, that is, how an adversary con-
structs a mechanism h, which is called an optimal inference
attack [26]. An adversary who obtains a user’s perturbed
location z tries to infer the user’s true location through an
optimal inference attack. In this type of attack, the adver-
sary solves the following mathematical optimization prob-
lem to obtain the optimal probability distribution and con-
structs the optimal inference mechanism h. Then, by apply-
ing this mechanism to the input z, the adversary can estimate
the user’s true location.
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minimize
h

AE(πa,M, h, dq)

subject to
∑

x̂

Pr[h(z) = x̂] = 1, ∀z,

Pr[h(z) = x̂] ≥ 0, ∀z, x̂

For example, if an adversary knows a road network, the do-
main of his prior πa consists of locations on that road net-
work. In this setting, the problem is a linear programming
problem because Pr[h(z) = x̂] represents a variable and the
other terms are constant; thus, the objective function and
the constraints are linear. We solve this problem using CBC
(coin-or branch and cut)† solver from the Python PuLP li-
brary.

The utility loss caused by mechanism M, called quality
loss (Qloss), is defined as follows:

Qloss(πu,M, dq) =
∑

x,x′
πu(x) Pr[M(x) = x′]dq(x, x′)

Qloss denotes the expected distance between the user’s true
location x and the pseudolocation z.

Note that the relationship between Qloss and AE shows
the quality of the trade-off between privacy and utility (we
refer to Sect. 5.1 for the detail). Our goal is to improve this
relationship.

2.2 Differential Privacy

Differential privacy [9] is a mathematical definition of the
privacy properties of individuals in a statistical dataset. Dif-
ferential privacy has become a standard privacy definition
and is widely accepted as the foundation of a mechanism
that provides strong privacy protection. d ∈ D denotes
a record belonging to an individual and dataset X is a set
of n records. When neighboring datasets are defined as
two datasets which differ by only a single record, then ε-
differential privacy is defined as follows.

definition 1 (ε-differential privacy). Mechanism M : D →
S satisfies ε-differential privacy iff ∀z ∈ S, X, X′ ∈ D such
that X and X′ are neighboring

Pr[M(X) = z] ≤ eε Pr[M(X′) = z].

ε-differential privacy guarantees that the outputs of
mechanism M are similar when the inputs are neighboring.
In other words, from the output of algorithm M, it is diffi-
cult to infer what a single record is due to the definition of
the neighboring datasets. In this study, we apply differential
privacy to a setting of a location on a road network.

2.3 Geo-Indistinguishability

Here, we describe the definition of geo-indistinguishability
(GeoI) [2]. Let X be a set of locations. Intuitively, a
mechanism M that achieves GeoI guarantees that M(x) and
M(x′) are similar to a certain degree for any two locations

†https://projects.coin-or.org/Cbc

x, x′ ∈ X. This means that even if an adversary obtains an
output from this mechanism, a true location will be indis-
tinguishable from other locations to a certain degree. When
X ⊆ R2, ε-GeoI is defined as follows [2].

definition 2 (ε-geo-indistinguishability [2]). LetZ be a set
of query outputs. A mechanism M : X → Z satisfies ε-GeoI
iff ∀x, x′ ∈ X, z ∈ Z:

Pr[M(x) = z] ≤ eεde(x,x′) Pr[M(x′) = z].

where de is the Euclidean distance.

2.3.1 Mechanism Satisfying ε-GeoI

The authors of [2] introduced a mechanism called the planar
Laplace mechanism (PLM) to achieve ε-GeoI. The prob-
ability distribution generated by PLM is called the planar
Laplace distribution and—as its name suggests—is derived
from a two-dimensional version of the Laplace distribution
as follows:

Pr[PLMε(x) = z] =
ε2

2π
e−εde(x,z),

where x, z ∈ X.

2.4 Problem Statement

We consider a perturbation mechanism to improve the trade-
off between utility and privacy by taking advantage of road
networks. We assume that the LBSs work on road networks
(e.g., UBER), that users are located on road networks, and
that LBS providers expect to receive a location on a road
network.

We model a road network as an undirected weighted
graph G = (V, E) and locations on the road network as the
vertices V that are on the Euclidean plane R2. Each edge in
E represents a road segment and the weight of the edge is the
length of the road segment. Then, the distance is the short-
est path length ds between two nodes. Here, the following
inequality holds for any two vertices on v, v′ ∈ V.

de(v, v′) ≤ ds(v, v
′), (1)

where de is the Euclidean distance.
We assume that a user is located at a location on a road

network v ∈ V , sends the location once to receive service
from an untrusted LBS, and that an adversary knows that
the user is on the road network. The user needs to protect
his/her privacy on his/her own device using a perturbation
mechanism M : V → W whereW ⊆ V . This is the same
setting as the setting of the local differential privacy [18].

Goals of this paper are to formally define privacy of
locations on road networks and to achieve a better tradeoff
between privacy and utility by considering road networks
than existing method [2] based on the Euclidean plane.

The main notations used in this paper are summarized
in Table 1.
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Table 1 Summary of notation.

Symbol Meaning

u, a A user and an adversary.
R Set of real numbers.
Z Set of outputs.

G = (V, E) Weighted undirected graph that represents a road network.
V Set of vertices.
E Set of edges. A weight is the distance on the road segment connecting two vertices.

W ⊆ V Set of vertices of outputs.
v, v′, v̂ On a road network, a true vertex, a perturbed vertex and an inferred vertex.
x, x′, x̂ On the Euclidean plane, a true location, a perturbed location and an inferred location.
πu(x) The probability that user u is at location x.
πa(x) Adversary a’s knowledge about user’s location that represents the probability of being at location x.

M A mechanism. Given a location, M outputs a perturbed location.
de(x, x′) An Euclidean distance between x and x′.
ds(v, v′) The shortest distance between v and v′ on a road network.

h Inference function that represents inference of an adversary.
f Post-processing function.

3. Geo-Graph-Indistinguishability

In this section, we propose a new definition of lo-
cation privacy on road networks, called Geo-Graph-
Indistinguishability (GeoGI). We first formally define Ge-
oGI. Then, we clarify the relationship between GeoI and
GeoGI. In the following subsections, we describe the rea-
son why GeoGI restricts the output range and characteristics
that GeoGI inherits from dX-privacy [16].

3.1 Definition

We assume that a graph G = (V, E) representing a road
network is given. Given ε ∈ R+, we define ε-geo-graph-
indistinguishability as follows.

definition 3. (ε-geo-graph-indistinguishability) Mecha-
nism M : V → Z satisfies ε-GeoGI iff ∀v, v′ ∈ V, z ∈ Z,

Pr[M(v) = z] ≤ eεds(v,v′) Pr[M(v′) = z],

where ds is the shortest path length between two vertices on
G.

Intuitively, ε-GeoGI constrains any two outputs of a
mechanism to be similar when the two inputs are similar,
that is, they will represent close vertices. In other words,
two distributions of two outputs are guaranteed to be simi-
lar. The degree of similarity of two probability distributions
is εds(v, v′). From this property, an adversary who obtains
an output of the mechanism cannot distinguish the true input
v from other vertices v′ according to the value of εds(v, v′).
In particular, a vertex close to the true vertex cannot be dis-
tinguished.

Also, this definition implies that GeoGI is an instance
of dX-privacy [16] proposed by Chatzikokolakis et al. as are
GeoI and differential privacy. Chatzikokolakis et al. showed
that an instance of dX-privacy guaranteed strong privacy
property as shown in Appendix A.

Remark: We empirically found that Z should be V

from perspective of utility-privacy trade-off. That is, the out-
put range should be the same as the input space (i.e., loca-
tions on the road network). This is because an adversary can
post-process the perturbed location outside the road network
to infer the true information using the road network which
is public information.

3.2 Relationship between GeoI and GeoGI

GeoI [2] defines location privacy on the Euclidean plane (see
Sect. 2.3 for details). Here, we explain the relationship be-
tween GeoI and GeoGI. From Inequality (1),

sup
z∈Z

∣∣∣∣∣log
Pr[M(v) = z]
Pr[M(v′) = z]

∣∣∣∣∣ ≤ εde(v, v′)

≤ εds(v, v
′).

Therefore, we can derive the following lemma.

theorem 1. If a mechanism M satisfies ε-GeoI, M satisfies
ε-GeoGI.

We note that the reverse is not always true. That is,
GeoGI is a relaxed version of GeoI through the use of the
metric ds, allowing for us to create a mechanism that outputs
a useful location. We refer to Sect. 4.3 for details.

For example, the planar Laplace mechanism (PLM)
(Sect. 2.3.1) satisfies ε-GeoI. Because Outputs of PLM con-
sist locations other than locations on a road network, it
may cause empirical privacy leaks. From Theorem 1 and
the post-processing theorem (Lemma 1 in Appendix A.1),
f ◦PLM satisfies ε-GeoGI and prevents this privacy leaks if
f is a mapping function to a vertex of a graph. For utility,
we can use a mapping function that maps to the nearest ver-
tex; we call this mechanism the Planar Laplace Mechanism
on a Graph (PLMG).

4. A Mechanism to Achieve Geo-Graph-Indistinguishability

Here, we assume that a graph G = (V, E), which repre-
sents a road network, is given, and we propose a mechanism
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that satisfies GeoGI, which we call the Graph-Exponential
Mechanism (GEM). Second, we explain the implementation
of GEM. Third, we describe an advantage and an issue of
GEM caused by not satisfying GeoI.

4.1 Graph-Exponential Mechanism

PLMG (Sect. 3.2) satisfies GeoGI, but PLMG does not take
advantage of the structures of road networks to output useful
locations. Here, we propose a mechanism that considers the
structure of road networks so that the mechanism can output
more useful locations. Given a parameter ε ∈ R+ and a set
of outputsW ⊆ V , GEMε is defined as follows.

definition 4. GEMε takes v ∈ V as an input and outputs
z ∈ W with the following probability.

Pr[GEMε(v) = z] = α(v)e−
ε
2 ds(v,z), (2)

where α(v) = (
∑

z∈W e−
ε
2 ds(v,z))−1.

This mechanism employs the idea of an exponential
mechanism [22] that is one of the general mechanisms for
differential privacy. Because this mechanism capitalizes on
the road network structure by using the metric ds, it can
achieve higher utility for LBSs over road networks than can
PLMG as shown in Sect. 6.

theorem 2. GEMε satisfies ε-GeoGI.

We refer readers to Appendix C for the proof.

4.2 Computational Complexity of GEM

Since we assume that LBS providers are untrusted and there
is no trusted server, a user needs to create the distribution
and sample the perturbed location according to the distribu-
tion locally. Here, we explore a method to accomplish this
and the issues that can be caused by the number of vertices.

GEM consists of three phases: (i) obtain the shortest
path lengths to all vertices from the user’s location. (ii)
compute the distribution according to Eq. (2). (iii) sample
a point from the distribution. We show the pseudocode of
GEM in Algorithm 1.

Algorithm 1 Graph-exponential mechanism.
Input: Privacy parameter ε, true location v, graph G = (V, E), output range
W ⊆ V .

Output: Perturbed location w.
(i) ds(v, ·)⇐ Di jkstra(G = (V, E), v)
(ii) Compute the distribution:

for v inW do
Pr[GEM(v) = w]⇐ α(v)e−εds(v,w)/2

(iii) w ∼ Pr[GEM(v) = w]
return w

We next analyze the computational complexity of each
phase. For phase (i), GEM computes the shortest path
lengths to the other nodes from v. The computational com-
plexity of this operation is O(|E| + |V | log |V |) by using

Fibonacci heap, where |V | is the number of nodes and |E| is
the number of edges. This level of computational complex-
ity does not cause a problem, but on road networks, a fast
algorithm computing the shortest path length has been stud-
ied for large numbers of graph vertices; we refer the reader
to [1] that may be applied to our algorithm. Phase (ii) has
no computational problem because its computational com-
plexity is O(|V |). In phase (iii), when the number of vertices
is much larger than we expect, we may not be able to effec-
tively sample the vertices according to the distribution. This
problem has also been studied and is known as consistent
weighted sampling (CWS); we refer the reader to [21], [34].
We believe that these studies can be applied to our algorithm
and can be computed even when the number of vertices is
somewhat large.

4.3 Privacy with Respect to Euclidean Distance

As described in Sect. 3.2, PLMG satisfies ε-GeoI and ε-
GeoGI, but GEM satisfies only ε-GeoGI. This is because
GeoGI is a relaxed definition of GeoI that allows a mech-
anism to output a more useful perturbed location. There-
fore, GEM shows better utility as shown in experiments
of Sect. 6. It is worth investigating whether this relax-
ation weakens the privacy protection guarantees. In short,
GeoGI has no privacy protection guarantees with respect to
Euclidean distance; thus, if a user is using a mechanism that
satisfies GeoGI to location privacy, the adversary may eas-
ily be able to distinguish the user’s location from other loca-
tions even when those other locations are close to the user’s
location based on Euclidean distance. In what follows, we
demonstrate this fact using the notion of true probability
(TP). The probability that an adversary can distinguish a
user’s location is

T P(πu,M, h)

=
∑

v,v̂∈V,o∈W
πu(v) Pr[M(v) = o] Pr[h(o) = v′]δ(v, v̂)

where δ(v̂, v) is a function that returns 1 if v̂ = v holds; other-
wise, it returns 0. TP is the expected probability with which
an adversary can remap a perturbed location to the true lo-
cation.

We assume a set of graphs, each of which has only two
vertices. The Euclidean distances between the vertices are
the same for all the graphs, but weights of the edges between
them are different for each graph (Fig. 1). Next, we assume
that each prior of a user’s location is a uniform distribution
on two vertices of this graph, and we compute TP of PLMG
and GEM. Figure 2 shows the change in TP when the weight
(that is, the shortest path length) changes. Due to the guaran-
tee of the Euclidean distance of GeoI, PLM does not degrade
TP even when the shortest path length changes, however,
since GeoGI does not have a guarantee of the Euclidean dis-
tance, GEM significantly degrades TP, which means that the
adversary can discover the user’s true location.

A mechanism satisfying ε-GeoGI can achieve better
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Fig. 1 Each graph has a different shortest path length with the same Eu-
clidean distance.

Fig. 2 TP according to GEM and PLMG.

Fig. 3 Points represent graphs nodes, which we use as the input and out-
put of mechanisms. There are edges between neighboring nodes. The side
length of each square is 1000 m.

utility than can a mechanism satisfying GeoI by guarantee-
ing privacy protection in terms of the shortest distance on
road networks instead of the Euclidean distance. This idea
comes from the interpretation of privacy; in this paper, we
assume that privacy can be interpreted as the shortest dis-
tance on road networks. Therefore, GeoGI may not be suit-
able for protecting location privacy when the privacy needs
to be interpreted as Euclidean distance, e.g., weather condi-
tions, where a wide range of locations need to be protected.

4.4 Utility Comparison with PLMG

Both GEMε and PLMGε satisfy ε-GeoGI, which means that
both guarantee the same indistinguishability. However, out-
puts of GEM and PLMG are created from different distribu-
tions: the continuous distribution with post-processing and
the discrete distribution, respectively. Here, we explore the
change in utility yielded by their difference; consequently,
we use synthetic graphs (Blue points in Fig. 3) whose short-
est path lengths and Euclidean distances between two nodes
are identical to exclude the difference caused by the varia-
tions in the adopted metrics—that is, graphs that have the
shape of a straight line on a Euclidean plane. We prepare
several graphs by changing the number of nodes while fix-
ing the length of the entire graph. Figure 4 shows the util-
ity loss (i.e., Qloss) of GEM and PLMG with ε = 0.01 for
each graph. As shown, the Qloss of GEM increases as the
number of nodes increases, while the Qloss of PLMG de-
creases. This is also the result with other ε values. PLMG is

Fig. 4 Utility loss when changing the number of nodes with ε = 0.01.

post-processed by mapping to the nearest node, so when few
nodes exists near the output of PLM, PLMG cannot output a
useful location because the mapping to the location may be
distant from the input. Conversely, GEM cannot efficiently
output a useful location when there are many nodes because
GEM needs to distribute the probabilities to distant nodes.
This problem of GEM is solved in the next section. We will
also show the effectiveness of GEM compared with PLMG
according to the utility in the real-world road networks. We
refer to Sect. 6 for details.

5. Analyzing the Performance of GEM and Optimizing
Range

GEM requires output z to be on a road network but require
nothing else for the output range. This means that an opti-
mal output range exists for privacy and utility. In this sec-
tion, first we apply Qloss and AE to a location setting on
road networks. Then, we propose the performance criteria
(PC) which represents the tradeoff between the privacy and
the utility. Next, we formalize an optimization problem for
the PC. Finally, we propose a greedy algorithm to solve the
optimization problem in an acceptable amount of time.

5.1 Performance of a Mechanism on a Road Network

While the ε of GeoGI indicates the degree of indistinguisha-
bility between a real and perturbed location, it does not in-
dicate the performance of a mechanism w.r.t its utility for
some user and empirical privacy against some adversary.
Therefore, we introduce the two notions Qloss

s and AEs by
applying Qloss and AE (Sect. 2.1.2) to the setting of road net-
works. We provide their definitions below.

Qloss
s (πu,M) = Qloss(πu,M, ds)

AEs(πa,M, h) = AE(πa,M, h, ds)

Intuitively, Qloss
s is the expected distance on road net-

works between the true locations and perturbed locations,
while AEs is the expected distance on road networks be-
tween the true locations and the locations inferred by an ad-
versary. In the following, we let Qloss and AE denote Qloss

s
and AEs, respectively. We note that, as opposed to ε, AE
changes according to the assumed adversary (i.e., the spe-
cific attack method and prior distribution). However, be-
cause AE increases as Qloss increases (e.g., a mechanism
that outputs a distant location will result in high AE but also
high Qloss), using only AE as a performance criterion for a
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mechanism is not appropriate. Then, we define a new crite-
rion to measure the performance of a mechanism against an
assumed adversary, which we call the performance criterion
(PC).

PC = AE/Qloss

Intuitively, against an assumed adversary, PC represents the
size of AE with respect to the Qloss. In other words, PC mea-
sures the utility/privacy tradeoff. For example, if an adver-
sary with an optimal attack [26] cannot infer the true loca-
tion at all (i.e., the adversary infers the pseudolocation as the
true location), the mechanism can be considered as having
the highest performance (PC = 1). Conversely, the mecha-
nism performs worst (PC = 0) if the adversary can always
infer the true location.

5.2 Objective Functions

Here, we propose an objective function to find the optimal
output range of GEM with respect to the performance. We
assume that the prior distribution of a user is given and ad-
versary knows the prior distribution. An example of this is
shown in Sect. 6.2.1. If the prior distribution is not give, we
can use uniform distribution for the general user.

Then, we can compute AE and Qloss by assuming an
inference function (we refer to Sect. 2.1.1 for detail). We
use a posterior distribution p(v̂|o) given the pseudolocation
o as the inference function h (that is, h(o) ∼ p(·|o)). Then,
given an output rangeW, the PC of GEM with the output
rangeW is formulated as follows:

∑
v,v̂∈V,o∈W πu(v) Pr[GEMW(v) = o]p(v̂|o)ds(v, v̂)∑

v∈V,o∈W πu(v) Pr[GEMW(v) = o]ds(v, o)

where GEMW denotes GEM with the output range W.
Then, the objective function against the adversary can be
formulated as follows.

maximize
W⊆V

PCW

where PCW is the PC of GEMW. Here, GEM with the op-
timized output range is considered to show the best tradeoff
against the adversary, but it can fail to be useful (i.e. large
Qloss) because Qloss has no constraints; consequently we add
the following constraint to Qloss.

maximize
W⊆V

PCW
subject to Qloss

W ≤ θ
where Qloss

W is the Qloss of GEMW. The optimal GEM shows
the best tradeoff in GEM with an output range that shows a
better Qloss than θ. We set Qloss

W0
to θ so that the utility does

not degrade by the optimization.

5.3 Algorithm to Find an Approximate Solution

Because the number of combinations for the output range is
2|V |, we cannot compute all combinations to find the optimal

solution for the optimized problem in an acceptable amount
of time; therefore, we propose a greedy algorithm that in-
stead finds approximate solutions. The pseudocode for this
algorithm is listed in Algorithm 2. The constraint function
is a function that returns a value indicating whether the con-
straint holds or does not hold.

Algorithm 2 Finding a local solution.
Input: Privacy parameter ε, graph G = (V, E) objective function f , con-

straint function c, initial output rangeW0.
Output: Output rangeW.
1: while True do
2: ob j⇐ f (GEMWo )
3: for v in V do
4: W′ ⇐W \ {v}
5: ob j′ ⇐ f (GEMW′ )
6: cons⇐ c(GEMW′ )
7: if ob j′ − ob j < 0 and cons then
8: W⇐ W′
9: ob j⇐ ob j′

10: ifW0 =W then
11: break
12: returnW

First, we start with an initial output rangeW0, which
is given by the next section. Next, we compute a value of
the objective function of the output range with one node re-
moved. We remove that node if the objective function im-
proves and the constraint holds. We repeat this procedure
until the objective function converges, which has a compu-
tational complexity of O(|W0|2) in the worst case when the
computational complexity of the objective function is O(1).
As a rule of thumb, the main loop (line 2 of Algorithm 2)
likely completes in only a small number of iterations. How-
ever, the computational complexity of PC is O(|V |2|W0|), so
the overall computational O(|V |2|W0|3). Therefore, when
|W0| is large, this computational complexity is not accept-
able. In the following, we propose a way of providingW0.

5.3.1 Initialization ofW

PC increases when Qloss decreases, so we propose to first
optimize output range according to Qloss, which is computed
in the small computational complexity. The optimization
problem is as follows:

minimize
W⊆V

Qloss
W

Qloss
W\v can be computed using Qloss

W in the computational
complexity of O(|V |). Therefore, we can obtain an approxi-
mate solution according to this optimization problem using
Algorithm 2 with the initial output range V in the computa-
tional complexity of O(|V |3) in the worst case. As described
above, the main loop likely completes in only a small num-
ber of iterations, so we can complete this algorithm in the
computational complexity of O(|V |2) in the most case, and
this is acceptable even when |V | is somewhat large. We use
this output range as the initial output range of Algorithm 2.
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Fig. 5 The relationship between the number of nodes and time required
for the optimization.

Fig. 6 The relationship between PC and the number of nodes.

Fig. 7 On the left is a map of Tokyo, while the right shows a map of
Akita.

5.4 Optimization Examples

Here, we show examples of the optimization using the syn-
thetic map. First, we explore the relationship between the
number of nodes and the time required for the optimization
(including initialization ofW). We use several lattices with
different numbers of nodes (Fig. 3). We use Python 3.7, an
Ubuntu 15.10 OS, and 1 core of Intel core i7 6770k CPU
with 64 GB of memory as the computational environment.
The results are shown in Fig. 5 and Fig. 6, where we can see
that even when the number of nodes is large (e.g., > 5000),
the algorithm completes under 1 minute and the PC im-
proves by the optimization. This time is acceptable because
we can execute the algorithm to calculate future perturba-
tions in advance. As examples of the number of nodes, the
two graphs in Fig. 7 whose ranges are 1000 m from the cen-
ter contain 1,155 and 168 nodes, respectively. Even when
a graph is quite large, by separating it into the small graphs
such as those in Fig. 7, we can execute the algorithm in an
acceptable time. Our implementation for the optimization is

Fig. 8 Synthetic map whose side length is 1500 m. Axis represents the
prior probability.

Fig. 9 The example of the solution of the output range.

publicly available†.
Next, we executed the algorithm using the synthetic

map in Fig. 8 under the assumption of the prior distribution.
We assume that there are four places where the prior prob-
ability is high, as shown in Fig. 8 and a user who follows
this prior probability uses GEM with ε = 0.01 and an ad-
versary has knowledge of the prior distribution. In this case,
Qloss is 328 m and PC is 0.9 when we useW as all nodes.
A solution of the Algorithm 2 is as shown in Fig. 9. By re-
stricting output in the place where the prior probability is
high, lower utility loss (Qloss = 290 m) and a higher trade-
off (PC = 0.98) can be achieved. The adversary infers that
the pseudolocation is the true location, which means that the
mechanism has effectively perturbed the true location.

Note that this is the expected result; one specific user
may suffer utility loss due to the restriction. For example,
a user on a corner of Fig. 8 must output distant location be-
cause there is no locations in output range near the true lo-
cation. We can solve this problem by adding constraints,
but this incurs the significant additional computational time.
This is interesting future direction to guarantee fair utility.

6. Experiments with Real-World Data

Here, we conduct experiments with real-world data. First,
we compare GEM with a baseline mechanism, which shows
that GEM outperforms the baseline w.r.t. utility-privacy
trade-off. Next, we evaluate the optimization method pro-
posed in Sect. 5 with a prior distribution that simulates a
real-world use-case.

†https://github.com/tkgsn/GG-I
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Table 2 The average differences between the Euclidean distances and
the shortest path distances.

Akita Tokyo Random

difference (m) 1821.1 666.0 980.8

6.1 Comparison of GEM with the Baseline

Here, we compare GEM with the baseline mechanism de-
scribed below. We use the output range of GEM obtained
by Algorithm 2 with this prior distribution.

(1) The baseline mechanism

We choose OptGeoI [5] and PLMG as the baseline mecha-
nism. OptGeoI has a parameter δ, which balances utility and
computational time; we choose δ = 1.0 when the number of
possible locations is less than 150, δ = 1.2 when the number
is less than 200, and δ = 1.4 when the number is less than
250 (refer to Appendix E for the reason of the choices).

Note that when the number of nodes is more than 200,
PLMG is better than OptGeoI with respect to utility because
we experimentally found utility of PLMG is better than Opt-
GeoI with δ > 1.4. In this case, we have two options; using
PLMG or truncating inputs so that the number of nodes is
less than or equal to 200. In this experiment, we adopt both.

(2) Evaluation

We use the following two measures for evaluation.

• PC to evaluate empirical privacy gain
• Qloss to evaluate utility

We compare them with the same ε. Note that ε-OptGeoI
and ε-GEM both satisfy ε-GeoGI.

(3) The setting of maps

We use three kinds of maps, Tokyo, Akita (Fig. 7) and
Random whose ranges are 2000 m from the center. Here,
the experimental results on Random are the average re-
sults of the experiments on the randomly pre-chosen 10
maps to explore the more general result. That is, the per-
formance of a user who is located at randomly chosen 10
maps is simulated by the Random map. In Table 2, We
show the average difference between the Euclidean distance
and the shortest path distance on the road network (i.e.,

1∑
v,v′ 1

∑
v,v′(ds(v, v′) − de(v, v′))).

We randomly choose n nodes as possible locations to
adjust the number. Users are located at each node with the
same probability. As described above, the baseline mecha-
nism varies when the number of possible locations exceeds
200. Therefore, we conduct experiments on the following
two settings.

• small input: n is less than or equal to 200 (OptGeoI
without truncation)
• large input: n is more than 200 (PLMG or OptGeoI

with truncation)

6.1.1 The Case of Small Input

Here, we compare GEM with OptGeoI without truncation.

(1) Comparison of PC

Here, we evaluate PC (i.e., AE/Qloss) to fairly compare em-
pirical privacy gain (i.e., AE) of GEM with that of the base-
line with the same ε. Figure 10 shows the results when vary-
ing n. The number after the name of a map represents the
number of possible locations n. We can see GEM achieves
the almost optimal value† regardless of a chosen map. Opt-
GeoI also achieves near-optimal value for the Tokyo map
with small inputs (i.e., 50, 100), but it degrades the perfor-
mance as the number of nodes increases because δ becomes
larger. Also, the results of the Akita map are far from the
optimal value. This is because OptGeoI does not consider
the road networks; when the difference between the Eu-
clidean distances and the shortest path distances are larger,
our mechanism becomes better than OptGeoI.

(2) Comparison of Qloss

Here, we evaluate utility Qloss to compare utility of GEM
with that of the baseline. Figure 11 shows the results. We
can see that GEM has a higher utility (i.e., smaller Qloss at
the same ε) than OptGeoI on the map of Akita. This is due
to the large difference between the Euclidean distance and
the shortest path distance.

When n is small (e.g., 50, 100), OptGeoI sometimes
outperforms GEM on the Tokyo map. This is because the
difference between the Euclidean distance and the shortest
path distance is small and OptGeoI can adopt δ = 1. This
setting is advantageous for OptGeoI, and we can see below
that GEM outperforms OptGeoI in the more general setting.

6.1.2 The Case of Large Input

Here, we consider the case where the number of possible
locations n is 2000††. When n is larger than 200, OptGeoI
requires truncation as desribed in Sect. 6.1 (1). Therefore, if
a user is located at a location outside the removed inputs,
he/she moves the location to the nearest feasible location
to use OptGeoI. This breaks ε-GeoI and ε-GeoGI, but here
we neglect the affect for simplicity (refer to Appendix D for
detail); we focus on the empirical measures (Qloss and PC)
when changing the reduced number.

Figure 12 and Fig. 13 show the results. OptGeoI n rep-
resents OptGeoI with truncation to reduce the inputs to n
from 2000. OptGeoI n is better when n is larger even though
δ is larger. This is because larger n alleviates the loss due to
truncating. PLMG is better than OptGeoI in many cases be-
cause PLMG does not require truncation. GEM also does

†PC = 1 is the optimal value as described in Sect. 5.1.
††Here, we used this number to show the worst case. Even if we

increase n from 2000, we confirmed that the results do not change
so much. If we decrease n from 2000, we confirmed that the results
approaches the results of the case of small input.
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Fig. 10 The comparison of PC on the setting of the small inputs.

not cause the loss. Moreover, GEM considers road net-
works, which results in much better Qloss and PC than these
of the baseline.

6.1.3 Discussion: Effect to GeoI

We showed above that the utility of our mechanism out-
performed that of the baseline; this is due to the fact that
our mechanism replaces ε-GeoI with ε-GeoGI. Therefore,
our mechanism guarantees constant GeoGI regardless a used
map but does not guarantee any GeoI, which degrades pri-
vacy with respect to Euclidean distance as described in
Sect. 4.3. To visualize this effect, we formulate the local
GeoI of x and x′ as:

εlgeoi(x, x′) =
1

de(x, x′)
sup
z∈Z

ln
∣∣∣∣∣
Pr[M(x) = z]
Pr[M(x′) = z]

∣∣∣∣∣ .

If M satisfies ε-GeoI, it holds that ∀x, x′, εlgeoi(x, x′) ≤ ε.

That is, this is the local guarantee of ε-GeoI between two
nodes x and x′. Here, we explore this local value between
specific two nodes illustrated on Fig. 14.

We plot the local GeoI of the two specific nodes when
we use a 1-GeoGI mechanism and change c with a = 1000
on Fig. 15. We can see that GeoI linearly degrades when c
increases. For example, when c = 666 (i.e., the representa-
tive value of the Tokyo map), it degrades to 1.666 from 1.
When c = 1821 (i.e., the representative value of the Akita
map), it degrades 2.821 from 1. This is the key that GEM is
much better than OptGeoI in the Akita map. As this, GEM
achieves better utility by degrading GeoI and instead keep-
ing GeoGI.

6.2 Evaluation of the Effectiveness of Optimization

Figure 10 shows that the optimization works well in the case
of uniform prior distribution. Here, we assume more realis-
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Fig. 11 The comparison of Qloss with the small inputs.

Fig. 12 The comparison of PC on the setting of large inputs.

tic prior distribution and show the effectiveness of the opti-
mization.

6.2.1 Scenario

First, we show that the approximate solution for the pro-
posed objective function effectively improves the tradeoff

between utility and privacy. We use the following real-world
scenario: a bus rider who uses LBSs. In other words, the
user has a higher probability of being located near a bus
stop. We create a prior distribution following this scenario
by using a real-world dataset, Kyoto Open Data†, which in-

†https://data.city.kyoto.lg.jp/28
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Fig. 13 The comparison of Qloss on the setting of large inputs.

Fig. 14 The case where the difference between the Euclidean distance
(a) and the shortest path distance (a + c) is cm. We consider the indistin-
guishability between the two nodes.

Fig. 15 The local GeoI of the two nodes when a mechanism satisfies 1-
GeoGI.

Fig. 16 Each point represents a bus stop, and the y-axis represents the
number of people who enter and exit buses at that stop.

cludes the number of people who enter and exit buses at
each bus stop per day. Figure 16 shows the data, and Fig. 17
represents the prior distribution made by distributing node
probability based on the shortest distance from that node
to a bus stop and the number of people who enter and exit
buses at that bus stop. We assume that a user who follows
this prior distribution uses an LBS with GEM and that an ad-

Fig. 17 Prior distribution created from Kyoto Open Data.

Fig. 18 The solution for the objective function against the adversary with
ε = 0.01.

Fig. 19 PC with respect to ε.

versary knows the prior distribution. In this setting, we run
Algorithm 2 and obtain an approximate solution. Figure 18
shows the example of an approximate solution. We can see
that the nodes around the place with higher prior probability
remain.

6.2.2 Evaluation of Optimized Range

First, we evaluate the PC of GEM with an optimized out-
put range under the same ε as shown in Fig. 19. The result
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shows that a user can effectively perturb their true location
for any realistic value of ε by using the optimized range.
When the value of ε is small, the distribution of GEM has a
gentle spread. In this case, the output of the mechanism does
not contain useful information; thus, the adversary must use
his/her prior knowledge, which results in a worse PC in the
case of the baseline. However, as these results show, by op-
timizing the output range according to the prior knowledge
of the adversary, we can prevent this type of privacy leak.

7. Related Works

7.1 Cloaking

Cloaking methods [8] obscure a true location by outputting
an area instead of the true location. These methods are based
on k-anonymity [10] which guarantees that at least k users
are in the same area, which prevents an attacker from infer-
ring which user is querying the service provider. This pri-
vacy definition is practical, but there are some concerns [20]
regarding the rigorousness of the privacy guarantee because
k-anonymity does not guarantee privacy against an adver-
sary with some knowledge. If the adversary has peripheral
knowledge regarding a user’s location, such as range of the
user’s location, the obscured location can violate privacy.
By considering the side knowledge of an adversary [36],
the privacy against that particular adversary can be guaran-
teed, but generally, protecting privacy against one type of
adversary is insufficient. Additionally, introducing a cloak-
ing method incurs additional costs for the service provider
because the user sends an area rather than a location.

7.2 Anonymization

Anonymization methods [11] separate a user’s identifier
from that user’s location by assigning a pseudonym. Be-
cause tracking a single user pseudonym can leak privacy, the
user must change the pseudonym periodically. Beresford
et al. [3] proposed a way to change pseudonyms using a
place called mix zones. However, anonymization does not
guarantee privacy because an adversary can sometimes iden-
tify a user by linking other information. One of the lat-
est anonymization methods uses Blockchain [14], [24]. The
method can guarantee k-anonymity with the guarantee of
impossibility of alteration. The other latest method uses the
social network services such as FaceBook to guarantee k-
anonymity [12].

7.3 Location Privacy on Road Networks

To the best of our knowledge, this is the first study to pro-
pose a perturbation method with the differential privacy ap-
proach over road networks. However, several studies ex-
plored location privacy on road networks.

Tyagi et al. [31] studied location privacy over road net-
works for VANET users and showed that no comprehensive

privacy-preserving techniques or frameworks cover all pri-
vacy requirements or issues while still maintaining a desired
location privacy level.

Wang et al. [32] and Wen et al. [33] proposed a method
of privacy protection for users who wish to receive location-
based services while traveling over road networks. The au-
thors used k-anonymity as the protection method and took
advantage of the road network constraints.

Tan et al. [28] proposed to use a road network struc-
ture in Private Information Retrieval (PIR). Their method
improves the consumption of communication costs by con-
sidering the road network structure.

Qiu et al. [42] proposed the optimization problem for
vehicle-based spatial crowdsourcing and its solution based
on GeoI. Bi et al. [4] proposed to use a Voronoi diagram on
a road network in a mechanism satisfying local differential
privacy. However, the method requires large noise due to
the constraint of local differential privacy. A series of key
features distinguish our solution from these studies: a) we
use the differential privacy approach; consequently, our so-
lution guarantees privacy protection against any attacker to
some extent and b) we assume that no trusted server and ad-
ditional computational power exists. We highlight these two
points as advantages of our proposed method.

7.4 State-of-the-Art Privacy Models

Cao et al. [39] proposed the generalized version of GeoI us-
ing a policy graph to enable us to customize the privacy of
GeoI. They demonstrate the flexibility of privacy to achieve
better utility in the COVID-19 case [40]. Achieving this
flexibility in GeoGI is interesting direction.

Since GeoI [2] was published, many related applica-
tions have been proposed. To et al. [29] developed an on-
line framework for a privacy-preserving spatial crowdsourc-
ing service using GeoI. Tong et al. [30] proposed a frame-
work for a privacy-preserving ridesharing service based on
GeoI and the differential privacy approach. It may be pos-
sible to improve these applications by using GeoGI instead
of GeoI. Additionally, Bordenabe et al. [5] proposed an opti-
mized mechanism that satisfied GeoI, and it may be possible
to apply this method to GEM.

According to [2], using a mechanism satisfying GeoI
multiple times causes privacy degradation due to correla-
tions in the data; this same scenario also applies to GeoGI.
This issue remains a difficult and intensely investigated
problem in the field of differential privacy. Two kinds of
approaches have been applied in attempts to solve this prob-
lem. The first is to develop a mechanism for multiple per-
turbations that satisfies existing notions, such as differential
privacy and GeoI [15], [17]. Kairouz et al. [17] studied the
composition theorem and proposed a mechanism that up-
grades the privacy guarantee. Chatzikokolakis et al. [15]
proposed a method of controlling privacy using GeoI when
the locations are correlated. The second approach is to pro-
pose a new privacy notion for correlated data [6], [35]. Xiao
et al. [35] proposed δ-location set privacy to protect each lo-
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cation in a trajectory when a moving user sends locations.
Cao et al. [6] proposed PriSTE, a framework for protecting
spatiotemporal event privacy. We believe that these methods
can also be applied to our work.

8. Conclusion and Future Work

In this paper, we proposed a new notion of location pri-
vacy on road networks, GeoGI, based on differential privacy.
GeoGI provides a guarantee of the indistinguishability of a
true location on road networks. We revealed that GeoGI
is a relaxed version of GeoI. Our experiments showed that
this relaxation allows a mechanism to output more useful lo-
cations with the same privacy level for LBSs that function
over road networks. By introducing the notions of empirical
privacy gain AE and utility loss Qloss in addition to indis-
tinguishability ε, we formalized the objective function and
proposed an algorithm to find an approximate solution. We
showed that this algorithm has an acceptable execution time
and that even an approximate solution results in improved
performance.

We represented a road network as a undirected graph;
this means that our solution has no directionality even
though one-way roads exist, which may degrade its utility.
In this paper, the target being protected is a location, but
if additional information (such as which hospital the user is
in) also needs to be protected, our proposed method does not
work well: the hospital could be distinguished. This prob-
lem can be solved by introducing another metric space that
represents the targets to protect instead of the road network
graph. Moreover, we need to consider the fact that multiple
perturbations of correlated data, such as trajectory data, may
degrade the level of protection even if the mechanism satis-
fies GeoGI as in the case of GeoI and differential privacy.
This topic has been intensely studied, and we believe that
the results can be applied to GeoGI.
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Appendix A: Characteristics of dχ-Privacy

GeoGI is an instance of dX-privacy [16], which is a gener-
alization of differential privacy with the following two char-
acteristics that show strong privacy protection.

A.1 Post-Processing Theorem

Inherited from DP, dχ-privacy also satisfies post-processing
theorem.

lemma 1 (Post-processing theorem of dχ-privacy.). If a mech-
anism M : X → Z satisfies ε-dχ-privacy, a post-processed
mechanism f ◦M also satisfies ε-dχ-privacy for any function
f : Z → Z′.
Proof. Given function f : Z → Z′, the following inequality
holds for any two locations x, x′ ∈ X and z ∈ Z′. We let T
denote {z ∈ Z : f (z) ∈ S }; then, we have:

Pr[ f (M(x)) ∈ S ] = Pr[M(x) ∈ T ]

≤ eεdχ(x,x′) Pr[M(x′) ∈ T ]

= eεdχ(x,x′) Pr[ f (M(x′)) ∈ S ]

This means that:

log
∣∣∣∣∣
Pr[ f (M(x)) ∈ S ]
Pr[ f (M(x′)) ∈ S ]

∣∣∣∣∣ ≤ εdχ

Q.E.D. �

A.2 Hiding Function

The first characteristic uses the concept of a hiding function
φ : V → V , which hide a secret location by mapping to the
other location. For any hiding function and a secret location
v ∈ V , when an attacker who has a prior distribution that
includes information about the user’s location obtains each
output o = M(v) and o′ = M(φ(v)) of a mechanism that
satisfies ε-GeoGI, the following inequality holds for each
posterior distribution:
∣∣∣∣∣log

Pr[v|o]
Pr[v|o′]

∣∣∣∣∣ ≤ 2ε sup
v∈V

ds(v, φ(v))

This inequality guarantees that the adversary’s conclusions
are the same (up to 2ε supv∈V ds(v, φ(v))) regardless of
whether φ has been applied to the secret location.

A.2.1 Informed Attacker

The other characteristic can be shown by the ratio of a
prior distribution and posterior distribution, which is de-
rived by obtaining an output of the mechanism. By mea-
suring this value, we can determine how much the adver-
sary has learned about the secret. We assume that an ad-
versary (informed attacker) knows that the secret location
is in N ⊆ V . When the adversary obtains an output of the
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mechanism, the following inequality holds for the ratio of
his prior distribution π|N(v) = π(v|N) and its posterior distri-
bution p|N(v|o) = p(v|o,N):

log
π|N(v)

p|N(v|o)
≤ ε max

v,v′∈N
ds(v, v

′)

Intuitively, this means that the more the adversary knows
about the actual location, the less he will be able to learn
about the location from an output of the mechanism.

Appendix B: Output Range from a Privacy Perspec-
tive

There are two reasons why output range should be vertices
of the graph. First, LBSs that operate over road networks
expect to receive a location on a road network as described
in Sect. 2.4, so if a user sends a location outside the road
networks, the utility decreases.

Second, because road networks are public information,
outputting a location outside the road network may cause
empirical privacy leaks. We empirically show that an ad-
versary who knows the road network can perform a more
accurate attack than can one who does not know the road
network; a post-processed mechanism protects privacy from
this type of attack. To show this, we evaluate the empiri-
cal privacy gain AE of two kinds of mechanisms PLM and
PLMG against the two kinds of adversaries at the same util-
ity Qloss.

For simplicity, we use a simple synthetic map illus-
trated in Fig. A· 1. This map consists of 1,600 squares each
of which has a side length of 100 m; that is, the area di-
mensions are 4000 m ∗ 4000 m, and each lattice point has
a coordinate. The centerline represents a road where a user
is able to be located, and the other areas represent locations
where a user must not be, such as the sea. In this map, we
evaluate the empirical privacy gain AE of the two mecha-
nisms against two kinds of adversaries with the same utility
loss Qloss. We use Euclidean distance as the metric of AE
and Qloss, denoted by AEe and Qloss

e , respectively.
Figure A· 2 shows the results. PLM represents AE

against an adversary who knows the road network, while
PLM∗ represents AE against an adversary who dose not
know the road network. In this figure, if AE is close to Qloss,
the mechanism strongly protects privacy (see Sect. 2.1.2 for
detail) against the adversary. Comparing PLM with PLM∗,
AE of PLM is smaller than PLM∗, which means that the ad-
versary can more accurately infer the true location by con-
sidering the road network (i.e., weaker privacy protection)
even when users are suffering the same utility loss. AE of
PLMG is closer to Qloss than that of PLM and almost identi-
cal to AE of PLM∗, which means stronger privacy protection
of PLMG than PLM against the same adversary who knows
the road network. By restricting the output to locations on
the road network, the adversary cannot improve the infer-
ence of the true location because no additional information
exists. In other words, post-processing to a location on road
networks strengthens the empirical privacy level against an

Fig. A· 1 A synthetic map. The red line represents a road, and a user is
located inside the black frame.

Fig. A· 2 AE of each mechanism with respect to Qloss with the Euclidean
distance, that is AEe and Qloss

e . PLM∗ represents AE of PLMG against an
adversary who does not know the road network.

adversary who knows the road network.

Appendix C: Omitted Proof

theorem 3. Given a graph G = (V, E), GEMε satisfies ε-
GeoGI.

Proof. We prove that the following inequality holds for any
two locations on road networks v, v′ ∈ V and S ⊆ W:

Pr[GEM(v) ∈ S ]
Pr[GEM(v′) ∈ S ]

≤ exp(εds(v, v
′))

The following inequality holds for any S ⊆ W and v, v′ ∈ V
from the triangle inequality:

ds(v, v
′) + ds(v

′,w) ≥ ds(v,w) and

ds(v,w) + ds(v, v
′) ≥ ds(v

′,w)

Then, the left side of the inequality is transformed as fol-
lows:

Pr[GEM(v) ∈ S ]
Pr[GEM(v′) ∈ S ]

=
α(v)
α(v′)

∑
w∈S exp(−εds(v,w)/2)∑
w∈S exp(−εds(v′,w)/2)

We show
∑

w∈S exp(−εds(v,w)/2)∑
w∈S exp(−εds(v′,w)/2) ≤ eεds(v,v′)/2 and α(v)

α(v′) ≤
eεds(v,v′)/2, respectively.

∑
w∈S e−εds(v,w)/2

∑
w∈S e−εds(v′,w)/2

=

∑
w∈S e−

ε
2 ds(v,w)

e− ε2 ds(v,v′)∑
w∈S e− ε2 (ds(v′,w)−ds(v,v′))

≤ e
ε
2 ds(v,v′)

∑
w∈S e−

ε
2 ds(v,w)

∑
w∈S e− ε2 ds(v,w)

= e
ε
2 ds(v,v′)
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Table A· 1 The privacy guarantees of OptGeoI (ε) and OptGeoI with the
truncation (ε′). Here, OptGeoIε′ and GEMε′ represent OptGeoIε with the
truncation and GEM using ε′, respectively.

OptGeoIε′ GEMε′
location ε ε′ Qloss Qloss

0.5 90.645 4670.9 52.447
Tokyo 1.0 192.35 2788.0 11.562

2.0 374.19 2156.1 2.7207
0.5 26.432 9549.5 84.810

Akita 1.0 86.203 5144.9 32.551
2.0 123.03 3807.1 13.335
0.5 51.244 5515.6 112.94

Random 1.0 109.13 3314.0 23.823
2.0 153.73 2648.2 10.426

The inequality is from the triangle inequality. Since

α(v)
α(v′)

=

∑
w∈W exp(−εds(v′,w)/2)∑
w∈W exp(−εds(v,w)/2)

,

in the similar vein we have
∑

w∈W e−εds(v′,w)/2

∑
w∈W e−εds(v,w)/2

= e
ε
2 ds(v,v′)

∑
w∈W e−

ε
2 (ds(v′,w)+ds(v,v′))

∑
w∈W e− ε2 ds(v,w)

≤ e
ε
2 ds(v,v′)

∑
w∈W e−

ε
2 ds(v,w)

∑
w∈W e− ε2 ds(v,w)

= e
ε
2 ds(v,v′).

That is,

α(v)
α(v′)

≤ e
ε
2 ds(v,v′).

Therefore,

Pr[GEM(v) ∈ S ]
Pr[GEM(v′) ∈ S ]

≤ e
ε
2 ds(v,v′) · e ε2 ds(v,v′) = eεds(v,v′).

Q.E.D. �

Appendix D: Influence of the Small Number of Possi-
ble Locations

OptGeoI truncates possible input locations due to the con-
straint of optimization. This influences GeoGI for users at
the removed locations. Here, we experimentally show the
influences of OptGeoI with comparing to GEM. We use the
extended map of Fig. 7, whose size is 10,000 m from the
center to see the influences. Here, we use random 5000
nodes for all possible locations and truncate them to 50
for OptGeoI. Users pre-process to map their location to the
nearest possible location that is applicable to OptGeoI.

We compute GeoGI of OptGeoI with truncation ac-
cording to Definition 2. Table A· 1 shows the impact of the
pre-processing where ε′ means the privacy level of OptGeoI
with truncation. We can see that even if we use ε for
OptGeoI, the privacy level (ε′) considerably decreases due
to the truncation. We note that GEM does not require the
truncation, so the privacy level does not decrease. As shown
in Table A· 1, if we use GEM with ε′, we can achieve much
better Qloss.

Table A· 2 The computational times given δ and the number of possible
locations.

n nodes\δ 1.0 1.1 1.2 1.3 1.4

50 1m 20s 8s 6s 6s
100 3h 1h 3m 3m 1m
150 24h+ 24h+ 6h 3h 1h
200 24h+ 24h+ 24h+ 24h+ 8h
250 24h+ 24h+ 24h+ 24h+ 24h+

Appendix E: The Choice of The Baseline Mechanism

Here, we explain the choice of δ of OptGeoI. OptGeoI has
a parameter δ, which balances utility and computational
time. Bordenabe et al. [5] did not show how to choose the
value of δ, so we conducted an experiment to empirically
choose the appropriate value of δ. We show the compu-
tational time when changing δ and the number of possible
locations on the Tokyo map. We set the acceptable com-
putational time as 24 hours for the convenience of experi-
ments, but this computational time is reasonable because it
exponentially increases as the number of possible locations
increases. δ should be as small as the computational time al-
lows to achieve better utility. Therefore, we choose δ = 1.0
when the number is less than 150, δ = 1.2 when the number
is less than 200, and δ = 1.4 when the number is less than
250.
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