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Abstract—Many current online services are deployed over
geographically distributed sites (i.e., datacenters). Such dis-
tributed services call for geo-replicated storage, that is, storage
distributed and replicated among many sites. Geographical
distribution and replication can improve locality and avail-
ability of a service. Locality is achieved by moving data
closer to the users. High availability is attained by replicating
data in multiple servers and sites. This paper considers a
class of scalable replicated storage systems based on deferred
update replication with transactional properties. The paper
discusses different ways to deploy scalable deferred update
replication in geographically distributed systems, considers the
implications of these deployments on user-perceived latency,
and proposes solutions. Our results are substantiated by a series
of microbenchmarks and a social network application.
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tolerance, high performance, transactional systems

I. INTRODUCTION

Many current online services are deployed over geograph-
ically distributed sites (i.e., datacenters). Such distributed
services call for geo-replicated storage, that is, storage
distributed and replicated among many sites. Geographic
distribution and replication can improve locality and avail-
ability of a service. Locality is achieved by moving the data
closer to the users and is important because it improves user-
perceived latency. High availability is attained by deploying
the service in multiple replicas; it can be configured to
tolerate the crash of a few nodes within a datacenter or
the crash of multiple sites, possibly placed in different
geographical locations.

In this paper, we consider a class of scalable replicated
storage systems based on deferred update replication. De-
ferred update replication is a well-established approach (e.g.,
[1], [2], [3], [4]). The idea behind a scalable deferred
update replication (SDUR) protocol is conceptually simple:
the database is divided into partitions and each partition
is fully replicated by a group of servers [5]. To execute a
transaction, a client interacts with (at most) one server per
partition and there is no coordination among servers during
the execution of the transaction—essentially, the technique
relies on optimistic concurrency control [6]. When the client
wishes to commit the transaction, he atomically broadcasts
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the transaction’s updates (and some meta data) to each par-
tition involved in the transaction. Atomic broadcast ensures
that servers in a partition deliver the updates in the same
order and can certify and possibly commit the transaction in
the same way. Certification guarantees that the transaction
can be serialized with other concurrent transactions within
the partition. Transactions are globally serialized using a
two-phase commit-like protocol: servers in the involved
partitions exchange the outcome of certification (i.e., the
partition’s vote) and if the transaction passes the certification
test successfully at all partitions it is committed; otherwise
it is aborted.

Scalable deferred update replication offers very good
performance, which under certain workloads grows propor-
tionally with the number of database partitions [5], but it is
oblivious to the geographical location of clients and servers.
While the actual location of clients and servers is irrelevant
for the correctness of SDUR, it has important consequences
on the latency perceived by the clients. SDUR distinguishes
between local transactions, those that access data in a single
partition, and global transactions, those that access data
in multiple partitions. Intuitively, a local transaction will
experience lower latency than a global transaction since
it does not require the two-phase commit-like termination
needed by global transactions. Moreover, in a geographically
distributed environment, the latency gap between local and
global transactions is likely wider since the termination of
global transactions may involve servers in remote regions,
subject to longer communication delays. This is not the
case for local transactions whose partition servers are within
the same region. Applications can exploit these tradeoffs
by distributing and replicating data to improve locality and
maximize the use of local transactions.

Although local transactions are “cheaper” than global
transactions when considered individually, in mixed work-
loads global transactions may hinder the latency advantage
of local transactions. This happens because within a par-
tition, the certification and commitment of transactions is
serialized to ensure determinism, a property without which
replicas’ state would diverge. As a consequence, a local
transaction delivered after a global transaction will expe-
rience a longer delay than if executed in isolation. We have
assessed this phenomenon in a geographically distributed
environment and found that even a fairly low number of



global transactions in the workload is enough to increase
the average latency of local transactions by up to 10 times.

This paper makes the following contributions. First, it
revisits scalable deferred update replication and discusses
how it can be deployed in geographically distributed sys-
tems. Second, it experimentally assesses the performance
of these deployments, using Amazon’s elastic compute in-
frastructure, and quantifies the problems mentioned above.
Third, it proposes two extensions to address the limitations
of the original protocol and presents a detailed experimen-
tal analysis of their effectiveness. Our experimental study
considers a series of microbenchmarks and a social network
application, prototypical of current online services deployed
over geographically distributed sites.

The remainder of the paper is structured as follows.
Section II presents our system model and some definitions.
Section III recalls the scalable deferred update replication
approach. Section IV discusses how to deploy SDUR in a
geographically distributed system, points out performance
issues with these deployments, and details solutions to the
problems. Section V describes our prototype and some
optimizations. Section VI evaluates the performance of the
protocol under different conditions. Section VII reviews
related work and Section VIII concludes the paper.

II. SYSTEM MODEL AND DEFINITIONS

In this section, we define our system model and introduce
some definitions used throughout the paper.

A. Processes and communication
We consider a distributed system composed of an un-

bounded set C = {c1, c2, ...} of client processes and a set
S = {s1, ..., sn} of server processes. Set S is divided into
P disjoint groups, S1, ..., SP . The system is asynchronous:
there is no bound on messages delays and on relative process
speeds. We assume the crash-stop failure model (e.g., no
Byzantine failures). A process, either client or server, that
never crashes is correct, otherwise it is faulty.

Processes communicate using either one-to-one or one-
to-many communication. One-to-one communication uses
primitives send(m) and receive(m), where m is a message.
Links are quasi-reliable: if both the sender and the receiver
are correct, then every message sent is eventually received.
One-to-many communication relies on atomic broadcast,
implemented within each group p. Atomic broadcast is
defined by primitives abcast(p,m) and adeliver(p,m) and
ensures two properties: (1) if message m is delivered by a
server in p, then every correct server in p eventually delivers
m; and (2) no two messages are delivered in different order
by their receivers.

While several atomic broadcast algorithms exist [7], we
use Paxos to implement atomic broadcast within a group
of servers [8]. Paxos requires a majority of correct servers
within a group and additional assumptions to ensure liveness,
notably a leader-election oracle at each group [8].

B. Databases, transactions and serializability

The database is a set D = {x1, x2, ...} of data items. Each
data item x is a tuple 〈k, v, ts〉, where k is a key, v its value,
and ts its version—we assume a multiversion database. The
database is divided into P partitions and each partition p
is replicated by servers in group Sp. Hereafter we assume
that atomic broadcast can be solved within each partition.
For brevity, we say that server s belongs to partition p
meaning that s ∈ Sp, and that p performs an action (e.g.,
sending a message) with the meaning that some server in p
performs the action. For each key k, we denote partition(k)
the partition to which k belongs.

A transaction is a sequence of read and write operations
on data items followed by a commit or an abort operation.
We represent a transaction t as a tuple 〈id , rs,ws〉 where id
is a unique identifier for t, rs is the set of data items read
by t (readset(t)) and ws is the set of data items written
by t (writeset(t)). The set of items read or written by t is
denoted by Items(t). The readset of t contains the keys
of the items read by t; the writeset of t contains both
the keys and the values of the items updated by t. We
assume that transactions do not issue “blind writes”, that
is, before writing an item x, the transaction reads x. More
precisely, for any transaction t, writeset(t) ⊆ readset(t).
Transaction t is said to be local if there is a partition p such
that ∀(k,−) ∈ Items(t) : partition(k) = p. If t is not a
local transaction, then we say that t is global. The set of
partitions that contain items read or written by t is denoted
by partitions(t).

The isolation property is serializability: every concurrent
execution of committed transactions is equivalent to a serial
execution involving the same transactions [9].

III. SCALABLE DEFERRED UPDATE REPLICATION

Scalable deferred update replication (SDUR) is an ex-
tension of deferred update replication that accounts for
partitioned data. In this section, we recall how SDUR works.

A. Transaction execution

In SDUR, the lifetime of a transaction is divided in two
phases: (1) the execution phase and (2) the termination
phase. The execution phase starts when the client issues
the first transaction operation and finishes when the client
requests to commit or abort the transaction, when the ter-
mination phase starts. The termination phase finishes when
the transaction is completed (i.e., committed or aborted).

During the execution phase of a transaction t, client c
submits each read operation of t to a server s in the partition
p that contains the item read. This assumes that clients are
aware of the partitioning scheme.1 When s receives a read
command for x from c, it returns the value of x and its cor-
responding version. The first read determines the database

1Alternatively, a client can connect to a single server s and submit all its
read requests to s, which will then route them to the appropriate partition.



snapshot at partition p the client will see upon executing
other read operations for t. Therefore, reads within a single
partition see a consistent view of the database. Transactions
that read from multiple partitions must either be certified at
termination to check the consistency of snapshots or request
a globally-consistent snapshot upon start; globally-consistent
snapshots, however, may observe an outdated database since
they are built asynchronously by servers. Write operations
are locally buffered by c and only propagated to the servers
during transaction termination.

Read-only transactions execute against a globally-
consistent snapshot and commit without certification. Update
transactions must pass through the termination phase to
commit, as we describe next.

B. Transaction termination

To request the commit of t, c atomically broadcasts to
each partition p accessed by t the subset of t’s readset and
writeset related to p, denoted readset(t)p and writset(t)p.
Client c uses one broadcast operation per partition—running
a system-wide atomic broadcast would result in a non-
scalable architecture. Upon delivering t’s readset(t)p and
writeset(t)p, a server s in p certifies t against transac-
tions delivered before t in p—since certification within a
partition is deterministic, every server in p will reach the
same outcome for t. If t passes certification, it becomes a
pending transaction in s; otherwise s aborts t. If t is a local
transaction, it will be committed after s applies its changes
to the database. If t is a global transaction, s will send the
outcome of certification, the partition’s vote, to the servers
in partitions(t) and wait for the votes from partitions(t).
If each partition votes to commit t, s applies t’s updates to
the database (i.e., commit); otherwise s aborts t.

The certification of a local transaction checks whether the
transaction can be serialized according to its delivery order.
If transactions ti and tj executed concurrently in partition p
and ti is delivered before tj , tj will pass certification with
respect to ti if readset(tj)p∩writeset(ti)p = ∅. Logically, in
a serial execution where ti executed before tj , tj would see
any of ti’s updates. Since ti and tj executed concurrently,
certification allows tj to commit only if tj did not read any
item updated by ti. This relatively simple certification test is
possible thanks of the totally ordered delivery of transactions
within a partition, implemented by atomic broadcast.

The certification of global transactions is more complex
due to the absence of total order across partitions. If ti
and tj are concurrent global transactions that read from
partitions px and py , it may happen that ti is delivered
before tj at px and tj is delivered before ti at py . Simply
certifying that tj does not read any item updated by ti at
px and ti does not read any item updated by tj at py does

not ensure serializability.2 To enforce serializable executions
without system-wide total order, SDUR uses a more strict
certification test for global transactions: If global transaction
ti executed concurrently with transaction tj in partition
p, and tj is delivered before ti, ti will pass certification
with respect to tj if readset(tj)p ∩ writeset(ti)p = ∅ and
readset(ti)p∩writeset(tj)p = ∅. Intuitively, this means that
if ti and tj pass certification, they can be serialized in any
order—thus, it does not matter if ti is delivered before tj at
one partition and tj is delivered before ti at another partition.

IV. SCALABLE DEFERRED UPDATE REPLICATION IN
GEO-REPLICATED ENVIRONMENTS

SDUR is oblivious to the geographical location of clients
and servers. In this section, we revisit our system model
considering a geographically distributed environment, dis-
cuss possible deployments of SDUR in these settings, point
out performance issues with these deployments, and propose
solutions to overcome the problems.

A. A system model for geo-replication

We assume client and server processes grouped within
datacenters (i.e., sites) geographically distributed over dif-
ferent regions. Processes within the same datacenter and
within different datacenters in the same region experience
low-latency communication. Messages exchanged between
processes located in different regions are subject to larger
latencies. A partition replicated entirely in a datacenter can
tolerate the crash of some of its replicas. If replicas are
located in multiple datacenters within the same region, then
the partition can tolerate the crash of a whole site. Finally,
catastrophic failures (i.e., the failure of all datacenters within
a region) can be addressed with inter-region replication.

Replication across regions is mostly used for locality,
since storing data close to the clients avoids large delays
due to inter-region communication [10], [11]. We account
for client-data proximity by assuming that each database par-
tition p has a preferred server [10], denoted by pserver(p),
among the servers that contain replicas of p. Partition p can
be accessed by clients running at any region, but applications
can reduce transaction latency by carefully placing the
preferred server of a partition in the same region as the
partition’s main clients.

B. SDUR in geographically distributed systems

We now consider two deployments of SDUR in a geo-
graphically distributed system. The first deployment (“WAN
1” in Figure 1) places a majority of the servers that replicate
a partition in the same region, possibly in different datacen-
ters. A local transaction executed against the preferred server

2To see why, let ti read x and write y and tj read y and write x, where
x and y are items in px and py , respectively. If ti is delivered before tj
at px and tj is delivered before ti at py , both pass certification at px and
py , but they cannot be serialized.



of partition P1 (s1 in the figure) will terminate in 4δ, where δ
is the maximum communication delay among servers in the
same region. A global transaction that accesses partitions
P1 and P2, executed against server s1, will be subject to
4δ + 2∆, where ∆ is maximum inter-region delay.

The second deployment (“WAN 2”) distributes the servers
of a partition across regions. This deployment can tolerate
catastrophic failures, as we discuss next. The termination of
a local transaction will experience 2δ+2∆ since Paxos will
no longer run among servers in the same region. Global
transactions are more expensive than local transactions,
requiring 3δ + 3∆ to terminate.3 In both deployments, a
global transaction that executes at P1 (respectively, P2) will
read items from P2 (P1) within 2δ.

Deployments one and two tolerate the failure of servers in
a partition as long as a majority of the servers is available in
the partition (see Section II). The first deployment, however,
does not tolerate the failure of all servers in a region,
since such an event would prevent atomic broadcast from
terminating in some partitions.

C. Performance considerations

In SDUR, terminating transactions are totally ordered
within a partition. If ti is delivered before tj in partition
p, ti will be certified before tj . If ti and tj pass certification
(in all concerned partitions), ti’s updates will be applied to
the database before tj’s. While this mechanism guarantees
deterministic transaction termination, it has the undesirable
effect that tj may have its termination delayed by ti. This is
particularly problematic in SDUR if ti is a global transaction
and tj is a local transaction since global transactions may
take much longer to terminate than local transactions.

The consequences of global transactions on the latency
of local transactions depend on the difference between the
expected latency of local and global transactions. For exam-
ple, in WAN 1 local transactions are expected to terminate
much more quickly than global transactions, which is not
the case in WAN 2. Thus, global transactions can have a
more negative impact on local transactions in WAN 1 than in
WAN 2. We have assessed this phenomenon experimentally
(details in Section VI) and found that in WAN 1, global
transactions can increase the latency of local transactions
by up to 10 times. In the next section, we discuss two
techniques that reduce the effects of global transactions on
the latency of local transactions in SDUR.

D. Delaying transactions

In our example in the previous section, if tj is a local
transaction delivered after a global transaction ti at server
s, tj will only terminate after s has received votes from all
partitions in partitions(ti) and completed ti.

3Note that we do not place server s4 in Region 1 because this would
result in Region 2 having no preferred server.

We can reduce ti’s effects on tj as follows. When s
receives ti’s termination request (message 1 in Figure 1), s
forwards ti to the other partitions (message 2) but delays the
broadcast of ti at p by ∆ time units. Delaying the broadcast
of ti in p increases the chances that tj is delivered before ti
but does not guarantee that tj will not be delivered after ti.

Note that if ∆ is approximately the time needed to reach
a remote partition (message 2 in Figure 1), then delaying
the broadcast of ti at p by ∆ will not increase ti’s overall
latency.

E. Reordering transactions
The idea behind reordering is to allow a local transaction

tj to be certified and committed before a global transaction
ti even if ti is delivered before tj . This is challenging for
two reasons: First, when tj is delivered by some server s
in partition p, s may have already sent ti’s vote to other
partitions. Thus, reordering tj before ti must not invalidate
s’s vote for ti. For example, assume ti reads items x and y
and writes item y and s voted to commit ti. If tj updates
the value of x, then s cannot reorder tj before ti since that
would change s’s vote for ti from commit to abort. Second,
the decision to reorder transactions must be deterministic,
that is, if s decides to reorder tj , then every server in p
must reach the same decision.

We ensure that at partition p local transaction tj can
be reordered with previously delivered pending transactions
ti0 , ..., tiM using a reordering condition similar to the one
presented in [1], originally devised to reduce the abort rate
of concurrent transactions. In our context, we define that tj
can be serialized at position l if the following holds:
(a) ∀k, 0 ≤ k < l: writeset(tik) ∩ readset(tj) = ∅ and
(b) ∀k, l ≤ k ≤M : writeset(tj) ∩ readset(tik) = ∅.

If there is a position l that satisfies the constraints above,
tj passes certification and is “inserted” at position l, which
essentially means that it will become the l-th transaction
to be applied to the database, after transactions ti0 , ..., til−1

have completed. If more than one position meets the cri-
teria, servers choose the leftmost position that satisfies the
conditions above since that will minimize tj’s delay.

Consider now an execution where ti is pending at server
s when tj is delivered and let ti read and write item x and
tj read and write item y. Thus, s can reorder tj before ti
in order to speed up tj’s termination. At server s′, before tj
is delivered s′ receives all votes for ti and commits ti. The
result is that when s′ delivers tj , it will not reorder tj before
ti since ti is no longer a pending transaction at s′. Although
ti and tj modify different data items, servers must commit
them in the same order to avoid non-serializable executions.4

To guarantee deterministic reordering of transactions, we
introduce a reordering threshold of size k per pending

4For example, a transaction that reads x and y at s could observe that tj
commits before ti and another transaction that reads x and y at s′ could
observe that ti commits before tj .
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Figure 1. Scalable Deferred Update Replication deployments in a geographically distributed environment, where δ is the maximum
communication delay between servers in the same region and ∆ is the maximum communication delay across regions; typically ∆ � δ.
The database contains two partitions, P1 and P2, and clients are deployed in the same datacenter as server s1.

global transaction ti. Transaction ti’s reordering threshold
determines that (a) only local transactions among the next
k transactions delivered after ti can be reordered before ti;
and (b) s can complete ti only after s receives all votes for
ti and s has delivered k transactions after ti. In the previous
example, if we set k = 1, then server s′ would not complete
ti after receiving ti’s votes from other partitions, but would
wait for the delivery of tj and, similarly to server s, s′ would
reorder tj and ti.

Note that we try to reorder local transactions with respect
to global transactions only. We found experimentally that
reordering local transactions among themselves and global
transactions among themselves did not bring any significant
benefits. The reordering threshold must be carefully chosen:
a value that is too high with respect to the number of local
transactions in the workload might introduce unnecessary
delays for global transactions. Replicas can change the
reordering threshold by broadcasting a new value of k.

F. Algorithm in detail

Algorithm 1 shows the client side of the protocol. To
execute a read, the client sends a request to a server in
the partition that stores the accessed key (lines 10–12).
The snapshot of a transaction is represented by an array of
integers, one per partition (line 4). Upon receiving the first
response from the server, the client initializes its snapshot
time for the corresponding partition (line 13). Subsequent
reads to the same partition will include the snapshot count so
that the transaction sees a consistent database view. Writes

Algorithm 1 Geo-SDUR, client c’s code

1: begin(t):
2: t.rs← ∅ {initialize readset}
3: t.ws← ∅ {initialize writeset}
4: t.st[1...P ]← [⊥...⊥] {initialize vector of snapshot times}
5: read(t, k):
6: t.rs← t.rs ∪ {k} {add key to readset}
7: if (k, ?) ∈ t.ws then {if key previously written...}
8: return v s.t. (k, v) ∈ t.ws {return written value}
9: else {else, if key never written...}

10: p← partition(k) {get the key’s partition}
11: send(read, k, t.st[p]) to s ∈ Sp {send read request}
12: wait until receive (k, v, st) from s {wait response}
13: if t.st[p]=⊥ then t.st[p]←st {if first read, init snapshot}
14: return v {return value from server}
15: write(t, k, v):
16: t.ws← t.ws ∪ {(k, v)} {add key to writeset}
17: commit(t):
18: send(commit, t) to a preferred server s near c
19: wait until receive(outcome) from s
20: return outcome {outcome is either commit or abort}

are buffered at the client, and only sent to servers at commit
time. When the execution phase ends the transaction is sent
to a preferred server possibly near the client, which in turn
broadcasts the transaction for certification to all partitions
concerned by the transaction. The client then waits for the
transaction’s outcome (line 17–20). Note that a client can
choose to commit a transaction against a server it did not
contact previously while executing read operations.

Algorithm 2 shows the protocol for a server s in partition



p. When s receives a request to commit transaction t, s calls
procedure submit (lines 11–12), which broadcasts t to each
one of the partitions involved in t, possibly delaying the
broadcast at partition p, if transaction delaying is enabled
(lines 41–45). In Algorithm 2, delay(x, p) (line 44) returns
the estimated delay between partitions x and p.

Upon delivering transaction t (line 15), s updates the
delivery counter DC and set t’s reordering threshold, which
will be only used by global transactions (lines 16–17). Then
s certifies and possibly reorders t (line 18). The reorder
function (lines 48–64) first certifies t against transactions
that committed after t started (line 49). This check uses
function ctest (lines 46–47), which distinguishes between
local and global transactions: while a local transaction has its
readset compared against the writeset of committed transac-
tions, a global transactions has both its readset and writeset
compared against committed transactions (see Section III
for a description of why this is needed). If some conflict is
found, t must abort (line 50); otherwise the check continues.

A global transaction t is further checked against all
pending transactions (lines 51–52), to avoid non-serializable
executions that can happen when transactions are delivered
in different orders at different partitions. In the absence of
conflicts, t becomes a pending transaction (line 53).

A local transaction t will be possibly reordered among
pending transactions (lines 55–64). The idea is to find a
position for t in the pending list as close to the beginning
of the list as possible, since that would allow t to leap over
the maximum number of global transactions (line 55), that
satisfies the following constraints: (a) transactions placed in
the pending list that will consequently commit before t must
not update any items that t reads (line 56); (b) we do not
wish to reorder t with other local transactions, and thus, all
transactions placed after t in the pending list must be global
(line 57); (c) we do not allow a local transaction to leap over
a global transaction that has reached its reorder threshold, in
order to ensure a deterministic reordering check (line 58);
and finally (d) the reordering of t must not invalidate the
votes of any previously certified transactions (lines 59–60).
If no position satisfies the conditions above, t must abort
(line 61); otherwise, s inserts t in the appropriate position
in the list of pending transactions (lines 62–63) and t is
declared committed (line 64).

A local transaction is committed as soon as it is the head
of the pending list (lines 23–25). The complete function
(lines 34–40) first removes the terminating transaction t
from the pending list (line 35) and if t’s outcome is commit
(line 36), it applies t’s writes to the database (line 37), ex-
poses t’s changes to new transactions (line 38), and updates
the snapshot counter (line 39). Whatever the outcome of t,
server s notifies the client (line 40).

A global transaction t that reaches the head of the pending
list (lines 26–27) can only be completed at server s if (a) s
received votes from all partitions involved in t (line 28)

and (b) t has reached its reordering threshold (line 29).
If these conditions hold, s checks whether all partitions
voted to commit t (lines 30–32) and completes t accordingly
(line 33).

When a global transaction t reaches the head of the
pending list, conditions (a) and (b) above will eventually
hold provided that all votes for t are received (lines 13–
14) and transactions are constantly delivered, increasing the
value of the DC counter (line 16). If a server fails while
executing the submit procedure for transaction t, then it may
happen that some partition p delivers t while some other
partition p′ will never do so. As a result, servers in p will not
complete t since p′’s vote for t will be missing. To solve this
problem, if a server s in p suspects that t was not broadcast
to p′, because t’s sender failed, s atomically broadcasts a
message to p′ requesting t to be aborted. Atomic broadcast
ensures that all servers in p′ deliver first either s’s request
to abort t or transaction t; servers in p′ will act according
to the first message delivered (see [5] for further details).

G. Correctness

In this section, we argue that SDUR implements serial-
izability. We briefly recall how SDUR ensures serializable
executions (a detailed discussion can be found in [5])
and then extend our argument to include the delaying and
reordering of transactions.

1) The correctness of SDUR: In SDUR, transactions in
a partition p, both local and global, are serialized following
their delivery order. Certification checks whether a delivered
transaction t can be serialized after all previously delivered
and committed transactions t′. If t has received a database
snapshot that includes t′’s writes, then t′’s commit precedes
t’s start at p (i.e, t′ and t executed sequentially) and t can be
obviously serialized after t′. If t′ committed after t received
its database snapshot, then in order for t to be serialized
after t′, t must not have read any item written by t′.

The procedure above guarantees that local transactions
are serialized within a partition. The certification of global
transactions is more complex, to account for the lack of total
order across partitions.

Global transactions t and t′ can interleave in three dif-
ferent ways [5]: (a) t′ precedes t in all partitions, in which
case t′ can be trivially serialized before t; (b) t′ precedes t
in partition p and they are concurrent in p′, in which case
the certification test at p′ guarantees that t′ can be serialized
before t in p′; and (c) t′ and t are concurrent in p and p′,
in which case the certification test at p and p′ ensures that
they can be serialized in any order at every partition. Since
a transaction only commits in a partition after it receives the
votes from all other involved partitions, it is impossible for
t′ to precede t in p and for t to precede t′ in p′.

2) The correctness of delaying transactions: Delaying the
broadcast of a global transaction t in a partition may delay
the delivery of t at p but this does not change the correctness



Algorithm 2 Geo-SDUR, server s’s code in partition p
1: Initialization:
2: DB ← [. . .] {list of applied transactions}
3: PL← [. . .] {list of pending transactions}
4: SC ← 0 {snapshot counter}
5: DC ← 0 {delivered transactions counter}
6: VOTES ← ∅ {votes for global transactions}
7: when receive(read, k, st) from c
8: if st=⊥ then st←SC {if first read, init snapshot}
9: retrieve(k, v, st) from database {most recent version ≤ st}

10: send(k, v, st) to c {return result to client}
11: when receive(commit, t)
12: submit(t) {see line 41}
13: when receive(tid, v) from partition p
14: VOTES ← VOTES ∪ (tid, p, v) {one more vote for tid}
15: when adeliver(c, t)
16: DC ← DC + 1 {one more transaction delivered}
17: t.rt← DC + ReorderThreshold {set t’s Reorder Threshold}
18: v ← reorder(t) {see line 48}
19: if v = abort then {reordering resulted in abort?}
20: complete(t, v) {see line 34}
21: if t is global then
22: send(t.id, v) to all servers in partitions(t) {send votes}
23: when head(PL) is local
24: t← head(PL) {get head without removing entry}
25: complete(t, commit) {see line 34}
26: when head(PL) is global
27: (c, t, v)← head(PL) {get head without removing entry}
28: if ∀k s.t t.st[k] 6= ⊥ : (t.id, k, ?) ∈VOTES and {has all votes?}
29: t.rt = DC {and t reached threshold?}
30: outcome ← commit {a priori commit, but...}
31: if (t.id, ?, abort) ∈ VOTES then {one abort vote and...}
32: outcome ← abort {t will be aborted}
33: complete(t, outcome) {see line 34}
34: function complete(t, outcome) {used in lines 20, 25, 33}
35: PL← PL	 t {remove t from PL}
36: if outcome = commit then {if t commits...}
37: apply t.ws with version SC to database {apply changes}
38: DB [SC + 1]← t {create next snapshot and...}
39: SC ← SC + 1 {...expose snapshot to clients}
40: send(outcome) to client of t
41: procedure submit(t):
42: let P be partitions(t) \ {p} {broadcast t to each...}
43: for all x ∈ P : abcast(x, t) {...remote partition}
44: ∆← max({delay(x, p) | x ∈ P}) {determine maximum delay}
45: abcast(p, t) after ∆ time units {delay local broadcast}
46: function ctest(t, t′):
47: (t.rs ∩ t′.ws = ∅) ∧ (t is local ∨ (t.ws ∩ t′.rs = ∅))
48: function reorder(t):
49: if ∃t′ ∈ DB [t.st[p] . . .SC ] : ctest(t, t′) = false then
50: return abort {t aborts if conflicts with committed t′}
51: if t is global then
52: if ∃t′ ∈ PL : ctest(t, t′) = false then return abort
53: append t to PL {include t in pending list if no conflicts}
54: else
55: let i be the smallest integer, if any, such that
56: ∀k < i : PL[k].ws ∩ t.rs = ∅ and {t’s reads are not stale}
57: ∀k ≥ i : (PL[k] is global and {no leaping local transactions}
58: PL[k].rt < DC and {no leaping globals after threshold}
59: t.ws ∩ PL[k].rs = ∅ and {previous votes still valid}
60: t.rs ∩ PL[k].ws = ∅) {ditto!}
61: if no i satisfies the conditions above then return abort
62: for k from size(PL) downto i do PL[k + 1]← PL[k]
63: PL[i]← t {after making room (above), insert t}
64: return commit {t is a completed transaction!}

of the protocol. To see why, notice that since we assume an
asynchronous system, even if t is broadcast to all partitions
at the same time, it may be that due to network delays t is
delivered at any arbitrary time in the future.

3) The correctness of reordering transactions: Consider
a local transaction t, delivered after global transaction t′ at
partition p. We claim that (a) if server s in p reorders t and
t′, then every correct server s′ in p also reorders t and t′; and
(b) the reordering of t and t′ does not violate serializability.

For case (a) above, from Algorithm 2, the reordering of a
local transaction t (lines 48–64) is a deterministic procedure
that depends on DB [t.st[p]..SC ] (line 49), PL (lines 56–
60), and DC (line 58). We show next that DB , PL, SC
and DC are only modified based on delivered transactions,
which suffices to substantiate claim (a) since every server
in p delivers transactions in the same order, from the total
order property of atomic broadcast.

For an argument by induction, assume that up to the first i
delivered transactions, DB , PL, SC and DC are the same at
every correct server in p (inductive hypothesis), and let t be
the (i+ 1)-th delivered transaction (line 15). PL is possibly
modified in the reorder procedure (line 63) and from the
discussion above depends on DB , PL, SC and DC , which
together with the induction hypothesis we conclude that it
happens deterministically. DB , PL and SC are also possibly
modified in the complete procedure (lines 34–40), called
(i) after t is delivered (line 20), (ii) when the head of PL is
a local transaction (line 25), and (iii) when the head of PL
is a global transaction u (line 33).

In cases (i) and (ii), since all modifications depend on t,
PL and SC , from a similar reasoning as above we conclude
that the changes are deterministic. In case (iii), the calling
of the complete procedure depends on receiving all votes
for t and t having reached its reorder threshold (lines 28
and 29). From the induction hypothesis, all servers agree
on the value of DC . Different servers in p may receive
u’s votes at different times but we will show that any two
servers s and s′ will nevertheless reorder t in the same way.
Assume that when s assesses u it already received all u’s
votes and proceeds to complete u before it tries to reorder
t. Another server s′ assesses u when it has not received
all votes and does not call the complete procedure. Thus,
s will not reorder t with respect to u. For a contradiction,
assume that s′ reorders t and u. From the reorder condition,
it follows that u has not reached its reorder threshold at
s′, which leads to a contradiction since u has reached its
threshold at s, from the algorithm (line 16) DC depends
only on delivered messages and from atomic broadcast all
servers deliver the same transactions in the same order.

Finally, to see that reordering transactions does not violate
serializability, note that the condition for local transaction
t to be placed before global transaction t′ is that both
transactions would be committed if t had been delivered
before t′. Since t′ passes certification, its readset and writeset



do not intersect the readsets and writesets of concurrent
transactions delivered before. Thus, in order for t to be re-
ordered before t′, t’s readset and writeset must not intersect
t′’s readset and writeset (lines 59–60). Moreover, t’s readset
must not intersect the writeset of any concurrent transaction
delivered before t (lines 49 and 56), which is essentially the
certification test for local transactions in SDUR.

V. IMPLEMENTATION AND OPTIMIZATIONS

We use Paxos as our atomic broadcast primitive. There
is one instance of Paxos per partition. Our Paxos imple-
mentation uses Berkeley DB to log delivered values to disk.
Therefore, the committed state of a server can be recovered
from the log. Our prototype differs from Algorithms 1 and
2 in the following aspects:
• A client connects to a single server and submits all

of its read and commit requests to that server. When
a server receives a read request for key k that is not
local, the server routes it to a server in the partition that
stores k. Partitioning is transparent to the client.

• Servers use bloom filters to check for intersections
between transactions, and to store past transactions. The
implementation only keeps track of the last K bloom
filters, where K is a configurable parameter. Bloom
filters have negligible memory requirements and allow
us to broadcast only the hash values of the read set,
thus reducing network bandwidth. Using bloom filters
results in a small amount of transactions aborted due
to false positives.

VI. PERFORMANCE EVALUATION

In the following, we assess the performance of transaction
delaying and reordering in two geographically distributed
environments. We compare throughput and latency of the
system with and without the techniques introduced earlier.

A. Setup and benchmarks

We ran the experiments using Amazon’s EC2 infrastruc-
ture. We used medium instances equipped with a single
core (two EC2 compute units) and 3.75 GB of RAM. We
deployed servers in three different regions: Ireland (EU), N.
Virginia (US-EAST), and Oregon (US-WEST). We observed
the following inter-region latencies: (a) ≈100 ms between
US-EAST and US-WEST, (b) ≈ 90 ms between US-EAST
and EU, and (c) ≈170 ms between US-WEST and EU.

In the experiments we used two partitions, each composed
of three servers. For WAN 1 we deployed the partitions as
follows: the first partition has a majority of nodes in EU,
while the second partition has a majority of nodes in US-
EAST. For WAN 2 we deployed the partitions such that
each one has one server in EU, one in US-EAST, and one
in US-WEST; to form a majority, partitions are forced to
communicate across regions. In any case, servers deployed
in the same region run in different availability zones.

We present results for two different workloads: a mi-
crobenchmark and a Twitter-like social network applica-
tion. In the microbenchmark clients perform transactions
that update two different objects (two read and two write
operations). In the experiments we vary the percentage of
global transactions, in which case a transactions updates one
local object and one remote object. We use one million data
items per partition, where each data item is 4 bytes long.

The Twitter-like benchmark implements the operations
of a social network application in which users can: (1)
follow another user; (2) post a new message; and (3) retrieve
its timeline containing the messages of users they follow.
We implemented this benchmark as follows. Users have a
unique id. For each user u we keep track of: (1) a list of
“consumers” containing user ids that follow u; and (2) a list
of “producers” containing user ids that u follows; and (3)
u’s list of posts. In the experiments we partitioned the data
by users (i.e. a user, its posts, its producers and consumers
lists are stored in the same partition).

Post transactions append a new message to the list of
posts. Given the above partitioning, post transactions are
all local transactions. Follow transactions update two lists,
a consumer list and a producer list of two different users.
Follow transactions can be either local or global, depending
on the partitions in which the two users are stored. Timeline
transactions build a timeline of user u by merging together
the posts of the users u follows. Timeline is a global read-
only transaction.

In the experiments, we populate two partitions, each
storing 100 thousand users. We report results for a mix
of 85% timeline, 7.5% post and 7.5% follow transactions.
Follow transactions are global with 50% probability.

We report throughput and latency corresponding to 75%
of the maximum performance, for both benchmarks.

B. Baseline

We implemented and deployed SDUR in a geographically
distributed environment following the two alternatives dis-
cussed in Section IV-B, “WAN 1” and “WAN 2”. Figure 2
shows the throughput and latency for both WAN 1 and
WAN 2 deployments with workloads mixes containing 0%,
1%, 10% and 50% of global transactions. For 0% and 10%
of globals, we also show the cumulative distribution function
(CDF) of latency. Latency values correspond to their 99-th
percentile and average.

Global transactions have a clear impact on the sys-
tem’s throughput; as expected the phenomenon is more
pronounced in WAN 1 than in WAN 2 (see Section IV-C).
In the absence of global transactions, local transactions
can execute within 32.6 ms in WAN 1. The latency of
locals increases to 321 ms with 1% of global transactions,
a 10x increase. We observed that in workloads with 10%
and 50% of global transactions, latency of locals reduced
to 176.8 ms (5.4x increase to the 0% configuration) and
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143.9 ms (4.41x), respectively. We attribute this behavior
to the fact that with 1% of global transactions, messages
are sent over different regions relatively infrequently. This
effect tends to disappear as we increase the number of
globals and hence the traffic between regions. In WAN 2,
local transactions alone experienced a latency of 170.4 ms,
while in workload mixes of 1%, 10% and 50% of global
transactions latency increased to 198.4 ms (1.16x), 229.3 ms
(1.34x) and 174.3 ms (1.02x) , respectively. The CDFs show
that in workloads with global transactions, the distribution
of latency of local transactions follows a similar shape as
the latency distribution of global transactions, showing the
effect of global on local transactions (see Section IV-C).

C. Delaying transactions

We now assess the transaction delaying technique in
the WAN 1 deployment. In these experiments, we tested
various delay values while controlling the load to keep
the throughput of local transactions among the various
configurations approximately constant. Figure 3 (bottom left
graph) shows that while the technique has a positive effect in
workloads with 1% of global transactions—delaying globals
by 20 ms resulted in a reduction in the latency of local
transactions from 321 ms to 232.2 ms—it did not present any
significant improvements in workloads with 10% and 50%
of global transactions. In settings with 1% of globals, global
transactions also benefit from the delaying technique as their
latency is also reduced. This happens because not only local
transactions are less prone to waiting for a pending global
transactions, but also global transactions delivered after the
pending transaction will wait less.

D. Reordering transactions

Figures 4 and 5 show the effects of reordering in the
latency of local transactions under various workloads and

deployments WAN 1 and WAN 2. We assess different
reordering thresholds in configurations subject to a similar
throughput. In WAN 1 (Figure 4), reordering has a positive
impact on both local and global transactions for all three
workload mixes. For example, for 1% global transactions,
a reordering threshold of 320 reduces the 99-th percentile
latency of local transactions from 321 ms (in baseline) to
168 ms, a 48% improvement. For mixes with 10% and
50% of global transactions the improvement is 58% and
69% respectively. The 99-th percentile of the corresponding
global transactions experience a decrease in latency of 28%,
15% and 12%, respectively. Local transactions in WAN 2
(Figure 5) also benefit from reordering, although there is a
tradeoff between the latency of locals and globals, something
we did not experience in WAN 1. For example, in the
workload with 10% of global transactions, a reordering
threshold of 80 reduced the 99-th percentile latency of local
transactions from 229.3 ms (in baseline) to 161.1 ms, with
a small increase in the latency of global transactions from
251.1 ms to 253.4 ms. Similar trends are seen for workloads
with 1% and 50% of global transactions.

E. Social network application

Figure 6 shows the effects of reordering in our social
network application. In WAN 1, both the 99-th percentile and
the average latency of all operations improve with respect
to the baseline (SDUR). The timeline, post, local follow,
and global follow operations present latency improvements
(99-th percentile) of 67%, 70%, 71% and 12%, respectively.
In WAN 2, timeline, post, and local follow experienced a
reduction in latency (99-th percentile) of 55%, 20% and
21%, respectively, while global follow remained constant.
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Figure 3. Throughput and latency of local and global transactions with delayed transactions.
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Figure 4. Throughput and latency of local and global transactions with reordering in WAN 1.

VII. RELATED WORK

Several protocols for deferred update replication where
servers keep a full copy of the database exist (e.g., [1],
[2], [3], [4], [12]). In [5] it is suggested that the scalability
of these protocols is inherently limited by the number of
transactions that can be ordered, or by the number of
transactions that a single server can certify and apply to
the local database.

Our reordering algorithm is based on the algorithm de-
scribed in [1], originally for reducing the abort rate. In this
paper, we extend the idea to avoid the delay imposed by
global communication on local transactions.

Many storage and transactional systems have been pro-
posed recently. Some of these systems (e.g., Cassandra,5

5http://cassandra.apache.org

Dymano [13], Voldemort6) guarantee eventual consistency,
where operations are never aborted but isolation is not
guaranteed. Eventual consistency allows replicas to diverge
in the case of network partitions, with the advantage that the
system is always available. However, clients are exposed to
conflicts and reconciliation must be handled at the applica-
tion level.

Spinnaker [14] is similar to the approach presented here
in that it also use several instances of Paxos to achieve scal-
ability. However, Spinnaker does not support transactions
across multiple Paxos instances.

Differently from previous works, Sinfonia [15] offers
stronger guarantees by means of minitransactions on un-
structured data. Similarly to SDUR, minitransactions are
certified upon commit. Differently from SDUR, both update

6http://project-voldemort.com
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Figure 5. Throughput and latency of local and global transactions with reordering in WAN 2.
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Figure 6. Social network application in WAN 1 and WAN 2.

and read-only transactions must be certified in Sinfonia, and
therefore can abort. Read-only transactions do not abort in
SDUR.

COPS [16] is storage system that ensures a strong version
of causal consistency, which in addition to ordering causally
related write operations also orders writes on the same data
items. COPS provides read-only transactions, but does not
provide multi-key update transactions.

Walter [17] offers an isolation property called Parallel
Snapshot Isolation (PSI) for databases replicated across
multiple data centers. PSI guarantees snapshot isolation and
total order of updates within a site, but only causal ordering
across data centers.

Vivace [18] is a storage system optimized for latency in
wide-area networks. Vivace’s replication protocol prioritizes
small critical data exchanged between sites to reduce delays
due to congestion. Vivace does not provide transactions over

multiple keys.
Google’s Bigtable [19] and Yahoo’s Pnuts [20] are dis-

tributed databases that offer a simple relational model (e.g.,
no joins). Bigtable supports very large tables and copes
with workloads that range from throughput-oriented batch
processing to latency-sensitive applications. Pnuts provides
a richer relational model than Bigtable: it supports high-level
constructs such as range queries with predicates, secondary
indexes, materialized views, and the ability to create multiple
tables.

None of the above systems provides strongly consis-
tent execution for multi-partition transactions over WANs.
Among the ones that offer guarantees closer to SDUR, we
consider Spanner [21], MDCC and P-Store [22]

P-Store [22] is perhaps the closest to our work in that it
implements deferred update replication optimized for wide-
area networks. Unlike SDUR, P-Store uses genuine atomic



multicast to terminate transactions, which is more expensive
than atomic broadcast. P-Store also avoids the convoy effect
in that it can terminates transactions in parallel. SDUR can
also terminate transactions in parallel, and in addition to that
we use reordering to further reduce delays.

Spanner [21] is a distributed database for WANs. Like
SDUR the database is partitioned and replicated over several
Paxos instances. Spanner uses a combination of two-phase
commit and a so called TrueTime API to achieve consistent
multi-partitions transactions. TrueTime uses hardware clocks
to derive bounds on clock uncertainty, and is used for
assigning globally valid timestamps and for consistent reads
across partitions.

MDDC [10] is a replicated transactional data store that
also uses several instances of Paxos. MDCC optimizes
for commutative transactions, and uses Generalized Paxos
which allows to relax the order of transaction delivery of
commuting transactions.

VIII. CONCLUSION

This paper discusses scalable deferred update replication
in geographically distributed settings. SDUR scales deferred
update replication, a well-established approach used in sev-
eral database replicated systems, by means of data parti-
tioning. SDUR distinguishes between fast local transactions
and slower global transactions. Although local transactions
scale linearly with the number of partitions (under certain
workloads), when deployed in a geographically distributed
environment they may be significantly delayed by the much
slower global transactions—in some settings global trans-
actions can slow down local transactions by a factor of 10.
We presented two techniques that account for this limitation:
Transaction delaying is simple, however, produces limited
improvements; reordering, a more sophisticated approach,
provides considerable reduction in the latency of local trans-
actions, mainly in deployments where global transactions
harm local transactions the most. Our claims are substan-
tiated with a series of microbenchmarks and a Twitter-like
social network application.
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