

1

Geo-social Influence Spanning Maximization
Jianxin Li, Timos Sellis Fellow, IEEE , and J. Shane Culpepper
Zhenying He, Chengfei Liu Member, IEEE , and Junhu Wang

Abstract—Influence maximization is a recent well-studied problem developed for identifying a small set of users that are most likely
to “influence” the maximum number of users in a social network. The problem has attracted a lot of attention as it provides a way to
improve marketing, branding, and product adoption. However, existing studies rarely consider the physical locations of the social users,
but location is an important factor in targeted marketing. In this paper, we propose and investigate the problem of influence maximization
in location-aware social networks, or, more generally, Geo-social Influence Spanning Maximization. Given a query q composed of a
region R, a regional acceptance rate ρ, and an integer k as seed selection budget, our aim is to find the maximum geographic spanning
regions (MGSR). We refer to this as the MGSR problem. Our approach differs from previous work as we focus more on identifying
the maximum spanning geographical regions in the region R, rather than just the number of activated users in the given network like
the traditional influence maximization problem [14], and in the query region like the location aware influence maximization problem [17].
This research can advance the effect of online campaigns in viral marketing by considering the locations of social users. To address the
MGSR problem, we first show it is an NP-Hard problem. Next, we present a greedy algorithm with a 1 − 1/e approximation ratio to solve
the problem and further improve its efficiency by developing an upper bound based approach. Then, we propose the OIR*-tree index,
which is a hybrid index combining ordered influential node lists with an R*-tree. We show that our index based approach is significantly
more efficient than the greedy algorithm and the upper bound based algorithm, especially when k is large. Finally, we evaluate the
performance for all of the proposed approaches using three real datasets.

✦

1 INTRODUCTION

Influence maximization has attracted considerable attention in
recent years as a means of enhancing marketing campaigns
through social networks [7, 8, 11, 12, 14, 15]. In real appli-
cations, companies often run surveys for new products, and
perform market tests via social networks before they produce
the new products. In general, these companies are only able
to choose a small number of social users to trial their new
products due to financial restrictions. So, the question is:
Which users should be targeted by the companies if the goal is
to seed the social network such that as many users as possible
will hear about the products. Or simply, what set of users
can exert the most influence over the entire network? This
well studied problem is commonly referred to as Influence
Maximization.

• Jianxin Li is with the School of Computer Science and Software
Engineering, the University of Western Australia, Australia.
jianxin.li@uwa.edu.au

• Timos Sellis and Chengfei Liu are with the Faculty of Science,

Engineering and Technology, Swinburne University of Technology,
Australia. {tsellis, cliu}@swin.edu.au

• J. Shane Culpepper is with the School of Computer Science and

Information Technology, RMIT, Australia. shane.culpepper@rmit.edu.au

• Zhenying He is with School of Computer Science, Fudan University,
China. zhenying@fudan.edu.cn

• Junhu Wang is with the School of Information and Communication

Technology, Griffith University, Australia. j.wang@griffith.edu.au

However, there is a significant and open problem in current
marketing efforts: How do you select a certain number of users
whose influence can maximally cover an agent’s targeted geo-
graphical region? For example, consider a political campaign
engagement via social networking. Social media has been a
powerful engagement tool in recent political campaigns such
as the US Election [22], UK Election [1], and the Australian
Election [5]. Under normal circumstances, a politician wants
to target conversations in a particular region. To do this, the
approach is to select or persuade a certain number of social
users who have the maximum influence coverage within the
targeted region. Inside the targeted region, it may have many
small sub-regions that require more attention than others.
The candidate wants to influence more sub-regions where a
minimum percentage of votes is needed in each sub-region
to win the election. Therefore, the goal is to influence the
maximum number of sub-regions where in each sub-region
there is a certain percentage of social users who can be
influenced. There are other social network driven campaigns in
real world scenarios such as physical advertisement placement,
new service facility placement, and call-for-sport-events, that
might benefit from this line of research.

Consider another example where Adidas-Australia would
like to launch a citywide marathon within the greater Mel-
bourne region. To attract more participants and advertise their
products, Adidas-Australia would like to carefully select and
plan a starting venue, a stop venue, as well as running routes
within the targeted greater Melbourne region. To address
this issue, our proposed technique can recommend a certain
number (k) of influential users and their influenced sub-regions
to Adidas-Australia. The selected users have the maximum in-
fluence spanning inside the targeted greater Melbourne region.

mailto:jianxin.li@uwa.edu.au
mailto:shane.culpepper@rmit.edu.au
mailto:zhenying@fudan.edu.cn
mailto:zhenying@fudan.edu.cn
mailto:j.wang@griffith.edu.au

2

For each sub-region, the selected influential users are able to
successfully influence a certain percentage of users. By doing
this, our proposed technique can easily help Adidas-Australia
determine which set of k influential users satisfies their needs,
and then invite the k users as boosters for the sporting event,
or send sporting advertisements to the k users, which can help
attract a certain number of users in each sub-region along the
planned running routes.

In these applications, the agents or companies not only need
to target a certain number of social users, but also require the
geographic influence spanning coverage of the selected users
within the targeted regions to meet a pre-determined mini-
mum coverage criteria. To address this problem, we propose
and investigate the problem of geo-social influence spanning
maximization in location-aware social networks. Given a query
with a query region R, a minimum covering percentage ρ
and a number k, we find the Maximal Geographical Spanning
Regions (MGSR) R′ ⊆ R satisfying at least ρ percent of users
in R′ that can be influenced by k users. Increasing ρ results in
smaller, more condensed spanning coverage, while decreasing
ρ results in larger, more sparse spanning coverage.

Although several other variations on the theme of influence
maximization have been explored recently, previous work
focused on the number of users to be influenced by the k
selected seed users. Aslay et al. [2] and Chen et al. [6]
investigated topic-aware influence maximization based on the
topic distributions within social networks, which finds the k-
best seed users with the maximum influence spread on the
social networks via the different topic-based influence propa-
gation values. Li et al. [17] studied the problem of influence
maximization in a constrained query region on location-aware
social networks. Their goal was to select k-best users in a
social network which can influence the maximum number of
social users in the given query region. All prior work does not
consider the geographic spanning issue as presented here.

The significance of the MGSR problem is based on two key
observations: (1) The users in the social network are rarely
evenly distributed across a region. A small region may contain
a large number of social users. It is also likely for a large
region to contain a small number of social users. Assume
every region is able to contain the same number of users. then
resolving the MGSR problem would be equivalent to [17]. But
the assumption is too strong to be practical in real application;
and (2) a social user may have a higher chance to influence
neighbors in the physical world that are geographically close.
All existing work ignores this fact. To fill this research gap,
we investigate the MGSR problem in this paper, and consider
both the influence spread of seed nodes (expected number of
activated nodes), and the geographic spanning area covered by
the influence of seed nodes. The proposed MGSR problem and
techniques described in this work can easily enable users to
do geo-marketing services and brand advertising.

Similar to all other work on influence maximization, the
MGSR problem is also an NP-hard problem, which will be dis-
cussed in the following section. The addition of the minimum
coverage ρ increases the overall complexity of the problem
since it is a bi-criteria optimization problem. To address
the challenges of MGSR, we first show that the geographic

influence spanning of a selected user can be modeled using
a monotonic submodular function MGSR(). Then, we present
a greedy approach to incrementally identify the top-k initial
users with a 1 − 1/e approximation ratio guarantee, and
then develop an upper bound based approach to improve the
efficiency. Although we can use a spatial index such as an R*-
tree [4] or a QuadTree [13, 17] to prune the users outside of the
query region, the greedy approach and the upper bound based
approach are still expensive because they have to repeatedly
compute and update the geographic influence span for each
candidate user or the upper bound value. In order to further
improve the efficiency, we develop an incremental algorithm
using a new hybrid indexing structure which combines an R*-
tree, and ordered influential user lists. We refer to this new
index as an OIR*-tree. The incremental algorithm consists of
two main steps: First, the possible sub-regions within the given
query region are checked to see if they are (ρ, k)-satisfactory;
rather than probing users one by one as the greedy approach;
Next, the final k nodes that can maximize the geographic
influence span within the query region are identified. By doing
this, we reduce the repeat of probing each user that has
influence on the query region independently, other than probing
the union of all possible k users.

The main contributions of this work are:
• This is the first work to explore the problem of identify-

ing the MGSR in a social network, which is significant
and complementary research to the field of location-
based social networks.

• We develop a new hybrid index - the OIR*-tree which
combines the best features of ordered influential user
lists and an R*-tree. The proposed index is suitable
for use in a large number of spatial social influence
maximization problems.

• One baseline approach and two advanced algorithms are
proposed to efficiently compute MGSR.

• We evaluate the efficiency and effectiveness of the
proposed techniques using three real datasets and show
the benefits of our methods in comparison to [17].

The remainder of this paper is organized as follows. Sec-
tion 2 presents the formalization of the MGSR problem. In
Section 3, we present a greedy approach based on the submod-
ular property of MGSR. Then, an upper bound based approach
is developed to improve the efficiency in Section 4. To further
reduce the computational cost, we then develop a novel index
and propose an efficient indexing approach in Section 5. The
results from the experimental study are discussed in Section 6.
Finally, we review related work and our focus in Section 7.
This work is concluded in Section 8.

2 THE MGSR PROBLEM
A location-aware social network is modeled as a directed graph
G = (V, E, P), where vertexes in V are users, edges in E
are follower/followee relationships, and for any edge u → v,
P (u, v) provides the propagation probability of u to v. Each
vertex v ∈ V has a geographical location (x, y) with longitude
x and latitude y. Initially, each vertex is inactive. If a vertex
u is selected as a seed, u becomes active and will activate

8
0.4 0.25
9 0.25

1
0.5

0.5

6

3
0.3

0.4
0.4

0.5

4

0.3 0.4

0.3 0.3
0.3

5

0.4 0.4

11
0.4

12
10

3 0.4

8
0.4 0.25
9 0.25

10

|{v|v∈GGi∩A(u)}|

3

its out-neighbors. If u′s out-neighbor v becomes active, v
will in turn activate v′s out-neighbors. There are two widely-
adopted models - the independent cascade (IC) model and
the linear threshold (LT) model in [7, 14]. In this work, we
adapted the IC model to compute the influence propagation
probability between users. For a given seed node u, it has

(V, E, P), a MGSR query q with the parameters (R, k, ρ),
where R is a query region, k is the maximum number of seed
nodes to be selected, and ρ is the minimal covering ratio, find
a k-vertex set S ⊆ V and a set of influence spanning regions
GIS(S) ⊆ R such that MGSR(S) =

a single chance to activate each inactive neighbor v with an
independent probability indicated by the edge weight P (u, v).
The newly active node v will further activate its inactive
neighbors iteratively. But a node becomes active if and only if

(
arg max α ×

S⊆V,|S|≤k

subject to

{GG ∈ GIS(S)}
{GG ∈ R} + (1 − α) ×

|{v ∈ GIS(S)}|
1

 .
|VR|

(1)

it gets the propagation probability above a certain value. This
is a practical adaption about the IC model.

Definition 1: (Geographic Grids GG) Consider a social net-

work G where each user has a geo-location. A two-dimensional
geo-map of the social users in G is partitioned into grids
{GG1, ...}. The grid size can be specified by the system as
the total number of generated grids, or as the square distance
of each grid (in kilometers for example).

Definition 2: (Reachable Grids of a Node) Let node u be a

seed of the activated node set A(u) in a social network G. A
grid GGi is reachable by the node u if it contains at least one
activated node in A(u).

However, reachable GGs may over-estimate the influence of
a seed node in the geographic area based on Definition 2. This
is because a geographic grid GG may contain many inactive
nodes. To allow users to explicitly set constraints, we introduce
an user-specified parameter ρ to set the minimal covering ratio
of a grid that can be selected for influence.

Definition 3: (Countable GG of a Node) Given a node u

as a seed and the activated node set A(u), a grid GGi is
countable if and only if it is reachable by u, and it satisfies

|{v|v∈GGi}| ≥ ρ where |{v|v ∈ GGi}| is the total
number of nodes appearing in the coverage of grid GGi, using
the minimal covering ratio ρ.

Definition 4: (The Geographic Influence Span GIS of a

Node) Given a node u in a social network, the geographic

|{v|v ∈ GGi ∩ A(S)}| ≥ ρ
|{v|v ∈ GGi}|

for each grid GGi ∈ GIS(S).
Here, α balances the tradeoff between the geographic span

and the number of nodes covered. {GG ∈ R} represents the set
of geographic grids inside the query region R. {GG ∈ GIS(S)}
represents the set of geographic grids inside R and they are
countable for the seed set S. |{v ∈ GIS(S)}| represents
the number of nodes appearing in the geographic grids of
GIS(S) and |VR| is the total number of nodes inside the query
region R. The parameters {GG ∈ R} and |VR| are used for
normalization.

From Definition 5, we can see that if S is the selected as
the set of k seed nodes, then no other k-vertex set S′ ⊆ V
satisfies MGSR(S′) ≥ MGSR(S). When the parameter α = 0,
MGSR becomes the location-aware influence maximization
problem [17], with the addition of a region constraint ρ.
If the parameter α = 1, then MGSR only considers the
geographic influence span constrained by ρ. Therefore, in this
work we present a definition of geographic influence spanning
maximization in the general case. By setting a suitable α
value (e.g., α = 0.5), users can identify a k-vertex set, and
find the corresponding best sub-regions in a targeted query
region. In the above discussion, the fixed-size grids are used
to describe the geographic span or coverage in order to make
the definitions easy to understand. Alternatively, we calculate
the exact geographic span or coverage in the examples and
experiments by using the coordinates of social users.

y

influence span GIS(u) is the set of countable grids {GG} of
the node u based on Definition 3.

Given a query region R, there may be many grids inside R.
For a seed set S, if all of the grids inside R are countable,

y

5

4 0.3

3

0.5
1

0.5

0.3

0.4

6

0.4
5

5

0.5 4

4
3

 2

then R can be taken as the geographic influence span of S.
But this is not true in most cases since the the distribution of

2
0.3 0.3 1

0.3

0.4 0.4
12 1

11

social users is not geographically uniform. In this work, when
a region is countable for a seed set S, then all grids inside

0.4
0

1 2 3 4 5 6 7 x
0

1 2 3 4 5 6 7 x

the region must be countable for S. In addition, the number of
nodes appearing in the countable regions is another important
factor when evaluating the significance of the geographic
influence span. Therefore, in this work we investigate the
following problem: How can we select the k vertices that
maximize both the geographic influence span and the number
of nodes to be covered in the span?

Definition 5: (Maximum Geographic Spanning Region

Query MGSR) Given a location-based social network G =

Fig. 1. A Partial Social Network with Edge Influence.

Example 1: Consider the social graph in Figure 1 and a
query q where the drawn box enclosed with the dashed lines
represents a query region R = {(0, 0.5); (3, 5)}, k = 1,
and ρ = 50%. Assume that α = 0.5 and if a node u can
successfully influence another node v in the social graph, then
its influential score to v should be a certain value (say 0.3)
based on the distribution of edge propagation probabilities

4

4

[7, 14]. Taking the node v5 as an illustration, it can influence
the nodes v3 (with 0.4), v10 (with 0.3), v9 (with 0.25), and v8
(with 0.0). So, only two nodes (v3 and v10) have an influential
score greater than or equal to 0.3, which are colored green.
Their corresponding sub-region is marked by the green box.
Given that two nodes are activated by v5, the activation ratio in
the green sub-region is 2 = 50%, which satisfies the minimal
covering ratio ρ = 50%. Therefore, the green sub-region is
a satisfied influence spanning region {(0, 0.5); (2.5, 4)}. As
such, MGSR(v5) = 0.5 × (2.5−0)×(4−0.5) + (1 − 0.5) × 4 =

we first select v5 and then choose v1 in S, the second seed v1
can only contribute to a small area covering itself, because the
area bounding the nodes v3, v8, v9 and v10 has been covered
by seed node v5. If v1 is selected as the first seed, then it
will identify a larger area covering v1 and v8. When v5 is
selected as the second seed into S, the remaining spanning
region will be discovered. Both strategies generate the same
spanning region as the final result.

Property 2: MGSR is an NP-hard problem.
The MGSR problem can easily be proven to be NP-hard by

(3−0)×(5−0.5) 5

0.724. Similarly, if we select node v8 (not v5) as a seed node,
then only the node v9 can be influenced. Since v8 is located
inside of the query region, the yellow sub-region consisting of
the two nodes is a countable region {(0.5, 1.5); (2, 2.5)}. Thus,

reduction from the influence maximization problem [14], and
computing the exact location-aware influence span can be
shown to be NP-hard by reduction from the influence spread
problem [7]. The only requirement is to set ρ = 0 and

MGSR(v8) = 0.5 × (2−0.5)×(2.5−1.5) 2 VR = V , where VR is the node set covered by the query
(3−0)×(5−0.5) + (1 − 0.5) × 5 = 0.255.

If ρ is increased up to 70%, the green sub-region cannot be
treated as the influenced region because the minimal covering
ratio does not hold for any single node. So v5 cannot be the
seed candidate, but v8 still does. If ρ is increased up to 70%
and k is set as 2, then the 2-best seeds would be {v5, v1}
and MGSR({v5, v1}) = 1. In this example, we assume that the
green (or yellow) sub-region is the geographic grid. Otherwise,
the geographic grids inside the green (or yellow) sub-region
must be recursively accessed.

Theorem 1: (Duplicate Avoidance) Given any two nodes u1

and u2, if both nodes appear in the top-k seed set S, then there
are no duplicate when computing the score of MGSR(S).

In simpler terms if node u1 (or u2) can individually influ-
ence a geographic region successfully, then the successive node
u2 (or u1) can not influence the region again when calculating
the overall score MGSR(S) for the seed set S. Theorem 1
satisfies the targeted expectation in our problem - MGSR
selecting a k-vertex set that can influence a geographical
spanning area maximally. It also makes the comparison of
MGSR possible across different candidate seed sets due to the
following property.

Property 1: (Order Insensitive MGSR Computation) The

MGSR computation of the optimal seed set is insensitive to
the selection order of the seed nodes.

Proof: Based on Equation 1, we can easily see that
MGSR(S) is order-insensitive if GIS(S) is order-insensitive
because the other parameters are invariant in the equation.
Consider two nodes u1, u2 in S. According to Definition 1-4,
we have GIS(S) = {GG}u1 + {GG}u2 - {GG}u1 ∩{GG}u2

+ {GG}u1 u2 where {GG}u1 represents the set of countable
geographic grids for u1, and {GG}u1 u2 represents the set of
geographic grids that are countable for u1 and u2 together,
but not for individual node u1 or u2. Therefore, GIS(S) can
be rewritten as GIS(u1) + GIS(u2) - GIS(u1)∩GIS(u2) +
{GG}u1 u2 . From this transformation, we can see that GIS(S)
is order-insensitive if S contains two nodes. When S has
more than two nodes, the above procedure is also applied by
considering u1 and S \ {u1}, concluding the proof.

Reconsider the nodes v5 and v1 in Figure 1 as an example if
we know the optimal seed set S consists of the two nodes. If

region.
Property 3: MGSR(.) is a monotone submodular function.

Proof: If the following inequality holds (1) MGSR(.) is a
monotonic function. MGSR(S) ≤ MGSR(T) for any node sets
S ⊆ T ; (2) MGSR(S ∪ {u}) - MGSR(S) ≥ MGSR(T ∪ {u})
- MGSR(T) for all nodes u and any node sets S ⊆ T , then
the function is a monotone submodular function.

Since S ⊆ T , S must have A(S) ⊆ A(T) where A(S)
and A(T) represent the node sets activated by the seed node
sets S and T respectively. Therefore, we have MBR(A(S))
≤ MBR(A(T)). According to Definition 4, the geographic
influence spanning value is calculated from the MBR of the
activated node set. So we can derive MGSR(S) ≤ MGSR(T),
which means that MGSR(.) is a monotonic function.

Since MGSR(.) is a monotonic function, the geographic in-
fluence spanning area of T must cover the geographic influence
spanning area of S. When a new seed node u is added into
the corresponding node sets S or T , the nodes activated by u
appear in the influence spanning area of S must also appear in
the influence spanning area of T , but not vice versa. So, u may
activate more nodes outside of the influence span of S than that
of T . Because of the node uniqueness constraint in Property 1,
MGSR(S ∪ {u}) − MGSR(S) ≥ MGSR(T ∪ {u}) − MGSR(T)
always holds for all nodes u, and any node sets S ⊆ T .

3 GREEDY APPROACH
The submodular property of MGSR allows the seed node to
be incrementally selected with the maximum marginal gain
in influence for a query region. Then, the valid geographic
influence span is identified based on the activated nodes in the
query region. Finally, the search is incrementally expanded
until k verified seed nodes are found, or until the geographic
influence span of the current seed node set cannot be increased
any further. The approximate MGSR approach can achieve
a (1 − 1/e) approximation ratio by greedily identifying the
top-k seeds. Our approach uses incremental expansion with a
submodular set function subject to a knapsack constraint as
originally described in Theorem 1 in [20].

To do this, the incoming and outgoing influence for any node
to a given node v is pre-computed. This produces two indexes
- an incoming list Lin(v) and an outgoing list Lout (v) for each
node v in the graph. To reduce the index size without loss of

3×4.5

5

quality, nodes with an influence less than a certain small value
are pruned from the index.

the query region R are retrieved, and the influential nodes are
retrieved from the index Lin(v) for each node v ∈ VR. By

 aggregating the accessed nodes, the complete seed candidate
Algorithm 1 MGSR Greedy Approach
Input: A graph G = (V, E), a user query q = (R, k, ρ).
Output: S - the k-vertex set.

1: Find the nodes VR appearing in R based on R*-tree index.
2: Initialize the candidate hash table C ← φ.
3: for each node v ∈ VR do
4: Load the incoming list Lin(v).
5: for each node u ∈ Lin(v) do
6: Store C(u) ← C(u) ∪ {v}.
7: for i ← 1 to k do
8: ∆ ← 0
9: for each node u ∈ C \ S do

10: if ∆ < MGSR(S ∪ {u}) − MGSR(S) then
11: selection ← u
12: ∆ ← MGSR(S ∪ {u}) − MGSR(S)
13: S ← S ∪ selection
14: return S

In Algorithm 1, we first load all of the candidate nodes

using the pre-computed incoming and outgoing indexes. Then,
the algorithm runs for k iterations to select k nodes with the
maximal geographic spanning region value. In each iteration,
the candidate node set is probed to find the best node that
has the maximum marginal gain, i.e., a node u maximizing
MGSR(S ∪ {u}) − MGSR(S), where MGSR(S ∪ {u}) and
MGSR(S) are calculated using Definition 3. After k iterations,
the k best nodes that have been found are returned.

4 UPPER BOUND BASED APPROACH
To improve the efficiency of the greedy algorithm, we now
develop an upper bound based approach to address the MGSR
problem, which can prune out unnecessary candidate nodes
during the computation. Before getting into the details of the
upper bound based algorithm, we first present a lemma to show
the existence of the upper bound.

Lemma 1: For any node u, the MGSR marginal gain at 1 : k
iterations cannot exceed the MGSR value when u is the sole

set S = VR ∪ {Lin(v)|v ∈ VR} can be found. To incrementally
select and verify all k seed nodes with a maximum marginal
gain, the seed candidates are sorted by the upper bound value
of the geographic influence span within the query region R,
where the regional upper bound of the MGSR of a node is
defined in Definition 6.

Definition 6: (Regional Upper Bound of a Node) Assume a
set of nodes ASi−1 have been activated by Si−1 at the (i − 1)-
th moment. Consider the node u being the i-th seed where
0 ≤ i ≤ k. Given a geographic region R, and Lout (u)∩VR /= φ,
the upper bound of the geographic influence span of u in R is
defined as the countable geographic grids GG over the nodes
in {Lout (u) ∩ VR} and {v ∈ ASi−1 |v ∈ GG(Lout (u) ∩ VR)}.

However, the regional upper bound of a node may have
overlaps with previous seeds. So it cannot be directly used as
the upper bound. To address this, the incremental portion must
be computed as the actual countable upper bound, and is the
“new reward” effect of introducing the node as a new seed.

Definition 7: (Countable Regional Upper Bound of a Node)
The countable regional upper bound of a node is the regional
upper bound minus the overlaps with the previous seeds.

Based on the countable regional upper bound of a node u
and the number of nodes covered by the countable MBR, the
incremental score of MGSR can be computed as MGSR(Si−1 ∪
{u})-MGSR(Si−1).

Example 2: Consider the example in Figure 1. Assume
the node v5 is in the seed set at the current moment and
the influence span is enclosed in the green box. When the
node v1 is probed, the regional upper bound value is the
whole query region in the box {(0,0.5); (3,5)} where v3 and
v10 have been activated by v5; v8 and v9 are included in
the influential region of v5; v1 is the only one node to be
newly activated. Since the overlapping area {(0, 0.5); (2.5, 4)}
to be influenced by v5 must be excluded, the residual is
the countable regional upper bound value of v1 which is
(3− 0)×(5− 0.5) −(2.5 − 0)×(4− 0.5) = 13.5 − 8.75 = 4.75.
Therefore, MGSR({v5, v1}) − MGSR({v5}) = 0.5 × 4.75 +

seed in S. 0.5 × 1 = 0.28.
Since MGSR(.) was proven to be a monotone and submod-

5
The upper bounding procedure is presented in Algorithm 2.

ular function in Property 3, we can show that MGSR(Si−1 ∪
{u}) −MGSR(Si−1) ≥ MGSR(Si ∪ {u}) −MGSR(Si) always
holds where Si−1 ⊆ Si. That is, the maximal gain when taking
a node as a new seed in the early steps of the process must
be larger than or equal to that of taking the node in the late
steps. For any node, the maximal gain is not increased by the
number of iterations. As such, we can see that MGSR(u) is
an upper bound on the maximal gain produced by u for any
i-th iteration (i ∈ [1 : k]).

Given a node and an exact maximal gain value at the i-th
iteration, Lemma 1 can be applied to safely skip the nodes
with an upper bound value less than the node’s true maximal
gain value. Furthermore, the upper bound values provide a
probing priority for the nodes in the algorithm. That is, the
nodes with highest upper bound values will be accessed first.
For a given query region, all of the nodes VR appearing in

We first load the candidate set C for the query q. Then, the
upper bound value for each candidate node in C is initialized.
These candidate nodes are maintained in a heap M where the
candidate nodes are ordered in a descending order of upper
bound values. After that, k iterations are ran to find the k best
candidates. In each iteration, we always probe the candidate
node u′ with the maximum upper bound and calculate the
marginal MGSR gain ∆(u′). If the marginal MGSR gain ∆(u′)
is larger than or equal to the upper bound value for the next
node, then u′ can be safely selected as the best choice in this
iteration. Otherwise, the computed marginal MGSR gain ∆(u′)
and u′ will be re-added back to the heap M , where u′ in
M may be reconsidered in a late iteration. If possible, u′ is
selected as the best choice without any further computation
since the current MGSR value of u′ is an exact value, and the
value is the largest one in M . The procedure is presented in

4 6

6

Algorithm 2 MGSR Upper Bound Approach
Input: A graph G = (V, E), a user query q = (R, k, ρ).
Output: S - the k-vertex set.

1: Find the nodes VR appearing in R based on R*-Tree index.
2: Load the candidate node set C using Line 3-6 in Algorithm 1.
3: Initialize a sorted heap M ← φ.
4: for each node u ∈ C do
5: Compute MGSR(u) and record u → MGSR(u) into M .
6: for i ← 1 to k do
7: Stop ← false
8: while not Stop do
9: Get the top node u′ and the MGSR value ∆(u′) from M .

10: if u′ has not been visited then

5.1 Identifying (ρ, k)-satisfactory Sub-regions
In this subsection, our aim is to find all of the sub-regions
where ρ percentage of nodes can be activated using a k-sized
vertex set. By doing this, a set of significant sub-regions can
be identified as the components of the MGSR candidates, and
the sub-regions can be filtered without incurring unnecessary
MGSR computations.

Each sub-region is assessed based on the incoming node
lists (Lin(v)) of the nodes in the sub-region. The nodes in
the sub-regions and their respective incoming node lists can
be maintained using a combination of an R*-tree and ordered
influential node lists, a hybrid index that we will refer to as ′ ′

11: ∆(u) ← MGSR(Si−1 ∪ {u }) − MGSR(Si−1)
12: if ∆(u′) ≥ MGSR(unext) of the second node unext ∈ M then

an OIR*-tree index henceforth. A similar hybrid index was
proposed by [10] and [18], where an R-tree and inverted files

′ ′ were combined for spatial keyword search.
13: S ← S ∪ {u }; C ← C \ {u };
14: i ← i + 1; Stop ← true;
15: else
16: Move u′ → ∆(u′) to the right position in M based

on the updated bound ∆(u′).
17: else

In this paper, we develop a new data structure to support
spatial influence analysis in social networks. It is a hybrid
index for influential nodes. For each vertex stored as an OIR*-
tree node, the corresponding incoming node list is computed
and stored as an ordered influential node list. The nodes in the ′ ′

18: S ← S ∪ {u }; C ← C \ {u };
19: i ← i + 1; Stop ← true;
20: return S

Line 8- 19.

5 THE OIR*-TREE INDEX BASED SOLUTION

Although the upper bound based approach can improve the
efficiency of the greedy approach, the computational cost is
still high because the upper bound is not tight. In both the
greedy approach and the upper bound approach, it is difficult
to improve the efficiency since the MGSR computation can
be repeated. Another limitation in the two approaches is the
effectiveness. Even though the submodular property guarantees
the algorithms can achieve a (1 − 1/e)-precision, there is
inevitably some loss in overall effectiveness. Since we know
the selection of the seed nodes depends on previously selected
seed nodes in the k iterations, we now propose a heuristic

list are ranked by “activation power” in the current sub-region.
The activation power of a node in a sub-region is approximated
by the number of nodes in the sub-region that can be activated
by the node. In addition, the intermediate results of the sub-
regions at the lowest level in the tree can be reused to check
the (ρ, k)-satisfaction of a sub-region at higher levels. Figure 2
and Figure 3 present an example of the indexing structure used
for maintaining the social graph in Figure 1.

Fig. 2. R*-Tree Representation of a Social Graph

R7 : R5 R6

approach to remove the dependencies in seed node selection.
The basic idea is that given a query region, first find all the

sub-regions to be covered by the query region from the OIR*-
tree based on a hybrid social-and-spatial index. Then,

R5 : R1 R2

R1 : 1 3 8

R2 :

9 10

R6 : R3 R4

R3 : R4 : 5 11 12

incrementally determine if the sub-region satisfies the given
L1 : {(v1 ,2); (v4 ,2); (v5 ,1);

L2 :

4

L3 :

1 3

L4 :

9 12

query requirement (ρ,k). If so, a k-vertex set that can activate
ρ percent of the nodes in a sub-region exists. By doing this, a

(v6 ,1); (v11 ,1)} {(v5 ,1); (v8 ,1); (v11 ,1)}
{(v4 ,2)} {(v1 ,1); (v3 ,2); (v9 ,1);

(v12 ,1)}

subset of significant sub-regions are identified. Starting from
the significant sub-regions with a maximum span, we can
compute the MGSR and find the corresponding candidate seed
nodes. Since the significant sub-regions are identified by their
own k-vertex sets, the aggregated k-vertex sets may be larger
than the maximal allowable value k. To discover the final k-
vertex set, select and expand every potential sub-region that
has been identified until the geographic influence span cannot
be expanded any further.

Fig. 3. OIR*-Tree Data Structure of a Social Graph

Example 3: Consider a query (R5, 0.7, 2) on the data in
Figure 3 where α = 0.5. Since there are two sub-regions R1
and R2 at the leaf level, we will first check to see if they are
(ρ, k)-satisfied. To do this, the influential node set is accessed
in the order of nodes in L1. Since ρ is set as 0.7, there are
three choices to activate R1 – {v1, v4}, {v1, v5}, or {v4, v6}.
For R2, there are only two choices – {v5, v8} or {v8, v11}. In

6 R3
0.5

4

R1 1

3
0.3

0.4

8

R7
0.5

0.5
0.4 R6

0.3 0.4

R5 0.4
9

 R2

0.25
0.25
10

0.3 0.3
0.3 0.4

5 R4

0.4 0.4
12

11

1 4 6 5 11 8 5 11

In
flu

en
tia

l n
od

e S
et

Ri

7

this case, both are (ρ, k)-satisfied. To process internal MBR
nodes such as R5, we need to dynamically compute the ordered
influential node list based on the child MBR nodes. In this
example, this is L5: {(v1, 2); (v4, 2); (v5, 2); (v11, 2); (v6, 1);
(v8, 1)}, which aggregates L1 and L2 together. Since ρ is set
as 0.7 and k = 2, we need to check if we can find at most two
seed nodes that can successfully activate ⌈0.7 × 5⌉ = 4. From
the ordered list L5, we can see there are four candidate nodes
since each of them can activate two nodes. After checking the
activated nodes, we find that {v1, v5} would be the satisfied
result for R5.

From the above example, we can terminate our candidate

function PROCESS LEAFNODE in Algorithm 4 performs the
computation for the sub-regions at the leaf node, while the
function RESULTREUSE in Algorithm 5 is applied to promote
the intermediate results of a sub-region to a parent node. For
any sub-region at the internal level, if all of the child nodes
have been processed, then the node is checked to see if it is
(ρ, k)-satisfied based on the intermediate results of the node’s
children, as shown in Line 16-Line 23. The exact approach of
how to process the sub-regions in the internal level is presented
in Algorithm 6.

Algorithm 4 PROCESS LEAFNODE(Ri)

search when identifying R5 using the node v11 in L5. In L5,
we know the best selection of a seed node can activate at
most two nodes. Based on the requirement – ⌈0.7 × 5⌉ = 4,
selecting the second seed node requires at least two more nodes

1: Retrieve the ordered influential node list LRi

2: Initialize judged← false
3: Initialize p ← 0
4: Initialize temporary set Stemp ← φ

for Ri.

to be activated. Therefore, the candidate search can be stopped
by v11 in L5 because each of the remaining nodes can only
activate one node.

Algorithm 3 Sub-region Checking Algorithm

5: while !judged and p ≤ |LRi | and |Stemp| < k do
6: Set vertex u ← LRi [p]
7: Add u into Stemp
8: // u.value is the number of nodes u can influence in the current

subregion Ri.
9: activated num += u.value

Input: A location-aware social graph G = (V, E) maintained in
OIR*-tree T , and a user query q = (R, ρ, k).
Output: An updated OIR*-tree with a (ρ, k)-satisfied sub-region

10: if activated num ≥ ρ × VRi

11: judged ← true
12: else

then

marked.
1: Find all the sub-regions Rset = {R0, R1, ...} covered by the

query region R using the OIR*-Tree index.
2: // Process sub-regions bottom-up.

13: U ← U ∪ Ai(u) where Ai(u) is the influenced node set in
Ri for the influential node u.

14: for all u′ ∈ L do ′ ′ 15: Ai(u) ← Ai(u) \ Ai(u) ′ ′
3: while Rset /= φ do
4: Ri ← POP(Rset)
5: if Ri is a leaf node then
6: (judged, Stemp) ← PROCESS LEAFNODE(Ri)
7: if judged = true then
8: Mark Ri as (ρ, k)-satisfied sub-region in OIR*-tree.
9: else

10: Mark Ri as non-(ρ, k)-satisfied sub-region in OIR*-tree.
11: if Rj ∈ Rset covering Ri /= ∅ then
12: // Promote intermediate result of Ri to Rj .
13: RESULTREUSE(Ri, Rj)
14: Disable Ri as a child sub-region of Rj .
15: else
16: if All child sub-regions of Ri have been processed then
17: (judged, Stemp) ← PROCESS INTERNALNODE(Ri)
18: if judged = true then
19: Mark Ri as (ρ, k)-satisfied sub-region in OIR*-tree.
20: else
21: Mark Ri as non-(ρ, k)-satisfied sub-region in OIR*-

tree.
22: else
23: Delay Ri until the child sub-regions are processed.
24: return Updated OIR*-tree with a (ρ, k)-satisfied sub-region

marked.

Algorithm 3 provides the checking procedure for the sub-
regions covered by a query. For each sub-region, check to see
if the k seed nodes can activate ρ percent of nodes in the sub-
region. To do this, a bottom-up strategy as shown in Line 4-
Line 23 is used. If the current sub-region is a leaf node in the
OIR*-tree, then check if ρ percent of the nodes can be activated
by at most k seed nodes, as shown in Line 5-Line 14. The

16: LRi [u] ← |Ai(u)|
17: Sort LRi .
18: Increment p.
19: return judged and Stemp

In Algorithm 4, we show the procedure of processing the

sub-regions at the leaf level. When the algorithm is initialized,
a list of ordered influential nodes is obtained. For each in-
fluential node, the nodes influenced are selected. Then, the
influential node in the first position of the list is taken as
a seed node in each iteration, and the current percentage of
nodes that can be activated is computed. After each influential
node is processed, the order of the remaining influential node
list is updated by removing the activated nodes. The iteration
continues until ρ or k is satisfied, as shown in Line 5-Line 18.
In Line 9, u.value is the number of influenced nodes which is
recorded in the ordered influential node list LRi . In Line 14-
Line 16, we remove the nodes that can be activated by u
because active nodes cannot be activated again. In Line 17, we
resort the influential node list LRi based on the removal of the
active nodes. Finally, two computed results are returned.
If a result exists (judged = true), then Stemp is the minimal
number of seed nodes that can activate ≥ ρ percent of the
nodes. Otherwise, Stemp is a k node set that can be used as
an intermediate result when computing the sub-regions of the
parent nodes.

Algorithm 5 shows how the intermediate results are main-
tained such that they can be reused to test for (ρ, k)-satisfaction
of the sub-regions of parent nodes. If a probed sub-region
is the first child of a parent node, then the information is

k k

k

k

V pool

Rj

Rj k

8

Algorithm 5 RESULTREUSE(Ri, Rj)

1: // Here, Rj is the parent MBR node of Ri.
2: Assume V i are the k nodes selected to satisfy (ρ, k) in sub-region

Ri, and LRi is the ordered node list of nodes influencing Ri.
3: if LRj = ∅ then
4: VRj ← VRi

obtained from their child nodes. Different from Algorithm 4,
Algorithm 6 only needs to access a subset of influential nodes
in V pool and the corresponding influenced node sets. This is
because the subset of influential nodes are large enough to be
used to work out the new k-vertex set for the internal nodes.
The correction can be guaranteed using Property 4. At the

5: V pool i
k ← Vk beginning of the algorithm, we need to access all node lists

6: LRj ← LRi
7: else LRj and get all of the influential nodes that have a higher pool
8: LRj ← aggregate LRj and LRi . ranked positions than the position of the last node in Vk .
9: V pool pool i Here, V pool

k ← aggregate Vk and Vk .
10: for each node v ∈ VRi do
11: if v ∈/ VRj then
12: Insert v into VRj .

k maintains a set of influential nodes, and each
influential node has an influenced node set for region Rj . The
influential nodes in V pool are sorted based on the number of
influenced nodes. The length of V pool may be larger than k,

13: else
14: Update LRj by minus 1 from the value of each influential and Rj doing

k
is one of the child nodes of Ri we can get all of the in the OIR*-tree. By

influential nodes node u where v ∈ A(u) and u ∈ LRj . this, necessary
15: return An updated sub-region Rj .

recorded, as shown in Line 3-Line 6. Otherwise, the activation
power for each of the influential nodes is computed on the
fly to generate an aggregated influential node list, as shown
in Line 8-Line 14. In Line 8, we aggregate the two influential
node lists via a union operation, where for a node appearing in
the two lists, the values of the node are added together, and the
aggregated value of the node is stored in the aggregated list.
Here, a duplicate count can occur since an influential node may
influence the same node in different subregions. The duplicate
counts can be accounted for when the influence nodes are
promoted to VRj in Line 10-Line 14. In particular, Line 14

and corresponding influenced node sets for the region Rj by
accessing the child sub-regions Ri. In the While-Loop, the
maximum number of nodes to be influenced by a k-vertex
set is computed. Based on the intermediate results, the region
Ri is checked to see if it satisfies the (ρ, k) conditions or not.
If it is true, Ri is marked as a countable MBR.

Given a sub-region, there may be a large number of nodes
that can influence the sub-region. In practice, only a few nodes
with high influence can get into the top-k set. To reduce the
number of low scoring nodes to be probed, we propose the
following heuristic pruning rule.

Property 4: (Pruning of k Node Selection Pool) Consider
two small sub-regions Ri and Rj with V i and V j as the k k
respective k node sets with the maximal influence, with
corresponding ordered influential node lists denoted as LR

adjusts the duplicate count. By doing this, the full influential node list can be obtained for the sub-region at the parent level. and LRj . Assume there is a large sub-region RN that
i

can
cover Ri and Rj . To work out the seed set V N of RN , we
only need to explore partial nodes from the influential node

Algorithm 6 PROCESS INTERNALNODE(Rj) lists LRi and LRj . For LRi or LRj , we only need to explore
1: Assume LRj maintains a set of ordered node-value pairs, and

k maintains a set of ordered node-nodes pairs.
pool

the nodes with influence higher than the ǫ times of vlowest’s
influence where vlowest is the node with the lowest influence in j

2: Find the position x in LRj for the last node of Vk . {V i ∪ V }. 3: Find the subset L′
 from 0 """ x positions over L . k k of Property 4 comes from the following intuition.
Rj

4: Initialize judged ← false.
5: Initialize p ← 0

Rj The proof
Consider a vertex vx that is one of k nodes for RN and the
node’s influence is much smaller than that of vertex vlowest

6: Initialize a temporary set Stemp ← φ in the node list LRN . Note that the list of nodes has been
7: while !judged and p ≤ |LRj | and |Stemp| < k do sorted by the influence of nodes to the region. So we know the
8: Get the vertex u at the pointer position in L′ . position of a node in LR represents the influential power on
9: if u ∈/ V pool or L′ [u] > |V pool[u]| then N

k Rj k the region. In this context, the assumption of selecting vx in a

10: Get the influenced nodes of u from previously processed
sub-regions.

11: Stemp ← Stemp ∪ u
12: activated num ← activated num + u.value
13: if activated num ≥ ρ × VRi then
14: judged ← true
15: else

k vertex set of RN , rather than vlowest , means that vx has more
influence to RN than vlowest . If vx has much less influence than
vlowest in all small sub-regions (Ri and Rj), then it will have
small likelihood to be in top-k candidate set for the large sub-
region (RN). As such, this pruning strategy allows us to focus
on the significant nodes with a high likelihood. Therefore, we

16: U ← U ∪ V pool [u] use the lowest position of a node v ∈ {V i ∪ V j } to bound
k lowest k k

17: Update L′

18: Increment p.
by removing the active nodes in V pool[u]. the discovery of the k vertex set with regards to RN

building the full ordered influential node list LRN .
, without

19: return judged and Stemp

Algorithm 6 is used to validate the (ρ, k)-satisfaction of sub-
regions of the internal nodes based on the intermediate

5.2 Finding Best k Seeds
At this stage, all sub-regions have been checked and labeled.
The marked results are maintained in the updated OIR*-tree.

9

To find the final k vertex set that maximizes the MGSR within
the query region, each sub-region candidate is probed, and the
coverage across horizontal regions is expanded since different
sub-regions may share seed nodes. In particular, when k is
large, sub-regions can be activated by a small number (less than
k) of nodes. In these cases, the sub-regions can be combined
together by merging the vertex sets to achieve a maximum
MGSR score. The straightforward solution is to make pair-wise
comparisons for any two sub-regions, but it is is expensive. To
reduce the computational cost, two approaches are explored:
Exhaustive expansion and an ǫ-approximate expansion.

Exhaustive Expansion:
The key idea of exhaustive expansion is to probe the sub-

regions level by level using the updated OIR*-tree. As shown
in Algorithm 3, the sub-region of a parent node in the updated
OIR*-tree covers all of the sub-regions of the child nodes in the
same tree based on geographic coverage. Therefore, there are
several conditions that can be used to induce early termination:

• If a sub-region can be successfully selected as a result,
then all sub-regions beneath can be skipped;

• Given two countable sub-regions Ri and Rj in the tree,
if the selected k sets V i and V j are disjoint, V i ∩ V j =

is equal to or larger than ǫ× the upper bound. If this is true,
then the expansion for the candidate can be terminated. At the
same time, all of the optimizations in the exhaustive expansion
algorithm can also be exploited. After all of the expansions
have terminated, the whole expansion algorithm can be safely
stopped with the accuracy bounded by the ǫ approximation.
By doing this, the algorithm can achieve eager termination
without probing the sub-regions at the lowest levels. As such,
the computational cost can be further reduced.

6 EXPERIMENTAL STUDY
6.1 Experimental Settings
Algorithms. We study the performance of the following al-
gorithms: the greedy algorithm (Greedy) from Section 3, the
upper bound approach (Upperbound) from Section 4, and the
OIR*-tree index solution with an ǫ-approximate expansion
(Index-based) from Section 5.

Test Datasets. We use three real datasets
Gowalla, Twitter, and Foursquare. All three datasets
were downloaded from the author’s website [17]
(http://dbgroup.cs.tsinghua.edu.cn/ligl/laim/). The user k k k k

φ, then the other sub-regions in the subtree rooted at Rj
do not need to be probed;

• If V i ⊇ V j , then Rj and Ri can be merged and the other

location is the place the user most frequently checked in. The
three datasets are directed graphs and the details are shown in Table 1, where AvgD denotes the average degree, and

k k
sub-regions in the subtree rooted at Rj do not need to
be probed;

• Assume that the updated OIR*-tree has been probed up to
level lcurrent . At this moment, the intermediate results for
some of the expanded sub-regions have been calculated.
Based on the sub-regions, and the number of nodes
covered by the sub-regions, the MGSR score is computed
using the intermediate results. The calculated MGSR
score is now the lower bound value of each sub-region
candidate. The upper bound value of each sub-region
candidate at the level lcurrent is also computed. Here, the
upper bound value depends on the addition of the current
node, and the other sub-regions overlapping with the
sub-region in lcurrent . For certain sub-region candidates,
if the upper bound values are lower than the lower bound
of a sub-region expansion candidate, then the candidate
can be skipped.

By doing this, the final k node set and the maximum
geographic influence spanning coverage can be obtained. At
some point, only one sub-region expansion candidate is left,
which can be returned as the best expansion. The remaining
task is to expand only the best one by probing the other
possible sub-regions that have not been checked, and cannot
be covered by the selected sub-regions in the best expansion.

ǫ-approximate Expansion:
Although the exhaustive expansion algorithm can terminate

early, it still has to first probe all possible combinations, and
then make the final decision based on the MGSR values of the
combinations. This subsection addresses how to terminate the
expansion algorithm as early as possible while bounding the
accuracy with a predetermined approximation ratio.

The main idea of ǫ-approximate expansion is to terminate
the expansion of a candidate by checking if the lower bound

MaxID/MaxOD denotes the maximum in-/out-degree.

Datasets #Vertexes #Edges AvgD MaxID MaxOD

Gowalla 197K 1.9M 9.67 739 735
Twitter 554k 4.29M 7.75 1,143 639
Foursquare 4.9M 53.7M 11.6 4,702 727

TABLE 1
Statistical Information for the Datasets

Test Queries. We generated three types of queries with dif-
ferent regional nodes, denoted as Q1, Q2 and Q3. The symbol
of Q11 is used to show the experimental result when running
Q1 over the 1st dataset Gowalla. Similarly, Q22 represents Q2
ran over the 2nd dataset Tweet, and Q31 represents Q1 ran over
the 3rd dataset Foursquare. We briefly use Q1, rather than Q11
when we discuss the experimental results for the Gowalla data.
Each query type is comprised of 50 queries with similar sizes
of regional nodes, and we report the mean performance. In
Table 2, we show the approximate sizes of regional nodes and
the sizes of potential seed candidates for different queries and
different datasets. All algorithms were implemented in C++
10.0 on Windows 7, and run on an Intel(R) CoreTM i5 CPU
@2.60GHz with 8GB RAM.

6.2 Efficiency Evaluation
In this section, we evaluate the efficiency of the proposed
approaches over different datasets with different parameter
settings. Here, we vary the size of k from 100 to 800. And ρ
is selected as 0.1 and 0.2 since all three datasets are sparse. If
we give a high value to ρ, the run often results in an empty

http://dbgroup.cs.tsinghua.edu.cn/ligl/laim/)

Greedy
Upperbound
Index-based

Greedy
Upperbound
Index-based

Greedy
Upperbound
Index-based

Greedy
Upperbound
Index-based

Greedy
Upperbound
Index-based

Greedy
Upperbound
Index-based

Ti
m

e
C

os
t (

m
s)

10

106

105

106

105

104 104

TABLE 2
Statistical Properties of the Test Queries

103

102
100 200 400 800

Size of K

(a) Q1 and ρ = 0.1

106

105

104

103

102
100 200 400 800

Size of K

(c) Q2 and ρ = 0.1

103

102
100 200 400 800

Size of K

(b) Q1 and ρ = 0.2

106

105

104

103

102
100 200 400 800

Size of K

(d) Q2 and ρ = 0.2

800

(a) Q1 and ρ = 0.1 (b) Q1 and ρ = 0.2

Index-based

100

100

Index-based

103

102
100 200 400 800

Size of K

(e) Q3 and ρ = 0.1

103

102
100 200 400 800

Size of K

(f) Q3 and ρ = 0.2

100 200 400 800
Size of K

(c) Q2 and ρ = 0.1

100 200 400 800
Size of K

(e) Q3 and ρ = 0.1

100 200 400 800
Size of K

(d) Q2 and ρ = 0.2

100 200 400 800
Size of K

(f) Q3 and ρ = 0.2

Fig. 5. Running Time for Queries on the Tweet

improved the greedy algorithm 6 fold, while the index-based
approach has a 175x improvement. When k = 800, the greedy
algorithm and the upper bound based approach take 40,120 ms
and 9,345 ms, respectively. Our index-based algorithm requires
only 300 ms. In this case, the upper bound approach improved
the greedy algorithm has a 4x improvement, while the index-
based approach has around improves the performance about
133 times. From this study, we conclude that the index-based
approach is significantly better than the other approaches.

When we increase the number of regional nodes and seed
Fig. 4. Running Time for Queries on the Gowalla

result set for the specified sizes of k between 100 and 800. In
addition, we run three types of queries over each dataset and
report the mean time performance.

Gowalla dataset: From Figure 4, we can see that our pro-
posed index-based approach performs much better than the
greedy and upper bound approaches on the Gowalla dataset.
In addition, the experimental results also show that the time
cost of the three algorithms grows linearly as k increases, and
varying ρ values does not affect the running time.

Taking Q1 as an example with ρ = 0.1. When k = 100, the
greedy algorithm and the upper bound approach take 8,759
ms and 1,429 ms, respectively. Our index-based algorithm
takes only 50 ms. In this case, the upper bound approach

candidates as Q2 and Q3, the three algorithms take much more
longer to identify the k best seeds.As shown in Figure 4(a),
Figure 4(c), and Figure 4(e), the greedy algorithm requires
15,005 ms, 22,685 ms, and 3,1667 ms for Q1, Q2, and
Q3 when k = 200. With the same configuration, the upper
bound approach requires 2,793 ms, 5,111 ms, and 7,770 ms,
but our index-based approach needs only 80 ms, 200 ms,
and 383 ms. As k increases, the greedy and upper bound
approaches perform even worse. However, the index-based
approach is much more scalable. The main reason is that the
greedy algorithm has to repeatedly scan the complete seed
candidate list, and the upper bound based approach also needs
to repeatedly probe a large part of seed candidate list, but the
index-based approach only needs to do a one-pass, local (ρ,k)
verification.

Tweet dataset: Figure 5 shows the time cost of the three

Ti
m

e
C

os
t (

m
s)

Ti

m
e

C
os

t (
m

s)

Ti
m

e
C

os
t (

m
s)

Ti
m

e
C

os
t (

m
s)

Ti

m
e

C
os

t (
m

s)

Ti
m

e
C

os
t (

m
s)

Ti
m

e
C

os
t (

m
s)

Ti

m
e

C
os

t (
m

s)

Ti
m

e
C

os
t (

m
s)

Ti
m

e
C

os
t (

m
s)

Ti

m
e

C
os

t (
m

s)

Gowalla
#Regional Nodes

Q1
8k

Q2
9k

Q3
11k

#Seed Candidates 28k 35k 43k
Twitter Q1 Q2 Q3
#Regional Nodes 57k 59k 63k
#Seed Candidates 307k 315k 338k
Foursquare Q1 Q2 Q3
#Regional Nodes 314k 278k 349k
#Seed Candidates 2.1m 1.9m 2.4m

104 104
 103 103

102 102

101 Greedy
Upperbound 101 Greedy

Upperbound

100 Index-based
100 Index-based

100 200 400 800 100 200 400
Size of K Size of K

106 106

105 105

104 104

 104 104

103 103
 102 102
101 Greedy

Upperbound 101 Greedy
Upperbound

 104 104

103 103

102 102

101 Greedy
Upperbound

101 Greedy
Upperbound

100
Index-based Index-based

100

Greedy
Upperbound
Index-based

11

106

105

104

103

102

Greedy
Upperbound
Index-based

106

105

104

103

102

Greedy
Upperbound
Index-based

100

10-1

10-2

10-3

10-4

10-5

10-6

100

10-1

10-2

10-3

10-4

10-5

10-6

100 200 400 800
Size of K

(a) Q1 and ρ = 0.1

100 200 400 800
Size of K

(b) Q1 and ρ = 0.2

100 200 400 800
Size of K

(a) Q1 in All Datasets

100 200 400 800
Size of K

(b) Q2 in All Datasets

100

10-1

10-2

-3

102
100 200 400 800

Size of K

102
100 200 400 800

Size of K

10

10-4

10-5

10-6

100 200 400 800
Size of K

Gowalla
Twitter

Foursquare

(c) Q2 and ρ = 0.1 (d) Q2 and ρ = 0.2

(c) Q3 in All Datasets

Greedy

Index-based

100 200 400 800
Size of K

(e) Q3 and ρ = 0.1

Greedy

Index-based

100 200 400 800
Size of K

(f) Q3 and ρ = 0.2

6.3 Effectiveness Evaluation
We selected three specific regions with longitudes and latitudes

Fig. 6. Running Time for Queries on the Foursquare

algorithms on the Tweet dataset. The trend of time cost grows
linearly with the increase of k from 100 to 800. For Q1 shown
in Figure 5(a), the greedy algorithm takes about 16 minutes,
34 minutes, 64 minutes, and 121 minutes when k is set as
100, 200, 400 and 800. The upper bound based approach
takes about 1.1 minutes, 1.5 minutes, 2.3 minutes, and 3.6
minutes with different k values. However, our index-based
approach requires only 3 seconds, 5 seconds, 8 seconds, and
16 seconds for the same tasks. From the experimental study, it
concludes that our index-based approach outperforms the other
two algorithms, although all scale linearly with respect to k.
Varying ρ has no observable impact on the running time of the
three algorithms. When we increase number of regional nodes
and seed candidates as shown in Figure 5(a), Figure 5(c) and
Figure 5(e), the running time for all three algorithms increases
significantly. In the case of Figure 5(e) (k = 800), the greedy
algorithm needs 2.7 hours to evaluate the query Q3. The upper
bound based approach requires 3.4 minutes, and the index-
based approach can finish the task in 23 seconds.

Foursquare dataset: Figure 6 shows the performance of the
three algorithms on the Foursquare dataset. Our index-based
approach greatly outperforms the other two algorithms. When
k = 100, the greedy algorithm takes 13 hours for Q1, 18 hours
for Q2, and 22 hours for Q3 over the Foursquare dataset. For
the three queries, the upper bound based approach takes about
10 minutes, 14 minutes, and 18 minutes, but the index-based

to demonstrate the effectiveness of the approaches. The queries
were Q1 = {10.822811 -122.30276; 37.856213 -100.29089},
Q2 = {30.262996 -122.30276; 37.856213 -97.750338} and
Q3 = {20.262996 -122.30276 37.856213 -97.750338}. We
evaluate the three cases as the same regional queries over
different datasets. Here, we only use the geo-region size as
a metric, i.e., the overall region size of Q1 is calculated as
(37.856213-10.822811)×(122.30276-100.29089) = 595.0557.
Similarly, we can get the other two region sizes. To illustrate
the effectiveness, we measure our proposed geo-social influ-
ence spanning model by using the three metrics including the
influence spanning coverage, the varied trend of the influence
spanning ratio, and the spatial reachability in geography.

Figure 7 shows the spanning ratio for the influence coverage
of the selected k best seeds for different queries and datasets.
From the experimental results, we can see that the influence
spanning ratio may not change as the size of seed nodes is
increased. For example, k is 100, 200, 400 for Gowalla in
Figure 7(a), k is 100 and 200 for Twitter in Figure 7(a),
Figure 7(b) and Figure 7(c), and k is 200-800 for Foursquare
in Figure 7(c). Since the social users are not distributed evenly
on geo-map based locations, there is no observable effect
on the ratio. In addition, we observe that the approaches
get better results on Foursquare dataset, than on the Twitter
dataset or Gowalla dataset. For example, selecting 200 seeds
on Foursquare can influence about 26.7% the region of Q3,
but only 0.02% for Twitter and 0.0004538% for Gowalla. This
study coincides with real properties of the investigated datasets.
The Foursquare collection contains more social users in the

Ti
m

e
C

os
t (

m
s)

Ti

m
e

C
os

t (
m

s)

Ti
m

e
C

os
t (

m
s)

Ti
m

e
C

os
t (

m
s)

Ti

m
e

C
os

t (
m

s)

Ti
m

e
C

os
t (

m
s)

S
pa

nn
in

g
R

at
io

S
pa

nn
in

g
R

at
io

S
pa

nn
in

g
R

at
io

106 106

105 105

104 104

103
Greedy

Upperbound
Index-based

103

 Fig. 7. Influence Spanning Coverage Comparison
106 106
105 105
104 104 approach only needs about 20 seconds, 24 seconds and 27
103

102

Upperbound 103

102

Upperbound seconds. In Figure 6, we only showed the experimental results
that completed in less than 2.3 hours.

1

12

70

60

50

40

30

20

10

0
100 200 400 800

Size of K

(a) All Queries in Gowalla

10

14
12
10

8
6
4
2
0

100 200 400 800
Size of K

(b) All Queries in Twitter

by [17] (denoted as RegionIM) and our proposed model
MGSR, we developed a novel metric to measure the geographic
reachability of activated nodes. Simply speaking, we assign a
radius to each node where the radius is the average geographic
distance from the node to its social neighbors. Given a region
query, RegionIM and MGSR can both identify seed node sets
and activated node sets. The goal of the new metric is to
evaluate the percentage of the pairs of nodes in the activated
node set which are reachable within the nodes’ radius. For
example, given two nodes v1, v2, they are reachable if and only
if the geographic distance between v

8 and v2 is not larger than

6

4

2

0
100 200 400 800

Size of K

(c) All Queries in Foursquare

Fig. 8. Influence Spanning Speedup Comparison

the sum of their radii. A lower percentage means the activated
nodes can influence a larger region. So, these nodes have a
better spatial distribution.

We take Q1 as an example to show the difference of the two
methods. Here, ρ was set as 0.2 and α was set as 0.5 in the
evaluation. Figure 9 shows the experimental results for the two
large datasets Twitter and Foursqure. On Twitter, RegionIM in
[17] recommended the top-k seeds. The activated nodes are
pairwise reachable from 10% to 24% when k varies from 100
to 800, based on the computed radii. But MGSR can reduce

50

100 200 400 800
Size of K

50

100 200 400 800
Size of K

the reachable ratio to 2% to 8%. On the Foursquare collection,
the activated nodes in RegionIM reached each other from 33%
to 50%, but MGSR can reduce the reachability from 7% to
14% when k varies. From these results, we can see that the
geographic distribution of activated nodes in MGSR is better
than that of RegionIM in [17].

6.4 Space Cost Evaluation
(a) Twitter Data (b) Foursquare Data

Fig. 9. Reachable Evaluation of Activated Nodes on Q1

investigated region for Q3 (11k nodes for Gowalla, 63k nodes
for Twitter, and 349k nodes for Foursquare).

Figure 8 shows the speedup for spanning ratios when we
increase the number of seed nodes for the same dataset.
From the results of Gowalla in Figure 8(a), a big increase
in performance happens when k is 800 where the speedup
metric uses the spanning coverage of k = 100 as a base. This
means that 800 is a good starting point for us to specify the
parameter k if we want to influence a certain sub-region on
the Gowalla social network. This is because all three queries
have large performance gains when k is 800, but not for 200
and 400, with the comparison of k = 100. Similarly, we can
see that 400 is a good value for the Twitter collection in
Figure 8(b). For Foursquare, shown in Figure 8(c), we use
the spanning coverage of k = 200 as the base of the speedup
metric because the coverage of k = 100 is too low. But no
clear good starting points can be found because there is large
gap in the speedup values for the three queries for both 400 and
800. From these results, we can see that the spanning coverage
ratio does not always increase when k increases. The results
also verify that our proposed MGSR model can successfully
obtain the maximum coverage for different types of geographic
distributions in different datasets.

In order to show the effect of the seed nodes to be selected

TABLE 3

Space Consumption for the Three Datasets

In this section, we present the space usage when using an
OIR*-tree index to evaluate the three types of queries over
the three test collections where the original data size is 27.7
MB for Gowalla, 149.7 MB for Tweet, and 1.58 GB for
Foursquare. As shown in Table 3, the space cost of building
the OIR*-tree index is 19.1 MB, 105.0 MB, and 989.6 MB
for the three datasets, respectively. We measure the space
cost of evaluating the three types of queries in the datasets
using the proposed algorithms. Since we load the whole index
into memory before starting query evaluation, the consumed
memory is at least the size of the index for each dataset. From
the experimental results, we can see that the space cost is
similar for the same query over a dataset. For example, Q1, Q2
and Q3 consumed about 22.6–23.5 MB for Gowalla, 114.7–
115.7 MB for Tweet, and 1.08–1.11 GB for Foursquare.

7 RELATED WORK
The influence maximization problem was originally proposed
by Domigos and Richardson [11]. The two proposed methods

Q11
Q12
Q13

Q11
Q12
Q13

Q11
Q12
Q13

R
ea

ch
ab

le
 P

er
ce

nt

S
pa

nn
in

g
R

at
io

 S
pe

ed
up

S
pa

nn
in

g
R

at
io

 S
pe

ed
up

R
ea

ch
ab

le
 P

er
ce

nt

S
pa

nn
in

g
R

at
io

 S
pe

ed
up

 RegionIM RegionIM
40 MGSR 40 MGSR

30 30
20 20

10

10
0 0

Space Cost Index (MB) Q1 (MB) Q2 (MB) Q3 (MB)

Gowalla 19.1 22.6 22.7 23.5
Tweet 105 115.5 114.7 115.7
Foursquare 989.6 1105 1084 1106.9

e

13

are probabilistic, and the influence spread was not bounded.
[14] proposed two discrete influence spread models, the In-
dependent Cascade (IC) model and the Linear Thresholds
model. They provided proof that the influence maximization
problem can be solved using a greedy algorithm with a
1 − 1 approximation ratio for both models. Since the influence
maximization problem is NP-hard, there are many studies
investigating alternative approaches to improve the efficiency.
[15] used shortest paths to estimate the IC model. [16] de-
veloped a “lazy-forward” algorithm which preformed much
better than simple greedy algorithms. [7] proposed the PMIA
algorithm to solve the influence spread maximization problem
using the IC model. The main idea was to estimate the global
influence of vertex v based on the local maximum influence
in-arborescence (PMIIA), which is a tree structure representing
the union of maximum influence paths from other vertexes to

v. A similar idea was applied to support the LT model in [8].
Influence maximization has been investigated in many other

forms. For example, the problem of topic-aware influence
maximization has received considerable attention recently E.g.,

[2, 3, 6, 9]. Since each edge of any two users in the social
network may be weighted differently for different topics, the

different weights on edges results in a different selection of the
k seed users based on the comparison of the general influence

maximization definition. [17] studied the influence
maximization problem in a given query region. [12] proposed
a method to solve the influence maximization using a novelty

decay model. Time constrained influence maximization has
also been studied [19]. In addition, [21] considered the social

influence maximization using a diversification constraint.
All the above work focused the maximum number of nodes

to be influenced by the k selected seeds as a metric for study-
ing the problem of influence maximization. In contrast, the
proposed geo-social influence spanning maximization problem
can allow search users to get the k best seed nodes and see
the corresponding maximum geographic influence spanning for
the specified query regions.

8 CONCLUSION
In this paper, we propose and formally define the novel prob-
lem of maximum geographic spanning regions over location-
aware social networks, which takes a query region, a budget
k of seed selection, and a locally minimal covering ratio ρ as
parameters. Our approach can compute the top-k selected seed
nodes, and capture locality effects. By doing this, query users
can easily observe the quality of the selected k seeds based
on the geographical coverage within the query region. The
larger the geographical coverage influenced by the k seeds,
the better the quality of the seed selection strategy is. Using
the approach, users can easily determine the seed set that
maximally influences the users’ preferred regions, providing
a new and convenient way to make decision on when and
where to launch marketing campaigns.

To address the computational challenges, we developed
a greedy solution and a upper bound based approach to
incrementally identify the most influential seed nodes. We also
designed an OIR*-tree-tree index and an OIR*-tree-tree index

based solution to accelerate the computation using a bottom-
up strategy. The experimental results verified the performance
of our proposed index and approaches in terms of efficiency,
effectiveness and space cost. Besides geographic influence
maximization problems, the investigated index and algorithms
in this work can also be applied to spatial-social data analytical
problems such as spatial-social community detection.

9 ACKNOWLEDGMENT
This work was mainly supported by the ARC Discovery
Projects under Grant No. DP140101587 and DP160102114.
This research is also partially supported by the ARC Discovery
Projects under Grant No. DP130103051, DP160102412 and
DP170104747. Thanks partial support from NSFC projects
under Grant No.61370080 and No.61170007, and the Shanghai
Innovation Action Project under Grant No.16DZ1100200.

REFERENCES
[1] N. Anstead and B. O’Loughlin. Social media analysis

and public opinion: The 2010 UK general election.
J. Computer-Mediated Communication, 20(2):204–220,
2015.

[2] Ç . Aslay, N. Barbieri, F. Bonchi, and R. A. Baeza-Yates.
Online topic-aware influence maximization queries. In
EDBT, pages 295–306, 2014.

[3] N. Barbieri, F. Bonchi, and G. Manco. Topic-aware social
influence propagation models. In ICDM, pages 81–90,
2012.

[4] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger.
The R*-Tree: An efficient and robust access method for
points and rectangles. In SIGMOD, pages 322–331, 1990.

[5] A. Bruns, S. Harrington, and T. Highfield. Political net-
works on twitter: Tweeting the queensland state election.
In European Communication Conference ECREA, 2012.

[6] S. Chen, J. Fan, G. Li, J. Feng, K. Tan, and J. Tang.
Online topic-aware influence maximization. PVLDB, 8
(6):666–677, 2015.

[7] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large-scale
social networks. In SIGKDD, pages 1029–1038, 2010.

[8] W. Chen, Y. Yuan, and L. Zhang. Scalable influence
maximization in social networks under the linear thresh-
old model. In ICDM, pages 88–97, 2010.

[9] W. Chen, T. Lin, and C. Yang. Efficient topic-aware
influence maximization using preprocessing. CoRR,
abs/1403.0057, 2014.

[10] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of
the top-k most relevant spatial web objects. PVLDB, 2
(1):337–348, 2009.

[11] P. M. Domingos and M. Richardson. Mining the network
value of customers. In SIGKDD, pages 57–66, 2001.

[12] S. Feng, X. Chen, G. Cong, Y. Zeng, Y. M. Chee, and
Y. Xiang. Influence maximization with novelty decay in
social networks. In AAAI, pages 37–43, 2014.

[13] R. A. Finkel and J. L. Bentley. Quad trees: A data
structure for retrieval on composite keys. Acta Inf., 4: 1–
9, 1974.

14

[14] D. Kempe, J. M. Kleinberg, and E´ . Tardos. Maximizing
the spread of influence through a social network. In
SIGKDD, pages 137–146, 2003.

[15] M. Kimura and K. Saito. Tractable models for infor-
mation diffusion in social networks. In PKDD, pages
259–271, 2006.

[16] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M.
VanBriesen, and N. S. Glance. Cost-effective outbreak
detection in networks. In SIGKDD, pages 420–429, 2007.

[17] G. Li, S. Chen, J. Feng, K. Tan, and W. Li. Efficient
location-aware influence maximization. In SIGMOD,
pages 87–98, 2014.

[18] Z. Li, K. C. K. Lee, B. Zheng, W. Lee, D. L. Lee, and
X. Wang. IR-tree: An efficient index for geographic
document search. IEEE Trans. Knowl. Data Eng., 23
(4):585–599, 2011.

[19] B. Liu, G. Cong, D. Xu, and Y. Zeng. Time constrained
influence maximization in social networks. In ICDM,
pages 439–448, 2012.

[20] M. Sviridenko. A note on maximizing a submodular set
function subject to a knapsack constraint. Oper. Res. Lett.,
32(1):41–43, 2004.

[21] F. Tang, Q. Liu, H. Zhu, E. Chen, and F. Zhu. Diversified
social influence maximization. In ASONAM, pages 455–
459, 2014.

[22] C. B. Williams and G. J. Gulati. Social networks
in political campaigns: Facebook and the congressional
elections of 2006 and 2008. New Media & Society, 15
(1):52–71, 2013.

J. Shane Culpepper completed a PhD at The
University of Melbourne in 2008. Since then he
has been a faculty member at RMIT University,
with research interests in designing efficient al-
gorithms and data structures for a wide variety
of information storage and retrieval problems.

Zhenying He received the BS, MS and PhD de-
grees in Computer Science from Harbin Institute
of Technology, China in 1998, 2000 and 2006,
respectively. Currently he is an associate profes-
sor in the School of Computer Science, Fudan
University. His current research interests include
keywords search on structured data, query pro-
cessing on RDF data and big data.

Jianxin Li received received his PhD degree in
computer science, from the Swinburne Univer-
sity of Technology, Australia, in 2009. He is a
senior lecturer in the School of Computer Sci-
ence and Software Engineering, the University
of Western Australia. His research interests in-
clude database query processing & optimization,
social network analytics, and traffic network data
processing.

ber of ACM.

Chengfei Liu received the BS, MS and PhD de-
grees in Computer Science from Nanjing Univer-
sity, China in 1983, 1985 and 1988, respectively.
Currently he is a Professor in the Faculty of Sci-
ence, Engineering and Technology, Swinburne
University of Technology. His current research
interests include keywords search on structured
data, query processing and refinement for ad-
vanced database applications, query processing
on uncertain data and big data, and data-centric
workflows. He is a member of IEEE, and a mem-

Timos Sellis received the PhD degree in com-
puter science from the University of California,
Berkeley, in 1986. He is a professor at the Swin-
burne University of Technology, Australia. Till the
end of 2012, he was the director of the Insti-
tute for the Management of Information Systems
(IMIS) and a professor at the National Technical
University of Athens, Greece. Between 2013 and
2015, he was a professor at RMIT University,
Australia. His research interests include big data,
data streams, personalization, data integration,

and spatio-temporal database systems. He is a fellow of the IEEE and
ACM.

Junhu Wang received his PhD in Computer Sci-
ence from Griffith University, Australia in 2003.
He is currently an associate professor at the
School of Information and Communication Tech-
nology, Griffith University. His research interests
include query processing, integrity constraint
reasoning, and graph algorithms.

	07890988-1
	5.1 Identifying (ρ, k)-satisfactory Sub-regions
	5.2 Finding Best k Seeds
	6.1 Experimental Settings
	6.2 Efficiency Evaluation
	6.3 Effectiveness Evaluation
	6.4 Space Cost Evaluation

