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Abstract—Influence maximization is a recent well-studied problem developed for identifying a small set of users that are most likely    
to “influence” the maximum number of users in a social network. The problem has attracted a lot of attention as it provides a way to 
improve marketing, branding, and product adoption. However, existing studies rarely consider the physical locations of the social users, 
but location is an important factor in targeted marketing. In this paper, we propose and investigate the problem of influence maximization 
in location-aware social networks, or, more generally, Geo-social Influence Spanning Maximization. Given a query q composed of a 
region R, a regional acceptance rate ρ, and an integer k as seed selection budget, our aim is to find the maximum geographic spanning 
regions (MGSR). We refer to this as the MGSR problem. Our approach differs from previous work as we focus more on identifying  
the maximum spanning geographical regions in the region R, rather than just the number of activated users in the given network like 
the traditional influence maximization problem [14], and in the query region like the location aware influence maximization problem [17]. 
This research can advance the effect of online campaigns in viral marketing by considering the locations of social users. To address the 
MGSR problem, we first show it is an NP-Hard problem. Next, we present a greedy algorithm with a 1 − 1/e approximation ratio to solve 
the problem and further improve its efficiency by developing an upper bound based approach. Then, we propose the OIR*-tree index, 
which is a hybrid index combining ordered influential node lists with an R*-tree. We show that our index based approach is significantly 
more efficient than the greedy algorithm and the upper bound based algorithm, especially when k is large. Finally, we evaluate the 
performance for all of the proposed approaches using three real datasets. 

✦ 
 
 

1 INTRODUCTION 

Influence maximization has attracted considerable attention in 
recent years as a means of enhancing marketing campaigns 
through social networks [7, 8, 11, 12, 14, 15]. In real appli- 
cations, companies often run surveys for new products, and 
perform market tests via social networks before they produce 
the new products. In general, these companies are only able    
to choose a small number of social users to trial their new 
products due to financial restrictions. So, the question is: 
Which users should be targeted by the companies if the goal is 
to seed the social network such that as many users as possible 
will hear about the products. Or simply, what set of users     
can exert the most influence over the entire network? This  
well studied problem is commonly referred to as Influence 
Maximization. 
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However, there is a significant and open problem in current 
marketing efforts: How do you select a certain number of users 
whose influence can maximally cover an agent’s targeted geo- 
graphical region? For example, consider a political campaign 
engagement via social networking. Social media has been a 
powerful engagement tool in recent political campaigns such 
as the US Election [22], UK Election [1], and the Australian 
Election [5]. Under normal circumstances, a politician wants  
to target conversations in a particular region. To do this, the 
approach is to select or persuade a certain number of social 
users who have the maximum influence coverage within the 
targeted region. Inside the targeted region, it may have many 
small sub-regions that require more attention  than  others.  
The candidate wants to influence more sub-regions where a 
minimum percentage of votes is needed in each sub-region     
to win the election. Therefore, the goal is to influence the 
maximum number of sub-regions where in each sub-region 
there is a certain percentage of social users who can be 
influenced. There are other social network driven campaigns in 
real world scenarios such as physical advertisement placement, 
new service facility placement, and call-for-sport-events, that 
might benefit from this line of  research. 

Consider another example where Adidas-Australia would 
like to launch a citywide marathon within the greater Mel- 
bourne region. To attract more participants and advertise their 
products, Adidas-Australia would like to carefully select and 
plan a starting venue, a stop venue, as well as running routes 
within the targeted greater  Melbourne  region.  To  address  
this issue, our proposed technique can recommend a certain 
number (k) of influential users and their influenced sub-regions 
to Adidas-Australia. The selected users have the maximum in- 
fluence spanning inside the targeted greater Melbourne region. 
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For each sub-region, the selected influential users are able to 
successfully influence a certain percentage of users. By doing 
this, our proposed technique can easily help Adidas-Australia 
determine which set of k influential users satisfies their needs, 
and then invite the k users as boosters for the sporting event,  
or send sporting advertisements to the k users, which can help 
attract a certain number of users in each sub-region along the 
planned running routes. 

In these applications, the agents or companies not only need 
to target a certain number of social users, but also require the 
geographic influence spanning coverage of the selected users 
within the targeted regions to meet a pre-determined mini- 
mum coverage criteria. To address this problem, we propose 
and investigate the problem of geo-social influence spanning 
maximization in location-aware social networks. Given a query 
with a query region R, a  minimum  covering  percentage  ρ 
and a number k, we find the Maximal Geographical  Spanning 
Regions (MGSR) R′  ⊆ R satisfying at least ρ percent of   users 
in R′ that can be influenced by k users. Increasing ρ results in 
smaller, more condensed spanning coverage, while decreasing 
ρ results in larger, more sparse spanning   coverage. 

Although several other variations on the theme of influence 
maximization have been explored recently, previous work 
focused on the number of users to be influenced by the k 
selected seed users. Aslay et al. [2] and Chen et al. [6] 
investigated topic-aware influence maximization based on the 
topic distributions within social networks, which finds the k- 
best seed users with the maximum influence spread on the 
social networks via the different topic-based influence propa- 
gation values. Li et al. [17] studied the problem of influence 
maximization in a constrained query region on location-aware 
social networks. Their goal was to select k-best users in a 
social network which can influence the maximum number of 
social users in the given query region. All prior work does not 
consider the geographic spanning issue as presented   here. 

The significance of the MGSR problem is based on two key 
observations: (1) The users in the social network are rarely 
evenly distributed across a region. A small region may contain 
a large number of social users. It is also likely for a large 
region to contain a small number of social users.  Assume 
every region is able to contain the same number of users. then 
resolving the MGSR problem would be equivalent to [17]. But 
the assumption is too strong to be practical in real application; 
and (2) a social user may have a higher chance to influence 
neighbors in the physical world that are geographically close. 
All existing work ignores this fact. To fill this research gap,  
we investigate the MGSR problem in this paper, and consider 
both the influence spread of seed nodes (expected number of 
activated nodes), and the geographic spanning area covered by 
the influence of seed nodes. The proposed MGSR problem and 
techniques described in this work can easily enable users to   
do geo-marketing services and brand  advertising. 

Similar to all other work on influence maximization, the 
MGSR problem is also an NP-hard problem, which will be dis- 
cussed in the following section. The addition of the minimum 
coverage ρ increases the overall complexity of the problem 
since it  is  a  bi-criteria  optimization  problem.  To  address  
the challenges of MGSR, we first show that the geographic 

influence spanning of a selected user can be modeled using      
a monotonic submodular function MGSR(). Then, we present  
a greedy approach to incrementally identify the top-k initial 
users with a 1 − 1/e approximation  ratio  guarantee,  and  
then develop an upper bound based approach to improve the 
efficiency. Although we can use a spatial index such as an R*- 
tree [4] or a QuadTree [13, 17] to prune the users outside of the 
query region, the greedy approach and the upper bound based 
approach are still expensive because they have to repeatedly 
compute and update the geographic influence span for each 
candidate user or the upper bound value. In order to further 
improve the efficiency, we develop an incremental algorithm 
using a new hybrid indexing structure which combines an R*- 
tree, and ordered influential user lists. We refer to this new 
index as an OIR*-tree. The incremental algorithm consists of 
two main steps: First, the possible sub-regions within the given 
query region are checked to see if they are (ρ, k)-satisfactory; 
rather than probing users one by one as the greedy approach; 
Next, the final k nodes that can maximize the geographic 
influence span within the query region are identified. By doing 
this, we reduce the repeat of probing each user that has 
influence on the query region independently, other than probing 
the union of all possible k   users. 

The main contributions of this work  are: 
• This is the first work to explore the problem of identify- 

ing the MGSR in a social network, which is significant 
and complementary research to the field of location- 
based social networks. 

• We develop a new hybrid index - the OIR*-tree which 
combines  the  best  features  of  ordered  influential user 
lists and an R*-tree. The  proposed  index  is  suitable 
for use in a large number of spatial social influence 
maximization problems. 

• One baseline approach and two advanced algorithms are 
proposed to efficiently compute  MGSR. 

• We evaluate the efficiency and effectiveness of the 
proposed techniques using three real datasets and show 
the benefits of our methods in comparison to   [17]. 

The remainder of this paper is organized as follows. Sec- 
tion 2 presents the formalization of the MGSR problem. In 
Section 3, we present a greedy approach based on the submod- 
ular property of MGSR. Then, an upper bound based approach 
is developed to improve the efficiency in Section 4. To further 
reduce the computational cost, we then develop a novel index 
and propose an efficient indexing approach in Section 5. The 
results from the experimental study are discussed in Section 6. 
Finally, we review related work and our focus in Section 7. 
This work is concluded in Section   8. 

 
2 THE MGSR PROBLEM 
A location-aware social network is modeled as a directed graph 
G = (V, E, P ), where vertexes in V are users, edges in E  
are follower/followee relationships, and for any edge u → v, 
P (u, v) provides the propagation probability of u to v. Each 
vertex v ∈ V has a geographical location (x, y) with longitude 
x and latitude y. Initially, each  vertex is inactive.  If a vertex   
u is selected as a seed, u becomes active and will activate 
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its out-neighbors. If u′s out-neighbor v  becomes  active,  v  
will in turn activate v′s out-neighbors. There are two widely- 
adopted models - the independent  cascade  (IC)  model  and 
the linear threshold (LT) model in [7, 14]. In this work, we 
adapted the IC model to compute the influence propagation 
probability  between  users.  For  a  given  seed  node  u,  it has 

(V, E, P ), a MGSR query q with the parameters (R, k, ρ), 
where R is a query region, k is the maximum number of seed 
nodes to be selected, and ρ is the minimal covering ratio, find  
a k-vertex set S ⊆ V      and a set of influence spanning regions 
GIS(S) ⊆ R such that MGSR(S) = 

a single chance to activate each inactive neighbor v with an 
independent probability indicated by the edge weight P (u, v). 
The newly active node v will further activate its inactive 
neighbors iteratively. But a node becomes active if and only  if 

( 
arg max α × 

S⊆V,|S|≤k 
 

subject to 

{GG ∈ GIS(S)} 
{GG ∈ R} + (1 − α) × 

|{v ∈ GIS(S)}| 
1

 . 
|VR| 

(1) 

it gets the propagation probability above a certain value. This 
is a practical adaption about the IC   model. 

 
Definition 1: (Geographic Grids GG) Consider a social net- 

work G where each user has a geo-location. A two-dimensional 
geo-map  of  the  social  users  in  G  is  partitioned  into  grids 
{GG1, ...}. The grid size can be  specified  by the  system as  
the total number of generated    grids, or as the square distance 
of each grid (in kilometers for   example). 

 
Definition 2: (Reachable Grids of a Node) Let node u be a 

seed of the activated node set A(u) in a social network G. A 
grid GGi is reachable by the node u if it contains at least one 
activated node in A(u). 

However, reachable GGs may over-estimate the influence of 
a seed node in the geographic area based on Definition 2. This 
is because a geographic grid GG may contain many inactive 
nodes. To allow users to explicitly set constraints, we introduce 
an user-specified parameter ρ to set the minimal covering ratio 
of a grid that can be selected for   influence. 

 
Definition 3: (Countable GG of a Node) Given a node u 

as a seed and the activated node set A(u), a grid GGi is 
countable if and only if it is reachable by u, and it satisfies 

|{v|v∈GGi}| ≥ ρ where |{v|v ∈  GGi}| is  the  total 
number of nodes appearing in the coverage of grid GGi, using 
the minimal covering ratio ρ. 

 
Definition 4: (The Geographic Influence Span GIS of a 

Node) Given a node u in a social network, the geographic 

|{v|v ∈ GGi ∩ A(S)}| ≥ ρ 
|{v|v ∈ GGi}| 

for each grid GGi ∈ GIS(S). 
Here, α balances the tradeoff between the geographic span 

and the number of nodes covered. {GG ∈ R} represents the set 
of geographic grids inside the query region R. {GG ∈ GIS(S)} 
represents the set of geographic grids inside R and they are 
countable for the  seed  set  S.  |{v  ∈  GIS(S)}|  represents  
the number of nodes appearing in the geographic grids of 
GIS(S) and |VR| is the total number of nodes inside the query 
region R. The parameters {GG ∈ R} and |VR| are used for 
normalization. 

From Definition 5, we can see that if S is the selected as 
the set of k seed nodes, then no other k-vertex set S′ ⊆ V 
satisfies MGSR(S′) ≥ MGSR(S). When the parameter α = 0, 
MGSR becomes the location-aware influence maximization 
problem   [17], with the addition of a region constraint ρ.   
If the parameter α = 1, then MGSR only considers the 
geographic influence span constrained by ρ. Therefore, in this 
work we present a definition of geographic influence spanning 
maximization in the general case. By setting a suitable α 
value (e.g., α = 0.5), users can identify a k-vertex set, and 
find the corresponding best sub-regions in a targeted query 
region. In the above discussion, the fixed-size grids are used 
to describe the geographic span or coverage in order to make 
the definitions easy to understand. Alternatively, we calculate 
the exact geographic span or coverage in the examples and 
experiments by using the coordinates of social users. 

 
y 

influence span GIS(u) is the set of countable grids {GG} of 
the node u based on Definition 3. 

Given a query region R, there may be many grids inside R. 
For a seed set S, if all of the grids inside R are countable, 
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social users is not geographically uniform. In this work, when 
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the region must be countable for S. In addition, the number of 
nodes appearing in the countable regions is another important 
factor when evaluating the significance of the geographic 
influence span. Therefore, in this work we investigate the 
following problem: How can we select the k vertices that 
maximize both the geographic influence span and the number 
of nodes to be covered in the   span? 

 
Definition 5: (Maximum Geographic Spanning Region 

Query MGSR) Given a location-based social network G    = 

Fig. 1.  A Partial Social Network with Edge Influence. 
 
 

Example 1: Consider the social graph in Figure 1 and a 
query q where the drawn box enclosed with the dashed lines 
represents a query region R =  {(0, 0.5); (3, 5)},  k  =  1, 
and ρ = 50%. Assume that α = 0.5 and if a node u can 
successfully influence another node v in the social graph, then 
its influential score to v should be a certain value (say 0.3) 
based on the distribution of edge propagation   probabilities 
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[7, 14]. Taking the node v5 as an illustration, it can influence 
the nodes v3 (with 0.4), v10 (with 0.3), v9 (with 0.25), and v8 
(with 0.0). So, only two nodes (v3 and v10) have an influential 
score greater than or equal to 0.3, which are colored green. 
Their corresponding sub-region is marked by the green box. 
Given that two nodes are activated by v5, the activation ratio in 
the green sub-region is 2 = 50%, which satisfies the minimal 
covering ratio ρ = 50%. Therefore, the green sub-region is 
a satisfied influence spanning region {(0, 0.5); (2.5, 4)}. As 
such, MGSR(v5) = 0.5 × (2.5−0)×(4−0.5) + (1 − 0.5) × 4 = 

we first select v5 and then choose v1 in S, the second seed v1 
can only contribute to a small area covering itself, because the 
area bounding the nodes v3, v8, v9 and v10  has been covered  
by seed node v5. If v1  is selected as the first seed, then it      
will identify a larger area covering v1 and v8. When v5 is 
selected as the second seed into S, the remaining spanning 
region will be discovered. Both strategies generate the same 
spanning region as the final  result. 

Property 2:  MGSR is an NP-hard  problem. 
The MGSR problem can easily be proven to be NP-hard by 

(3−0)×(5−0.5) 5 

0.724. Similarly, if we select node v8 (not v5) as a seed node, 
then only the node v9 can be influenced. Since v8 is located 
inside of the query region, the yellow sub-region consisting of 
the two nodes is a countable region {(0.5, 1.5); (2, 2.5)}. Thus, 

reduction from the influence maximization problem [14],   and 
computing the exact location-aware influence span can be 
shown to be NP-hard by reduction from the influence spread 
problem   [7].  The  only  requirement  is  to  set  ρ  = 0 and 

MGSR(v8) = 0.5 × (2−0.5)×(2.5−1.5) 2 VR  = V , where VR  is the node set covered by the query 
(3−0)×(5−0.5)  + (1 − 0.5) × 5 = 0.255. 

If ρ is increased up to 70%, the green sub-region cannot be 
treated as the influenced region because the minimal covering 
ratio does not hold for any single node. So v5 cannot be the 
seed candidate, but v8 still does. If ρ is increased up to 70% 
and k is set as 2, then the 2-best seeds would be {v5, v1} 
and MGSR({v5, v1}) = 1. In this example, we assume that the 
green (or yellow) sub-region is the geographic grid. Otherwise, 
the geographic grids inside the green (or yellow) sub-region 
must be recursively accessed. 

 
Theorem 1: (Duplicate Avoidance) Given any two nodes u1 

and u2, if both nodes appear in the top-k seed set S, then there 
are no duplicate when computing the score of   MGSR(S). 

In simpler terms if node u1 (or u2) can individually influ- 
ence a geographic region successfully, then the successive node 
u2 (or u1) can not influence the region again when calculating 
the overall score MGSR(S) for the seed set S. Theorem 1 
satisfies the targeted expectation in our problem - MGSR 
selecting a k-vertex set that can influence a geographical 
spanning area maximally. It also makes the comparison of 
MGSR possible across different candidate seed sets due to the 
following property. 

 
Property 1: (Order Insensitive MGSR Computation) The 

MGSR computation of the optimal seed set is insensitive to   
the selection order of the seed   nodes. 

Proof: Based on Equation 1, we can easily see that 
MGSR(S) is order-insensitive if GIS(S) is order-insensitive 
because the other parameters are invariant in the equation. 
Consider two nodes u1, u2  in S. According to Definition   1-4, 
we have GIS(S) = {GG}u1  + {GG}u2  - {GG}u1 ∩{GG}u2 

+ {GG}u1 u2 where {GG}u1 represents the set of countable 
geographic grids for u1, and {GG}u1 u2 represents the set of 
geographic grids that are countable for u1 and u2 together, 
but not for individual node u1 or u2. Therefore, GIS(S) can 
be  rewritten  as  GIS(u1) +  GIS(u2) -  GIS(u1)∩GIS(u2) + 
{GG}u1 u2 . From this transformation, we can see that GIS(S) 
is order-insensitive if S  contains two nodes. When     S  has 
more than two nodes, the above procedure is also applied by 
considering u1  and S \ {u1}, concluding the proof. 

Reconsider the nodes v5 and v1 in Figure 1 as an example if 
we know the optimal seed set S consists of the two nodes. If 

region. 
Property 3: MGSR(.) is a monotone submodular function. 

Proof: If the following inequality holds (1) MGSR(.) is a 
monotonic function. MGSR(S) ≤ MGSR(T ) for any node sets 
S ⊆ T ; (2) MGSR(S ∪ {u}) - MGSR(S) ≥ MGSR(T ∪ {u}) 
- MGSR(T ) for all nodes u and any node sets S ⊆ T ,   then 
the function is a monotone submodular   function. 

Since S ⊆ T , S must have  A(S)  ⊆ A(T )  where  A(S) 
and A(T ) represent the node sets activated by the seed node 
sets S  and T  respectively. Therefore, we have    MBR(A(S)) 
≤ MBR(A(T )). According to Definition 4, the geographic 
influence spanning value is calculated from the MBR of the 
activated node set. So we can derive MGSR(S) ≤ MGSR(T ), 
which means that MGSR(.) is a monotonic   function. 

Since MGSR(.) is a monotonic function, the geographic in- 
fluence spanning area of T must cover the geographic influence 
spanning area of S. When a new seed node u is added into    
the corresponding node sets S or T , the nodes activated by u 
appear in the influence spanning area of S must also appear in 
the influence spanning area of T , but not vice versa. So, u may 
activate more nodes outside of the influence span of S than that 
of T . Because of the node uniqueness constraint in Property 1, 
MGSR(S ∪ {u}) − MGSR(S) ≥ MGSR(T ∪ {u}) − MGSR(T ) 
always holds for all nodes u, and any node sets S ⊆ T . 

 
3 GREEDY APPROACH 
The submodular property of MGSR allows the seed node to   
be incrementally selected with the maximum marginal gain    
in influence for a query region. Then, the valid geographic 
influence span is identified based on the activated nodes in the 
query region. Finally, the search is incrementally expanded 
until k verified seed nodes are found, or until the geographic 
influence span of the current seed node set cannot be increased 
any  further.  The  approximate  MGSR  approach  can achieve 
a (1 − 1/e) approximation ratio by greedily identifying the 
top-k  seeds. Our approach uses incremental expansion with   a 
submodular set function subject to a knapsack constraint as 
originally described in Theorem 1 in   [20]. 

To do this, the incoming and outgoing influence for any node 
to a given node v is pre-computed. This produces two  indexes 
- an incoming list Lin(v) and an outgoing list Lout (v) for each 
node v  in the graph. To  reduce the index size without loss   of 
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quality, nodes with an influence less than a certain small value 
are pruned from the  index. 

the query region R are retrieved, and the influential nodes are 
retrieved  from  the  index  Lin(v)  for  each  node  v  ∈ VR. By 

   aggregating the accessed nodes, the complete seed    candidate 
Algorithm 1 MGSR Greedy  Approach 
Input: A graph G = (V, E), a user query q =  (R, k, ρ). 
Output: S - the k-vertex  set. 

1:  Find the nodes VR       appearing in R based on R*-tree index. 
2:  Initialize the candidate hash table C ←  φ. 
3:  for each node v ∈ VR   do 
4: Load the incoming list Lin(v). 
5: for each node u ∈ Lin(v) do 
6:  Store C(u) ← C(u) ∪ {v}. 
7: for i ← 1 to k do 
8:      ∆ ← 0 
9:       for each node u ∈ C \ S do 

10: if ∆ < MGSR(S ∪ {u}) − MGSR(S) then 
11: selection ← u 
12: ∆ ← MGSR(S ∪ {u}) − MGSR(S) 
13:       S ← S ∪ selection 
14:  return  S 

 
In Algorithm 1, we first load all of the candidate nodes 

using the pre-computed incoming and outgoing indexes. Then, 
the algorithm runs for k iterations to select k nodes with the 
maximal geographic spanning region value. In each iteration, 
the candidate node set is probed to find the best node that    
has the maximum marginal gain, i.e., a node u maximizing 
MGSR(S ∪ {u}) − MGSR(S), where MGSR(S ∪ {u}) and 
MGSR(S) are calculated using Definition 3. After k iterations, 
the k best nodes that have been found are returned. 

 
4 UPPER BOUND BASED  APPROACH 
To improve the efficiency of the greedy algorithm, we now 
develop an upper bound based approach to address the MGSR 
problem, which can prune out unnecessary candidate nodes 
during the computation. Before getting into the details of the 
upper bound based algorithm, we first present a lemma to show 
the existence of the upper  bound. 

Lemma 1:  For any node u, the MGSR marginal gain at 1 : k 
iterations cannot  exceed  the MGSR value  when u  is the  sole 

set S = VR ∪ {Lin(v)|v ∈ VR} can be found. To incrementally 
select and verify all k seed nodes with a maximum marginal 
gain, the seed candidates are sorted by the upper bound value 
of the geographic influence span within the query region R, 
where the regional upper bound of the MGSR of a node is 
defined in Definition 6. 

Definition 6: (Regional Upper Bound of a Node) Assume a 
set of nodes ASi−1 have been activated by Si−1 at the (i − 1)- 
th moment. Consider the node u being the i-th seed where 
0 ≤ i ≤ k. Given a geographic region R, and Lout (u)∩VR /= φ, 
the upper bound of the geographic influence span of u in R is 
defined as the countable geographic grids GG over the nodes 
in {Lout (u) ∩ VR} and {v ∈ ASi−1 |v ∈ GG(Lout (u) ∩ VR)}. 

However,  the  regional  upper  bound  of  a  node  may have 
overlaps with previous seeds. So it cannot be directly used as 
the upper bound. To address this, the incremental portion must 
be computed as the actual countable upper bound, and is the 
“new reward” effect of introducing the node as a new    seed. 

Definition 7: (Countable Regional Upper Bound of a Node) 
The countable regional upper bound of a node is the regional 
upper bound minus the overlaps with the previous   seeds. 

Based on the countable regional upper bound of a node u 
and the number of nodes covered by the countable MBR, the 
incremental score of MGSR can be computed as MGSR(Si−1 ∪ 
{u})-MGSR(Si−1). 

Example 2:  Consider  the  example  in  Figure  1.    Assume 
the node v5 is  in  the  seed  set  at  the  current  moment  and 
the  influence  span  is  enclosed  in  the  green  box.  When the 
node v1 is probed, the regional upper bound value is the 
whole query region in the box {(0,0.5); (3,5)} where v3 and 
v10 have been activated by v5; v8 and v9 are included in 
the influential region of v5; v1 is the only one node to be 
newly activated. Since the overlapping area {(0, 0.5); (2.5, 4)} 
to be influenced by v5 must be excluded, the residual is 
the countable regional upper bound value of v1 which is 
(3− 0)×(5− 0.5) −(2.5 − 0)×(4− 0.5) = 13.5 − 8.75 = 4.75. 
Therefore, MGSR({v5, v1}) − MGSR({v5}) = 0.5 × 4.75  + 

seed  in S. 0.5 × 1 = 0.28. 
Since MGSR(.) was proven to be a monotone and   submod- 

5 
The upper bounding procedure is presented in Algorithm  2. 

ular function in Property 3, we can show that MGSR(Si−1 ∪ 
{u}) −MGSR(Si−1) ≥ MGSR(Si ∪ {u}) −MGSR(Si) always 
holds where Si−1 ⊆ Si. That is, the maximal gain when taking 
a node as a new seed in the early steps of the process must 
be larger than or equal to that of taking the node in the late 
steps. For any node, the maximal gain is not increased by the 
number of iterations. As such, we can see that MGSR(u) is    
an upper bound on the maximal gain produced by u for any 
i-th iteration (i ∈ [1 : k]). 

Given a node and an exact maximal gain value at the i-th 
iteration, Lemma 1 can be applied to safely skip the nodes  
with an upper bound value less than the node’s true maximal 
gain value. Furthermore, the upper bound values provide a 
probing priority for the nodes in the algorithm. That is, the 
nodes with highest upper bound values will be accessed first. 
For a given query region, all of the nodes VR  appearing in 

We first load the candidate set C for the query q. Then, the 
upper bound value for each candidate node in C is initialized. 
These candidate nodes are maintained in a heap M where the 
candidate nodes are ordered in a descending order of upper 
bound values. After that, k iterations are ran to find the k best 
candidates. In each iteration, we always probe the candidate 
node u′ with the maximum upper bound and calculate the 
marginal MGSR gain ∆(u′). If the marginal MGSR gain ∆(u′) 
is larger than or equal to the upper bound value for the next 
node, then u′ can be safely selected as the best choice in this 
iteration. Otherwise, the computed marginal MGSR gain ∆(u′) 
and u′ will be  re-added  back  to  the  heap  M ,  where  u′  in 
M may be reconsidered in a late iteration. If possible, u′ is 
selected as the best choice without any further computation 
since the current MGSR value of u′ is an exact value, and the 
value is the largest one in M . The procedure is presented in 



 

 

 

 

4 6 

 
 
 
 
 

6 

 
Algorithm 2 MGSR Upper Bound  Approach 
Input: A graph G = (V, E), a user query q =  (R, k, ρ). 
Output: S - the k-vertex  set. 

1:  Find the nodes VR  appearing in R    based on R*-Tree index. 
2:  Load the candidate node set C    using Line 3-6 in Algorithm 1. 
3:  Initialize a sorted heap M ← φ. 
4:  for each node u ∈ C  do 
5: Compute MGSR(u) and record u → MGSR(u) into   M . 
6: for i ← 1 to k do 
7: Stop ← false 
8: while not Stop  do 
9: Get the top node u′ and the MGSR value ∆(u′) from M . 

10: if u′ has not been visited then 

5.1 Identifying (ρ, k)-satisfactory Sub-regions 
In this subsection, our aim is to find all of the sub-regions 
where ρ percentage of nodes can be activated using a k-sized 
vertex set. By doing this, a set of significant sub-regions can  
be identified as the components of the MGSR candidates, and 
the sub-regions can be filtered without incurring unnecessary 
MGSR computations. 

Each sub-region is assessed based on the incoming node 
lists (Lin(v)) of the nodes  in  the  sub-region.  The  nodes  in 
the sub-regions and their respective incoming node lists can   
be maintained using a combination of an R*-tree and ordered 
influential node lists, a hybrid index that we will refer to as ′ ′ 

11: ∆(u ) ← MGSR(Si−1  ∪ {u }) − MGSR(Si−1) 
12: if ∆(u′) ≥ MGSR(unext ) of the second node unext ∈ M then 

an OIR*-tree index henceforth. A similar hybrid index was 
proposed by [10] and [18], where an R-tree and inverted   files 

′ ′ were combined for spatial keyword search. 
13: S ← S ∪ {u }; C ← C \ {u }; 
14: i ← i + 1; Stop ← true; 
15: else 
16: Move u′  → ∆(u′) to the right position in  M based 

on the updated bound ∆(u′). 
17: else 

In this paper, we develop a new data structure to support 
spatial influence analysis in social networks. It is a hybrid 
index for influential nodes. For each vertex stored as an OIR*- 
tree node, the corresponding incoming node list is computed 
and stored as an ordered influential node list. The nodes in  the ′ ′ 

18: S ← S ∪ {u }; C ← C \ {u }; 
19: i ← i + 1; Stop ← true; 
20:  return  S 

 
 

Line 8- 19. 
 
 

5 THE OIR*-TREE INDEX BASED  SOLUTION 

Although the upper bound based approach can improve the 
efficiency of the greedy approach, the computational cost is 
still high because the upper bound is not tight. In both the 
greedy approach and the upper bound approach, it is difficult 
to improve the efficiency since the MGSR computation can   
be repeated. Another limitation in the two approaches is the 
effectiveness. Even though the submodular property guarantees 
the algorithms can achieve a (1 − 1/e)-precision, there is 
inevitably some loss in overall effectiveness. Since we    know 
the selection of the seed nodes depends on previously selected 
seed  nodes  in  the  k  iterations,  we  now  propose  a heuristic 

list are ranked by “activation power” in the current sub-region. 
The activation power of a node in a sub-region is approximated 
by the number of nodes in the sub-region that can be activated 
by the node. In addition, the intermediate results of the sub- 
regions at the lowest level in the tree can be reused to check 
the (ρ, k)-satisfaction of a sub-region at higher levels. Figure 2 
and Figure 3 present an example of the indexing structure used 
for maintaining the social graph in Figure   1. 

 

 
Fig. 2.  R*-Tree Representation of a Social Graph 

 
 

R7 :  R5 R6 

approach to remove the dependencies in seed node selection. 
The basic idea is that given a query region, first find all the 

sub-regions to be covered by the query region from the OIR*-
tree  based  on  a  hybrid  social-and-spatial  index. Then, 

R5 :  R1 R2 
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incrementally determine if the sub-region satisfies the given  
L1 : {( v1 ,2); ( v4 ,2); ( v5 ,1); 

 
 

L2 : 
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L4 : 

9    12 

query requirement (ρ,k). If so, a k-vertex set that can    activate 
ρ percent of the nodes in a sub-region exists. By doing this,    a 

(v6 ,1); ( v11 ,1)} {( v5 ,1); ( v8 ,1); ( v11 ,1)} 
{( v4 ,2)} {( v1 ,1); ( v3 ,2); ( v9 ,1); 

(v12 ,1)} 

subset of significant sub-regions are identified. Starting from 
the significant sub-regions with a maximum span, we can 
compute the MGSR and find the corresponding candidate seed 
nodes. Since the significant sub-regions are identified by their 
own k-vertex sets, the aggregated k-vertex sets may be larger 
than the maximal allowable value k. To discover the final k- 
vertex set, select and expand every potential sub-region that 
has been identified until the geographic influence span cannot 
be expanded any further. 

Fig. 3.  OIR*-Tree Data Structure of a Social Graph 
 

Example 3: Consider a query (R5, 0.7, 2) on the data in 
Figure 3 where α = 0.5. Since there are two sub-regions R1 
and R2 at the leaf level, we will first check to see if they are 
(ρ, k)-satisfied. To do this, the influential node set is accessed 
in the order of nodes in L1. Since ρ is set as 0.7, there are 
three choices to activate R1 – {v1, v4}, {v1, v5}, or {v4, v6}. 
For R2, there are only two choices – {v5, v8} or {v8, v11}.  In 
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this case, both are (ρ, k)-satisfied. To process internal MBR 
nodes such as R5, we need to dynamically compute the ordered 
influential node list based on the child MBR nodes. In this 
example, this is L5: {(v1, 2); (v4, 2); (v5, 2); (v11, 2);     (v6, 1); 
(v8, 1)}, which aggregates L1  and L2  together. Since ρ is set 
as 0.7 and k = 2, we need to check if we can find at most two 
seed nodes that can successfully activate ⌈0.7 × 5⌉ = 4. From 
the ordered list L5, we can see there are four candidate nodes 
since each of them can activate two nodes. After checking the 
activated nodes, we find that {v1, v5} would be the satisfied 
result for R5. 

From the above example, we can terminate our candidate 

function PROCESS LEAFNODE in Algorithm 4 performs the 
computation for the sub-regions at the leaf node, while the 
function RESULTREUSE in Algorithm 5 is applied to promote 
the intermediate results of a sub-region to a parent node. For 
any sub-region at the internal level, if all of the child nodes 
have  been processed, then the node is checked to see if it is  
(ρ, k)-satisfied based on the intermediate results of the node’s 
children, as shown in Line 16-Line 23. The exact approach of 
how to process the sub-regions in the internal level is presented 
in Algorithm 6. 

 
Algorithm  4  PROCESS  LEAFNODE(Ri)  

search when identifying R5 using the node v11 in L5. In L5, 
we know the best selection of a seed node can activate at 
most two nodes. Based on the requirement – ⌈0.7 × 5⌉ = 4, 
selecting the second seed node requires at least two more nodes 

1: Retrieve the ordered influential node list LRi 

2:  Initialize judged← false 
3:  Initialize p ← 0 
4:  Initialize temporary set Stemp  ← φ 

for Ri. 

to be activated. Therefore, the candidate search can be stopped 
by v11 in L5 because each of the remaining nodes can only 
activate one node. 

 
Algorithm 3 Sub-region Checking  Algorithm 

5:  while !judged  and p ≤ |LRi | and |Stemp| < k do 
6: Set vertex u ← LRi [p] 
7: Add u into Stemp 
8: // u.value is the number of nodes u can influence in the current 

subregion Ri. 
9: activated  num += u.value 

Input:  A  location-aware  social  graph  G  =  (V, E) maintained in 
OIR*-tree T , and a user query q = (R, ρ, k). 
Output:  An  updated  OIR*-tree  with  a  (ρ,  k)-satisfied sub-region 

10: if activated  num ≥ ρ × VRi 

11: judged  ← true 
12: else 

then 

marked. 
1: Find all the sub-regions Rset = {R0, R1, ...}  covered  by  the 

query region R using the OIR*-Tree  index. 
2:  // Process sub-regions  bottom-up. 

13: U ← U ∪ Ai(u) where Ai(u) is the influenced node set in 
Ri for the influential node u. 

14: for all u′ ∈ L do ′ ′ 15: Ai(u ) ← Ai(u ) \ Ai(u) ′ ′ 
3:  while Rset  /= φ do 
4: Ri ← POP(Rset ) 
5: if Ri is a leaf node then 
6: (judged, Stemp) ← PROCESS   LEAFNODE(Ri) 
7: if judged = true  then 
8: Mark Ri as (ρ, k)-satisfied sub-region in OIR*-tree. 
9: else 

10: Mark Ri as non-(ρ, k)-satisfied sub-region in OIR*-tree. 
11: if Rj  ∈ Rset  covering Ri  /= ∅ then 
12: // Promote intermediate result of Ri  to Rj . 
13: RESULTREUSE(Ri, Rj ) 
14: Disable Ri  as a child sub-region of Rj . 
15: else 
16: if All child sub-regions of Ri have been processed then 
17:  (judged, Stemp) ← PROCESS INTERNALNODE(Ri) 
18:  if judged = true then 
19: Mark Ri as (ρ, k)-satisfied sub-region in OIR*-tree. 
20: else 
21: Mark Ri as non-(ρ, k)-satisfied sub-region in OIR*- 

tree. 
22: else 
23: Delay Ri until the child sub-regions are processed. 
24: return Updated OIR*-tree with a (ρ, k)-satisfied sub-region 

marked. 
 

Algorithm 3 provides the checking procedure for the sub- 
regions covered by a query. For each sub-region, check to see 
if the k seed nodes can activate ρ percent of nodes in the sub- 
region. To do this, a bottom-up strategy as shown in Line 4- 
Line 23 is used. If the current sub-region is a leaf node in the 
OIR*-tree, then check if ρ percent of the nodes can be activated 
by at most k seed nodes, as shown in Line 5-Line 14. The 

16: LRi [u ] ← |Ai(u )| 
17: Sort LRi . 
18:       Increment p. 
19:  return   judged and Stemp 

 
 

 
In Algorithm 4, we show the procedure of processing the 

sub-regions at the leaf level. When the algorithm is initialized, 
a list of ordered influential nodes is obtained. For each in- 
fluential node, the nodes influenced are selected. Then, the 
influential node in the first position of the list is taken as          
a seed node in each iteration, and the current percentage of 
nodes that can be activated is computed. After each influential 
node is processed, the order of the remaining influential node 
list is updated by removing the activated nodes. The iteration 
continues until ρ or k is satisfied, as shown in Line 5-Line 18. 
In Line 9, u.value is the number of influenced nodes which is 
recorded in the ordered influential node list LRi . In Line 14- 
Line 16, we remove the nodes that can be activated by u 
because active nodes cannot be activated again. In Line 17, we 
resort the influential node list LRi based on the removal of the 
active nodes. Finally, two computed results are returned. 
If a result exists (judged = true), then Stemp is the minimal 
number of seed nodes that can activate ≥ ρ percent of the 
nodes. Otherwise, Stemp  is a k  node set that can be used as    
an intermediate result when computing the sub-regions of   the 
parent nodes. 

Algorithm 5 shows how the intermediate results are main- 
tained such that they can be reused to test for (ρ, k)-satisfaction 
of the sub-regions of parent nodes. If a probed sub-region       
is  the  first  child  of  a  parent  node,  then  the  information is 
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Algorithm 5 RESULTREUSE(Ri, Rj ) 

1:  // Here, Rj  is the parent MBR node of Ri. 
2: Assume V i are the k nodes selected to satisfy (ρ, k) in sub-region 

Ri, and LRi   is the ordered node list of nodes influencing Ri. 
3:  if LRj   = ∅ then 
4: VRj   ← VRi 

obtained from their child nodes. Different from Algorithm 4, 
Algorithm 6 only needs to access a subset of influential nodes 
in V pool and the corresponding influenced node sets. This is 
because the subset of influential nodes are large enough to be 
used to work out the new k-vertex set for the internal nodes. 
The  correction  can  be  guaranteed  using  Property  4.  At the 

5: V pool i 
k ← Vk beginning of the algorithm, we need to access all node lists 

6: LRj   ← LRi 
7:  else LRj and  get  all  of  the influential  nodes  that  have  a higher pool 
8: LRj   ← aggregate LRj   and LRi . ranked positions than the position of the last node in Vk . 
9: V pool pool i Here,  V pool

 

k ← aggregate Vk and Vk . 
10: for each node v ∈ VRi   do 
11: if v ∈/ VRj   then 
12: Insert v into VRj . 

k maintains a set of influential nodes, and each 
influential node has an influenced node set for region Rj . The 
influential nodes in V pool are sorted based on the number of 
influenced nodes. The length of V pool  may be larger than k, 

13: else 
14: Update LRj  by minus 1 from the value of each influential and Rj doing 

k 
is one of the child nodes of  Ri we can get all of    the in the OIR*-tree. By 

influential nodes node u where v ∈ A(u) and u ∈ LRj . this, necessary 
15:  return   An updated sub-region Rj . 

 
 

recorded, as shown in Line 3-Line 6. Otherwise, the activation 
power for each of the influential nodes is computed on the    
fly to generate an aggregated  influential  node  list, as shown 
in Line 8-Line 14. In Line 8, we aggregate the two influential 
node lists via a union operation, where for a node appearing in 
the two lists, the values of the node are added together, and the 
aggregated value of the node is stored in the aggregated list. 
Here, a duplicate count can occur since an influential node may 
influence the same node in different subregions. The duplicate 
counts can be accounted for when the influence nodes are 
promoted to VRj  in Line 10-Line 14. In particular, Line 14 

and corresponding influenced node sets for the region Rj by 
accessing the child sub-regions Ri. In the While-Loop, the 
maximum number of nodes to be influenced by a k-vertex 
set is computed. Based on the intermediate results, the region 
Ri is checked to see if it satisfies the (ρ, k) conditions or not. 
If it is true, Ri is marked as a countable MBR. 

Given a sub-region, there may be a large number of nodes 
that can influence the sub-region. In practice, only a few nodes 
with high influence can get into the top-k set. To reduce the 
number of low scoring nodes to be probed, we propose the 
following heuristic pruning rule. 

Property 4: (Pruning of k Node Selection Pool) Consider 
two small sub-regions Ri and Rj with V i and V j as  the k k 
respective  k   node  sets  with  the  maximal  influence,     with 
corresponding  ordered  influential  node  lists  denoted  as LR 

adjusts the duplicate count. By doing this, the full influential node list can be obtained for the sub-region at the parent level. and  LRj .  Assume  there  is  a  large  sub-region  RN that 
i 

can 
cover Ri and Rj . To work out the seed set V N  of RN , we 
only need to explore partial nodes from the influential node 

Algorithm 6 PROCESS   INTERNALNODE(Rj ) lists LRi and LRj . For LRi or LRj , we only need to explore 
1:  Assume  LRj    maintains  a  set  of  ordered  node-value  pairs,  and 

k maintains a set of ordered node-nodes pairs. 
pool 

the nodes with influence higher than the ǫ times of vlowest’s 
influence where vlowest  is the node with the lowest influence in j 

2:  Find the position x in LRj   for the last node of Vk . {V i  ∪ V   }. 3: Find the subset L′
 from 0 """ x positions over L  . k k of Property 4 comes from the following intuition. 
Rj 

4:  Initialize judged  ← false. 
5:  Initialize p ← 0 

Rj The proof 
Consider a vertex vx that is one of k nodes for RN and the 
node’s  influence  is  much  smaller  than  that  of vertex vlowest 

6:  Initialize a temporary set Stemp  ← φ in the node list  LRN .  Note  that  the  list  of  nodes  has been 
7:  while !judged  and p ≤ |LRj | and |Stemp| < k do sorted by the influence of nodes to the region. So we know the 
8: Get the vertex u at the pointer position in L′   . position of a node in   LR represents the influential power on 
9: if u ∈/ V pool  or L′     [u] > |V pool[u]| then N

 
k Rj k the region. In this context, the assumption of selecting vx  in   a 

10: Get the influenced nodes of u from previously processed 
sub-regions. 

11: Stemp  ← Stemp ∪ u 
12: activated  num ← activated  num + u.value 
13: if activated  num ≥ ρ × VRi   then 
14: judged  ← true 
15: else 

k vertex set of RN , rather than vlowest , means that vx has more 
influence to RN than vlowest . If vx has much less influence than 
vlowest in all small sub-regions (Ri and Rj ), then it will have 
small likelihood to be in top-k candidate set for the large sub- 
region (RN ). As such, this pruning strategy allows us to focus 
on the significant nodes with a high likelihood. Therefore, we 

16: U ← U ∪ V pool [u] use the lowest position of a node v ∈ {V i ∪ V j } to bound 
k lowest k k 

17: Update L′
 

18: Increment p. 
by removing the active nodes in V pool[u]. the discovery of the k vertex set with regards to RN 

building the full ordered influential node list    LRN . 
, without 

19:  return  judged and Stemp 

 

Algorithm 6 is used to validate the (ρ, k)-satisfaction of sub-
regions of the internal nodes based on the intermediate 

 
5.2 Finding Best k Seeds 
At this stage, all sub-regions have been checked and labeled. 
The marked results are maintained in the updated OIR*-tree. 
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To find the final k vertex set that maximizes the MGSR within 
the query region, each sub-region candidate is probed, and the 
coverage across horizontal regions is expanded since different 
sub-regions may share seed nodes. In particular, when k is 
large, sub-regions can be activated by a small number (less than 
k) of nodes. In these cases, the sub-regions can be combined 
together by merging the vertex sets to achieve a maximum 
MGSR score. The straightforward solution is to make pair-wise 
comparisons for any two sub-regions, but it is is expensive. To 
reduce the computational cost, two approaches are explored: 
Exhaustive expansion and an ǫ-approximate expansion. 

Exhaustive Expansion: 
The key idea of exhaustive expansion is to probe the sub- 

regions level by level using the updated OIR*-tree. As shown  
in Algorithm 3, the sub-region of a parent node in the updated 
OIR*-tree covers all of the sub-regions of the child nodes in the 
same tree based on geographic coverage. Therefore, there are 
several conditions that can be used to induce early termination: 

• If a sub-region can be successfully selected as a result, 
then all sub-regions beneath can be   skipped; 

• Given two countable sub-regions Ri and Rj in the tree, 
if the selected k sets V i and V j are disjoint, V i ∩ V j = 

is equal to or larger than ǫ× the upper bound. If this is true, 
then the expansion for the candidate can be terminated. At the 
same time, all of the optimizations in the exhaustive expansion 
algorithm can also be exploited. After all of the expansions 
have terminated, the whole expansion algorithm can be safely 
stopped with the accuracy bounded by the ǫ approximation.  
By doing this, the algorithm can achieve eager termination 
without probing the sub-regions at the lowest levels. As such, 
the computational cost can be further   reduced. 

 
6    EXPERIMENTAL STUDY 
6.1   Experimental Settings 
Algorithms. We study the performance of the following al- 
gorithms: the greedy algorithm (Greedy) from Section 3, the 
upper bound approach (Upperbound) from Section 4, and the 
OIR*-tree index solution with an ǫ-approximate expansion 
(Index-based) from Section 5. 

Test    Datasets.    We   use    three    real    datasets 
Gowalla,  Twitter,  and  Foursquare.  All  three   datasets   
were downloaded from the author’s website [17] 
(http://dbgroup.cs.tsinghua.edu.cn/ligl/laim/).        The       user k k k k 

φ, then the other sub-regions in the subtree rooted at Rj 
do not need to be  probed; 

• If V i ⊇ V j , then Rj and Ri can be merged and the other 

location is the place the user most frequently checked in. The 
three datasets are directed graphs and the details are shown in  Table  1,  where  AvgD  denotes  the  average  degree,    and 

k k 
sub-regions in the subtree rooted at Rj do not need to 
be probed; 

• Assume that the updated OIR*-tree has been probed up to 
level lcurrent . At this moment, the intermediate results for 
some of the expanded sub-regions have been calculated. 
Based  on  the  sub-regions,  and  the  number  of  nodes 
covered by the sub-regions, the MGSR score is computed 
using the intermediate results. The calculated MGSR 
score is now the lower bound value of each sub-region 
candidate. The upper bound value of each sub-region 
candidate at the level lcurrent is also computed. Here, the 
upper bound value depends on the addition of the current 
node, and the other sub-regions overlapping with the 
sub-region in lcurrent . For certain sub-region candidates, 
if the upper bound values are lower than the lower bound 
of a sub-region expansion candidate, then the candidate 
can be skipped. 

By doing this, the final k node set and the maximum 
geographic influence spanning coverage can be obtained. At 
some point, only one sub-region expansion candidate is left, 
which can be returned as the best expansion. The remaining 
task is to expand only the best one by probing the other 
possible sub-regions that have not been checked, and cannot  
be covered by the selected sub-regions in the best   expansion. 

ǫ-approximate Expansion: 
Although the exhaustive expansion algorithm can terminate 

early, it still has to first probe all possible combinations, and 
then make the final decision based on the MGSR values of the 
combinations. This subsection addresses how to terminate the 
expansion algorithm as early as possible while bounding the 
accuracy with a predetermined approximation  ratio. 

The main idea of ǫ-approximate expansion is to terminate 
the expansion of a candidate by checking if the lower bound 

MaxID/MaxOD denotes the maximum  in-/out-degree. 
 

Datasets #Vertexes #Edges AvgD MaxID MaxOD 

Gowalla 197K 1.9M 9.67 739 735 
Twitter 554k 4.29M 7.75 1,143 639 
Foursquare 4.9M 53.7M 11.6 4,702 727 

TABLE 1 
Statistical Information for the Datasets 

 
 

Test Queries. We generated three types of queries with dif- 
ferent regional nodes, denoted as Q1, Q2 and Q3. The symbol 
of Q11 is used to show the experimental result when running 
Q1 over the 1st dataset Gowalla. Similarly, Q22 represents Q2 
ran over the 2nd dataset Tweet, and Q31 represents Q1 ran over 
the 3rd dataset Foursquare. We briefly use Q1, rather than Q11 
when we discuss the experimental results for the Gowalla data. 
Each query type is comprised of 50 queries with similar sizes 
of regional nodes, and we report the mean performance. In 
Table 2, we show the approximate sizes of regional nodes and 
the sizes of potential seed candidates for different queries and 
different datasets. All algorithms were implemented in C++ 
10.0 on Windows 7, and run on an Intel(R) CoreTM  i5 CPU 
@2.60GHz with 8GB RAM. 

 
6.2 Efficiency Evaluation 
In this section, we evaluate the efficiency of the proposed 
approaches over different datasets with different parameter 
settings. Here, we vary the size of k from 100 to 800. And ρ  
is selected as 0.1 and 0.2 since all three datasets are sparse. If 
we give a high value to ρ, the run often results in an empty 

http://dbgroup.cs.tsinghua.edu.cn/ligl/laim/)
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Statistical Properties of the Test Queries 
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Fig. 5.  Running Time for Queries on the Tweet 
 
 

improved the greedy algorithm 6 fold, while the index-based 
approach has a 175x improvement. When k = 800, the greedy 
algorithm and the upper bound based approach take 40,120 ms 
and 9,345 ms, respectively. Our index-based algorithm requires 
only 300 ms. In this case, the upper bound approach improved 
the greedy algorithm has a 4x improvement, while the index- 
based approach has around improves the performance about 
133 times. From this study, we conclude that the index-based 
approach is significantly better than the other approaches. 

When we increase the number of regional nodes and seed 
Fig. 4.  Running Time for Queries on the Gowalla 

 
 

result set for the specified sizes of k between 100 and 800. In 
addition, we run three types of queries over each dataset and 
report the mean time  performance. 

Gowalla dataset: From Figure 4, we can see that our pro- 
posed index-based approach performs much better than the 
greedy and upper bound approaches on the Gowalla dataset.  
In addition, the experimental results also show that the time 
cost of the three algorithms grows linearly as k increases, and 
varying ρ values does not affect the running   time. 

Taking Q1 as an example with ρ = 0.1. When k = 100, the 
greedy algorithm and the upper bound approach take 8,759 
ms and 1,429 ms, respectively. Our index-based algorithm 
takes only 50 ms. In this case, the upper bound approach 

candidates as Q2 and Q3, the three algorithms take much more 
longer to identify the k best seeds.As shown in Figure 4(a), 
Figure 4(c), and Figure 4(e), the greedy algorithm requires 
15,005 ms, 22,685 ms, and 3,1667 ms for  Q1, Q2, and 
Q3 when k = 200. With the same configuration, the upper 
bound approach requires 2,793 ms, 5,111 ms, and 7,770 ms, 
but our index-based approach needs only 80 ms, 200 ms, 
and 383 ms. As k increases, the greedy and upper bound 
approaches perform even worse. However, the index-based 
approach is much more scalable. The main reason is that the 
greedy algorithm has to repeatedly scan the complete seed 
candidate list, and the upper bound based approach also needs 
to repeatedly probe a large part of seed candidate list, but the 
index-based approach only needs to do a one-pass, local (ρ,k) 
verification. 

Tweet dataset:  Figure  5  shows  the  time  cost  of  the three 
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6.3 Effectiveness Evaluation 
We selected three specific regions with longitudes and latitudes 

Fig. 6.  Running Time for Queries on the Foursquare 
 
 

algorithms on the Tweet dataset. The trend of time cost grows 
linearly with the increase of k from 100 to 800. For Q1 shown 
in Figure 5(a), the greedy algorithm takes about 16 minutes,  
34 minutes, 64 minutes, and 121 minutes when k is set as  
100,  200,  400 and  800.  The  upper  bound  based approach 
takes about 1.1 minutes, 1.5 minutes, 2.3 minutes, and 3.6 
minutes with different k values. However, our index-based 
approach requires only 3 seconds, 5 seconds, 8 seconds, and 
16 seconds for the same tasks. From the experimental study, it 
concludes that our index-based approach outperforms the other 
two algorithms, although all scale linearly with respect to k. 
Varying ρ has no observable impact on the running time of the 
three algorithms. When we increase number of regional nodes 
and seed candidates as shown in Figure 5(a), Figure 5(c) and 
Figure 5(e), the running time for all three algorithms increases 
significantly. In the case of Figure 5(e) (k = 800), the greedy 
algorithm needs 2.7 hours to evaluate the query Q3. The upper 
bound based approach requires 3.4 minutes, and the index- 
based approach can finish the task in 23 seconds. 

Foursquare dataset: Figure 6 shows the performance of the 
three algorithms on the Foursquare dataset. Our index-based 
approach greatly outperforms the other two algorithms. When 
k = 100, the greedy algorithm takes 13 hours for Q1, 18 hours 
for Q2, and 22 hours for Q3 over the Foursquare dataset. For 
the three queries, the upper bound based approach takes about 
10 minutes, 14 minutes, and 18 minutes, but the index-based 

to demonstrate the effectiveness of the approaches. The queries 
were  Q1  =  {10.822811  -122.30276;  37.856213 -100.29089}, 
Q2  = {30.262996 -122.30276; 37.856213 -97.750338}  and 
Q3  = {20.262996 -122.30276 37.856213 -97.750338}.    We 
evaluate  the  three  cases  as  the  same  regional  queries over 
different datasets. Here, we only use the geo-region size as      
a metric, i.e., the overall region size of Q1  is calculated as 
(37.856213-10.822811)×(122.30276-100.29089)  = 595.0557. 
Similarly, we can get the other two region sizes. To     illustrate 
the effectiveness, we measure our proposed geo-social influ- 
ence spanning model by using the three metrics including the 
influence spanning coverage, the varied trend of the influence 
spanning ratio, and the spatial reachability in   geography. 

Figure 7 shows the spanning ratio for the influence coverage 
of the selected k best seeds for different queries and datasets. 
From the experimental results, we can see that the influence 
spanning ratio may not change as the size of seed nodes is 
increased. For example, k is 100, 200, 400 for Gowalla in 
Figure 7(a), k is 100 and 200 for Twitter in Figure  7(a),  
Figure 7(b) and Figure 7(c), and k is 200-800 for Foursquare  
in Figure 7(c). Since the social users are not distributed evenly 
on geo-map based locations,  there  is  no  observable  effect  
on the ratio. In  addition,  we  observe  that  the  approaches  
get better results on Foursquare dataset, than on the Twitter  
dataset or Gowalla dataset. For example, selecting 200 seeds 
on Foursquare can influence about 26.7% the region of Q3, 
but only 0.02% for Twitter and 0.0004538% for Gowalla. This 
study coincides with real properties of the investigated datasets. 
The Foursquare collection contains more social users in the 
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by [17] (denoted as RegionIM) and our proposed model 
MGSR, we developed a novel metric to measure the geographic 
reachability of activated nodes. Simply speaking, we assign a 
radius to each node where the radius is the average geographic 
distance from the node to its social neighbors. Given a region 
query, RegionIM and MGSR can both identify seed node sets 
and activated node sets. The goal of the new metric is to 
evaluate the percentage of the pairs of nodes in the activated 
node set which are reachable within the nodes’ radius. For 
example, given two nodes v1, v2, they are reachable if and only 
if the geographic distance between v 

8 and v2 is not larger than 
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Fig. 8.  Influence Spanning Speedup Comparison 

the sum of their radii. A lower percentage means the  activated 
nodes can influence a larger region. So, these nodes have a 
better spatial distribution. 

We take Q1 as an example to show the difference of the two 
methods. Here, ρ was set as 0.2 and α was set as 0.5 in the 
evaluation. Figure 9 shows the experimental results for the two 
large datasets Twitter and Foursqure. On Twitter, RegionIM in 
[17] recommended the top-k seeds. The activated nodes are 
pairwise reachable from 10% to 24% when k varies from 100 
to 800, based on the computed radii. But MGSR can reduce 
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the reachable ratio to 2% to 8%. On the Foursquare collection, 
the activated nodes in RegionIM reached each other from 33% 
to 50%, but MGSR can reduce the reachability from 7% to 
14% when k varies. From these results, we can see that the 
geographic distribution of activated nodes in MGSR is better 
than that of RegionIM in  [17]. 

6.4 Space Cost Evaluation 
(a) Twitter Data (b)  Foursquare Data    

 

Fig. 9.  Reachable Evaluation of Activated Nodes on Q1 

 
investigated region for Q3 (11k nodes for Gowalla, 63k nodes 
for Twitter, and 349k nodes for   Foursquare). 

Figure 8 shows the speedup for spanning ratios when we 
increase the number of seed nodes for the same dataset. 
From the results of Gowalla in Figure 8(a), a big increase   
in performance happens when k is 800 where the speedup 
metric uses the spanning coverage of k = 100 as a base. This 
means that 800 is a good starting point for us to specify the 
parameter k if we want to influence a certain sub-region on 
the Gowalla social network. This is because all three queries 
have large performance gains when k is 800, but not for 200 
and 400, with the comparison of k = 100. Similarly, we can 
see that 400 is a good value for the Twitter collection in 
Figure 8(b). For Foursquare, shown in Figure 8(c), we use 
the spanning coverage of k = 200 as the base of the speedup 
metric because the coverage of k = 100 is too low. But no 
clear good starting points can be found because there is large 
gap in the speedup values for the three queries for both 400 and 
800. From these results, we can see that the spanning coverage 
ratio does not always increase when k increases. The results 
also verify that our proposed MGSR model can successfully 
obtain the maximum coverage for different types of geographic 
distributions in different datasets. 

In order to show the effect of the seed nodes to be    selected 

 
TABLE 3 

Space Consumption for the Three Datasets 
 
 

In this section, we present the space usage when using an 
OIR*-tree index to evaluate the three types of queries over    
the three test collections where the original data size is 27.7 
MB for Gowalla, 149.7 MB for Tweet, and 1.58 GB for 
Foursquare. As shown in Table 3, the space cost of building  
the OIR*-tree index is 19.1 MB, 105.0 MB, and 989.6 MB 
for the three datasets, respectively. We  measure  the  space 
cost of evaluating the three types of queries in the datasets 
using the proposed algorithms. Since we load the whole index 
into memory before starting query evaluation, the consumed 
memory is at least the size of the index for each dataset. From 
the experimental results, we can see that the space cost is 
similar for the same query over a dataset. For example, Q1, Q2 
and Q3  consumed about 22.6–23.5 MB for Gowalla,  114.7– 
115.7 MB for Tweet, and 1.08–1.11 GB for Foursquare. 

7 RELATED WORK 
The influence maximization problem was originally proposed 
by Domigos and Richardson  [11]. The two proposed  methods 
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are probabilistic, and the influence spread was not bounded. 
[14] proposed two discrete influence spread models, the In- 
dependent Cascade (IC) model and the Linear Thresholds 
model. They provided proof that the influence maximization 
problem  can  be  solved  using  a  greedy  algorithm  with     a 
1 − 1 approximation ratio for both models. Since the influence 
maximization  problem  is  NP-hard,  there  are  many   studies 
investigating alternative approaches to improve the efficiency. 
[15] used shortest paths to estimate the IC model. [16] de- 
veloped a “lazy-forward” algorithm which preformed much 
better than simple greedy algorithms. [7] proposed the PMIA 
algorithm to solve the influence spread maximization problem 
using the IC model. The main idea was to estimate the global 
influence of vertex v based on the local maximum influence 
in-arborescence (PMIIA), which is a tree structure representing 
the union of maximum influence paths from other vertexes   to 

v. A similar idea was applied to support the LT model in [8]. 
Influence maximization has been investigated in many other 

forms. For example, the problem of topic-aware influence 
maximization has received considerable attention recently E.g., 

[2, 3, 6, 9]. Since each edge of any two users in the social 
network may be weighted differently for different topics, the 

different weights on edges results in a different selection of the 
k seed users based on the comparison of the general influence 

maximization definition. [17] studied the influence 
maximization problem in a given query region. [12] proposed 
a method to solve the influence maximization using a novelty 

decay model. Time constrained influence maximization has 
also been studied [19]. In addition, [21] considered the   social 

influence maximization using a diversification  constraint. 
All the above work focused the maximum number of nodes 

to be influenced by the k selected seeds as a metric for study- 
ing the problem of influence maximization. In contrast, the 
proposed geo-social influence spanning maximization problem 
can allow search users to get the k  best seed nodes and see   
the corresponding maximum geographic influence spanning for 
the specified query regions. 

 
8   CONCLUSION 
In this paper, we propose and formally define the novel prob- 
lem of maximum geographic spanning regions over location- 
aware social networks,  which takes a query region,  a budget  
k of seed selection, and a locally minimal covering ratio ρ as 
parameters. Our approach can compute the top-k selected seed 
nodes, and capture locality effects. By doing this, query users 
can easily observe the quality of the selected k  seeds based   
on the geographical coverage within the query region. The 
larger the geographical coverage influenced by the k  seeds,  
the better the quality of the seed selection strategy is. Using  
the approach, users can easily determine the seed set that 
maximally influences the users’ preferred regions, providing   
a new and convenient way to make decision on when and 
where to launch marketing  campaigns. 

To  address  the  computational  challenges,  we  developed  
a greedy solution and a upper bound based approach to 
incrementally identify the most influential seed nodes. We also 
designed an OIR*-tree-tree index and an OIR*-tree-tree    index 

based solution to accelerate the computation using a bottom- 
up strategy. The experimental results verified the performance 
of our proposed index and approaches in terms of efficiency, 
effectiveness and space cost. Besides geographic influence 
maximization problems, the investigated index and algorithms 
in this work can also be applied to spatial-social data analytical 
problems such as spatial-social community  detection. 
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