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Abstract

This paper reviews some of the history of automated
visual surveillance, from the second and third generation
VMD days of the early 1990s, to the current state of the
art. It discusses the inherent limitations that resulted in
an nearly negligible “increase” in performance throughout
the 1990s and still exist in commercially available systems.
Then we review an approach that overcomes these limita-
tions – active visual surveillance with geo-spatial rules.

Active visual surveillance uses data from computer con-
trolled Pan/Tilt/Zoom (PTZ) units combined with state of the
art video detection and tracking to, in a cost effective man-
ner, provide active assessment of potential targets. This ac-
tive assessment allows an increase in the number of pixels
on target and provides a secondary viewpoint for data fu-
sion, while still allowing coverage of a very large surveil-
lance area. This active approach and multi-sensor fusion,
not a new concept, was developed as part of the DARPA
Video Surveillance and Monitoring (VSAM) program in the
late 90’s. While we have continued to expand upon it since
that time, there has been no commercial video surveillance,
before Guardian Solutions, that provided these important
abilities.

The core ideas in this paper address limitations of
the original VSAM designs, briefly introducing our en-
hancements including geo-spatial rules for wide area
multi-sensor fusion, and key design issues to allow us to
support wireless networks.

1. Background & Previous Research

Visual Surveillance is a broad area and no amount of re-
view in this paper will cover it adequately. In addition to
the papers cited herein, a good review of many state-of-the-
art visual surveillance systems can be found in a special is-
sue of the Proceeding of the IEEE (Oct. 2001) as well as

recent IEEE Workshops on Visual Surveillance and Work-
shops on Performance Evaluation of Tracking Systems.

In [1], Ringer and Hoover of Sandia National Lab
present a detailed evaluation of the (then) commer-
cially available exterior digital Video Motion Detec-
tors (VMDs). These systems used specialized hard-
ware, some were boards in a PC, other were standalone
units, to allow real-time processing. This study was ex-
tremely well done, analyzing 13 different commercial
systems in a controlled outdoor study (on a clean dirt back-
ground within a double fenced area). The stated detection
criterion of the evaluation was 90% probability of detection
(pd) at 95% confidence. Another requirement was an aver-
age of 10 or fewer false/nuisance alarms in 24 hours on a
day with few clouds, bright sunny and calm weather. Only
6 of the 13 systems achieved the stated goals. In more chal-
lenging lighting conditions (still on dirt background), they
developed 24 hours of “test tape” to test systems. (This set
of tapes is still available and a good place to start for static
VMD type system evaluation.) On the test tapes, the 6 sys-
tems that “passed” the clear-day tests averaged over 50
nuisance alarms. Even with the testing on simple dirt back-
grounds, their final conclusions were that “VMDs in
general, when used in an outdoor environment, are sus-
ceptible to nuisance alarms from environmental effects ...
all had some problems rejecting nuisance alarms”. Ap-
plying them in even more complex environments, such
as grass, water, woods, where the backgrounds are them-
selves moving, would have been even more problem-
atic.

As the Sandia study was ongoing, DARPA as develop-
ing its plans for the Video Surveillance and Monitoring
(VSAM) program. That program, which funded research
in video surveillance in the late 90’s, sought to move be-
yond single camera VMD, to networks of video sensors,
[2]. Most of the research was focused at higher level analy-
sis like classifying activities as uncommon[3], seeking par-
ticular patterns of (indoor) activity[4] and reasoning about
human movements [5, 6, 7, 8]. Unfortunately, most of the
work in VSAM did not stress the detection capabilities –
it was done in good lighting with color cameras and mod-
erate size targets (approximately .1% to 1% of the image
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(between 300 and 3000 pixels on target), with those doing
human modeling often having the target represent 10% of
the image. Furthermore, most of the groups exploited color
(which cannot be used at night or in thermal video) to sim-
plify detection and tracking.

The main efforts with a significant focus on low-level
detection were the work of Sarnoff [9], which ad-
dressed detection/tracking from a moving plane and [10]
which addressed lighting independent background sub-
traction (though it was not tested on complex outdoor
scenes). The VSAM work at Maryland [11, 12] in-
cluded non-parametric models for background subtraction
and low-level people tracking, but all the examples were
color imagery with simple lighting and large targets. Fi-
nally, our work, [13], addressed detection/tracking in
omni-directional video and included analysis in very chal-
lenging situations including snipers.

There have been a few projects which have explicitly ad-
dressed lighting, which is a major issue outdoors, with a few
important projects in Europe. Again there is too much to
site in a workshop paper, but a few important works include
PASSWORDS project, [15] uses an illumination change
compensation algorithm to allow it to work in outdoor set-
tings, and Riddler, et.al., [16], which uses Kalman filter-
ing for adaptive background estimation which takes into
account changing illumination so as not to mistake light-
ing as objects of interest. A similar approach is used in
[17]. In [18], an approach was explored that used local or-
der statistics to detect significant lighting changes. While
each of these approaches was moderately effective for dra-
matic changes, none of them work well for a fast moving
localized cloud shadow, and none of them discussed use at
night, were moving “lights”, illuminating static scene ele-
ments, are the often the only visible sign of an intruder.

To be viable systems, however, automated video surveil-
lance needs to be able to work at night (maybe its most crit-
ical time), with small and non-distinctive targets that are as
far away as possible. (Distance translates to response time
– the goal is not just to record events but to respond to them
while they are happening). None of the aforementioned sys-
tems discudded on nocturnal video, [17] and our own work
has seriously addressed gray-scale data, the only type avail-
able at night (low-light or thermal).

For many current US government projects, the requested
goal is to produce less than 3 false alarms (FA) per day. For
these military applications, undetected targets could be, lit-
erally, deadly, so the miss detection (MD) rates also need
to be low, with stated goals ¡ 5distant targets (1-2km). With
each NTSC video containing

�������
potential target regions

per camera per day achieving these performance goals place
very strong demands on the low-level processing of the sys-
tem. In [19, 20, 21], we investigated FA and MD rates for
this type of problem. These papers analyzed the grouping

algorithm that has allowed us to address the “signal-level”
FA and impacts of random noise. However, they did not
address nuisance alarm (NA) rates, where lighting, water,
grass or trees produce real changes that are not “significant”
motion.

How then does one reduce the impact of FA and NA?
One approach, which we are pursuing, is active surveillance
with geo-spatial models. This approach combines sensor-
fusion with active sensor control and calibration informa-
tion to allow the system to use multiple sensors to analyze
an event. Thus providing added information that can signif-
icantly reduce the FA and NA rates.

2. Active Geo-spatial surveillance

One of the issues addressed in the VSAM project was
the importance of situational awareness and the role of geo-
spatial information in providing that awareness for a large
facility.

We content that, while geo-spatial information has much
more to offer than just “situational awareness”, we consider
it the key to scalability and robustness of a video surveil-
lance system, see 1. How to calibrate cameras and do ray in-
tersection is well known for regular cameras, and for omni-
directional cameras we discussed the geometric calibration
and back-projection in [22].

For scalability we need to provide coverage with fewer
cameras. One aspect of this is to detect targets at greater
ranges, but then the targets will be too small in the image for
assessment. By using the geo-spatial information, the cam-
era that detected the target can “handoff” to another sensor
with greater optical magnification for assessment. For high-
end cameras, e.g. a thermal camera with 300mm lens which
might cost $250,000, making efficient use of that camera for
assessment is important to scalability. A similar issue arises
with having fixed cameras watching choke points – using
active PTZ control, it can then “hand-off” a target to a PTZ
when that target begins leaving the choke region. With ac-
tive tracking, the PTZ can then follow the target through a
large open area. The geo-spatial sensor-to-sensor hand-off
was demonstrated as part of the VSAM project, with hand-
offs from the Lehigh OmniCamera to the CMU PTZ sys-
tems and multiple CMU fixed to PTZ hand-offs.

For robustness, 3D provides significant advantages that
were not exploited in the VSAM project. In addition to the
back-projected position, the calibrated cameras and geo-
spatial information allows computation of the targets ap-
proximate size, speed and heading in meaningful world co-
ordinates. In most perspective images for surveillance, the
variations in “image” size of targets makes it difficult to de-
fine a “pixel” size that is meaningful. E.g. the feet of the
subject behind the truck (¡ 1sq.ft of target) in the foreground
of figure 3, take up almost as much area as the backhoe out-
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Figure 1. 3d is the key to scalability and robust-
ness. From a single calibrated camera, one can in-
tersect rays with a digital terrain model. The sim-
plest model, a local plane, is sufficient for many
settings. Back-project of the ray from the camera
to the ground plane produces target location. It
also produces a distance which can be used to
scale the pixels on the target to approximate size
in square feet (or meters). Using true 3D positions
it also allows computing speed in mph and head-
ing (degrees from north).

lined in black in the far part of the scene (¿ 50sq.ft of tar-
get). A small motion of the brush in the front of the scene
would generate a motion target much larger than the back-
hoe. But by using 3D information, one can filter the detect
objects in a more meaningful size. Our approach, imple-
mented in GuardianWatch, is to use an image-map such as
figure 4, where each region has associated XML rules de-
scribing the targets of interest (i.e. what sets of an alarm
rather than just what moves).

Guardian represents its rules in two different forms. The
first is as ESRI shape files (ESRI is a trademark of ESRI in-
corporated, www.esri.com). The ESRI shape file format al-
lows sharing geo-spatial information (we can back-project
the coordinates of the regions) in a form that quickly is be-
coming the de-facto standard for government GIS. (Inter-
nally it is really just a DB3 database with special column
attributes). For simpler interfaces with other tools, we also
use an XML format with an associated image.

A partial XML rule-set might look like:

<rule_set>
<sensor_ruleset id="0x01 0x01">
<image> manatee-alarm-0.ppm </image>
<rule name="Parking exit ">
<alarm_id> 230-230 </alarm_id>
<threatcon> 0-5 </threatcon>
<days_of_week> sun-fri </days_of_week>
<start_time> 0:00 </start_time>
<duration> 24:00 </duration>

Figure 2. An example of a situational awareness
display with an 8 camera system showing a fixed
to PTZ hand-off. Without the map, it is difficult
to understand that the two images with targets
(boxed regions upper left and lower right) are
showing the same thing. On the map are shown
the FOVs of the different cameras and the recent
locations of the target (shown as question marks,
????, since it did not know the type.). This this
knowledge it is clear there are two cameras with
overlapping FOVs that are looking at the same tar-
get. In this case the fixed camera was loosing the
target and “handed off” to the PTZ to continue fol-
lowing it.

<size> 5-25 sqft </size>
<speed> .1-5 mph </speed>
<angle> 240-270 degrees </angle>
<gps_poly> .. (saveing space) </gps_poly>

</rule>
<!-- ship boarding sat 10am-4pm,

handle it separately, rules not shown -->
<!-- We ignore people on saturdays..
too busy with passengers, crew -->

<rule name="People in parking area ">
<alarm_id> 230-230 </alarm_id>
<threatcon> 0-5 </threatcon>
<days_of_week> sun-fri </days_of_week>
<start_time> 0:00 </start_time>
<duration> 10:00 </duration>
<size> 2-5 sqft </size>
<speed> 0-5 mph </speed>
<angle> 0-360 degrees </angle>
<!-- handoff syntax is

camid dlat dlon dalt zoom_fov_degrees -->
<handoff> 0x8 0 0 0 5 </handoff>
<gps_poly> .. (saveing space) </gps_poly>
</rule>
<!-- ... rest rules -->

<rule_set>

The move to geo-spatial representations allows us to not
only have rules for targets based on their position in the im-
age, but our patent-pending approach allows us to define
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Figure 3. As is well known, distant targets appear
smaller than near-by targets. The feet of the per-
son behind the truck have more pixels than the
backhoe in the distance. The perspective effect
makes image-based rules difficult to apply in fil-
tering nuisance alarms.

rules in a map-based geo-spatial nature and then use it to fil-
ter targets for any cameras that are looking at the area. This
allows rules to apply to PTZ cameras as well as fixed cam-
eras. As the PTZ follows a target it will have better esti-
mates of size and speed and can have more certainty about
it.

While the VSAM project investigated some uses of geo-
spatial information for situational awareness and camera
coordination, the biggest advantage of 3D, filtering nui-
sance went unstudied. Using geo-spatial information allows
the video surveillance system to ignore a wide range of
“nuisance” alarms (e.g. most lighting, many birds, blow-
ing trash), that would otherwise render the systems unus-
able. While some of these can be ignored using 2D infor-
mation, the 3D information makes it far simpler for the end
user to understand. Combining 3D analysis with the sophis-
ticated detection/tracking from [20] has allowed us to de-
tect and track small targets on very complex moving back-
grounds, such as a zodiac on water in figure 6, with 30 pix-
els on target. Zodiac was 700ft away in 2ft waves using a
320x240 thermal sensor with 50mm lens. Guardian Solu-
tions commercialized this technology and now has multiple
commercial clients who are using automated video surveil-
lance on a 24/7/365 basis.

3. Wireless video surveillance

Our approach to video surveillance has been, from
the beginning, intended for distributed processing. With
the data demands of real-time video processing, it sim-
ply makes sense to push the processing as close to the cam-
era as possible. The VSAM project also embarrassed the
“networked” approach. The original VSAM communi-

Figure 4. An alarm map associates rules with pix-
els in the image. The red (small vertically striped
region on left) has rules that activated only for
cars leaving (not entering) off-hours. The yellow
(lighter region in parking lot) has rules that alarm
for people-sized targets anytime. The yellow re-
gion hands-off to a PTZ so a guard can assess
what the human is doing. The blue regions (sky
and lower corners) are ignored. The remaining re-
gions will detect/track targets but do not set off
alarms.

cation protocol, [23], provided rudimentary means for
communication of the necessary data, but it was not par-
ticularly efficient. Once the video surveillance system has
the ability to decide salient motion and use rules to de-
cide what is important, it has the inherent ability to fil-
ter not just “alarms”, but also the vast streams of video data
it has analyzed.

With moderate analysis as that described above and
a significantly extended network protocol, we can sup-
port video surveillance on lower-bandwidth networks. The
GuardianWatch software has implemented a basic adaptive
bandwidth control with priority filtering. Using the “signifi-
cance” of the motion along with the alarm rules, the system
can decide the priority of each video item.

To support efficient adaptive bandwidth management,
the system uses a sprite-based representation.

The system represents each moving target separately (as
a jpeg chip) on a reference background (a full size jpeg).
The detection system then queues up the video chips, their
geo-spatial position, shape descriptions etc, and the system
can decide what it can afford to send. The “video” encod-
ing is, in spirit, similar to sprites in Mpeg4 (which almost no
one supports), but we drop all the inter-frame motion cod-
ing both to make it easy to dynamically drop data, and so
writing display code is easier. (The approach/protocol sup-
ports differential motion coding but we have not found it
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Figure 5. An example showing a geo-spatial
alarm zone and the GUI interface for defining the
alarm rule associated with that polygon. The geo-
spatial rules can apply to any camera watching the
area, including PTZs that follow the target into the
area.

Figure 6. Zodiac tracking example from thermal
video. Zodiac is detected as a confident target
(red/light gray box). Two other boxes (black) show
hypothesis of potential targets. Using 3D informa-
tion, the waves never become confident.

necessary). If there is minimal bandwidth (e.g the 8 cam-
era hand-off example above was monitored over a 33Kbps
dialup link), then the reference background images are sent
very infrequently (often ¡ 1 per min) and significant chips
are sent more frequently. In the zodiac example, more and
more of the hypothesis chips would be pruned as the band-
width was reduced. At the same time, the target position and
other (very small) descriptors are passed around so we can
maintain situational awareness.

The system’s processors/communication nodes forms a
“tree”, see figure 7, with communication filtering as data
moves up the tree. If the user is mobile and near one

Figure 7. The communication architecture for
GuardianWatch. Each computer processes video,
stores video and geo-spatial data, and then filters
data based on both a priority allocated bandwidth
and the currently available bandwidth. The geo-
spatial data is analyzed by the Behavioral Analy-
sis node which implements the overall geo-spatial
rule engine. The system supports encryption and
per user/node access rights.

of the clusters of cameras, e.g. the guard truck pulls up
near a terminal in the port, they have more available band-
width and get more of the video chips and faster refer-
ence frames. If the local first responders (e.g. police) are
examining an alarm via their Internet connection, the data
might be bouncing off a commercial “Internet” satellite with
much lower bandwidth. The first responders will still get
a good situational awareness but it will be far from “full
motion video”. However rather than degrading all the data
uniformly, the “chips” of potential targets will have much
higher quality than the less significant data. If the commu-
nication links between the processors are wireless, as they
are at many of Guardian Solutions commercial and mili-
tary clients, then the “storage” of archival video also needs
to be distributed. The extended VSAM protocol supports
the necessary “DVR” features as well. In August of 2003,
an 88 camera installation of Guardian Solutions automated
video surveillance system went “online” at Port Canaveral,
the largest Cruise ship port in the country. The system com-
municates the processed results from these cameras back
to the central monitoring and the mobile monitoring sta-
tions using COTS 802.11 technology. Two guards can man-
age this large set of cameras because they are not watching
them unless something significant is happening.

4. Conclusion & Future work

Studies the early 90’s pointed to the problem of nuisance
alarms, yet little of the research since that time has really
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focused on addressing this issue. While many researchers
have been trying to “recognize” complex human activities,
the ability to ignore simple nuisances such as birds, lighting
and trash, have been largely ignored. This paper discussed
how to use geo-spatial rules and filtering using 3D proper-
tie to reduce or reject the nuisance alarms. It also briefly dis-
cussed how advanced “filtering” can produce data that sup-
ports more efficient situational awareness of video-based
systems on wireless networks.

Even with 3D filtering, there are many situations where
nuisances still arise. More advanced algorithms that fuse the
data from multiple complimentary sensors can reduce these
even farther. Already our system can use its “confidence” to
filter its alarms, so a fixed sensor could detect a target, but
uncertain about its properties, it can hand-off to another sen-
sor to automatically assess the target. But adding multiple
sensors could reduce the nuisance alarm rate even farther,
e.g. with good lighting a thermal and visible sensor would
see a human target with similar size, but would see “trash”
very differently. The issue of nuisance from large animals
(deer) is more problematic (especially in woods where tar-
get shape cannot be used because of the frequency of oc-
clusion). But sensitive acoustic/seismic sensors that could
monitor the “footsteps” might be able to distinguish them.
Our future work includes multiple issues in multi-sensor in-
tegration and cueing.
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