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Abstract: Thanks to the development of geographic information technology, geospatial representation
learning based on POIs (Point-of-Interest) has gained widespread attention in the past few years. POI
is an important indicator to reflect urban socioeconomic activities, widely used to extract geospatial
information. However, previous studies often focus on a specific area, such as a city or a district,
and are designed only for particular tasks, such as land-use classification. On the other hand,
large-scale pre-trained models (PTMs) have recently achieved impressive success and become a
milestone in artificial intelligence (AI). Against this background, this study proposes the first large-
scale pre-training geospatial representation learning model called GeoBERT. First, we collect about
17 million POIs in 30 cities across China to construct pre-training corpora, with 313 POI types as the
tokens and the level-7 Geohash grids as the basic units. Second, we pre-train GeoEBRT to learn grid
embedding in self-supervised learning by masking the POI type and then predicting. Third, under the
paradigm of “pre-training + fine-tuning”, we design five practical downstream tasks. Experiments
show that, with just one additional output layer fine-tuning, GeoBERT outperforms previous NLP
methods (Word2vec, GloVe) used in geospatial representation learning by 9.21% on average in F1-
score for classification tasks, such as store site recommendation and working/living area prediction.
For regression tasks, such as POI number prediction, house price prediction, and passenger flow
prediction, GeoBERT demonstrates greater performance improvements. The experiment results prove
that pre-training on large-scale POI data can significantly improve the ability to extract geospatial
information. In the discussion section, we provide a detailed analysis of what GeoBERT has learned
from the perspective of attention mechanisms.

Keywords: pre-training; grid embedding; point-of-interest; BERT

1. Introduction

A city’s functionality is reflected by its residents’ social and economic activities. Rapid
urbanization and modern civilization produce a variety of residential, educational, business,
and traffic facilities. Urban land-use patterns are not only determined by government-
designated urban layouts, but influenced by people’s daily lifestyles, which are not fixed
and constantly change as the city develops further. Studying quantitative representations
of urban areas helps better explore urban attributes and provides valuable insights into
cities’ structure and dynamic evolution. These representations greatly value downstream
applications, such as land-use classification [1], shop location recommendation, crime
prediction [2], real estate price estimation, etc.

With the development of mobile sensing technology, all kinds of spatial-temporal
urban data, such as human trajectories, vehicle traffic, points-of-interest (POIs), and social
media check-in records, are being pooled digitally from different sources. Different urban
data reveal the configuration and connectivity of regions from multiple perspectives,
providing great opportunities to understand urban living patterns and optimize supporting
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services. POIs play an essential role in the era of geographic big data. First, human activities
usually take place in POIs. Second, among all kinds of urban data, the easy accessibility
and high reliability of POIs make them advantageous for studying the spatial distribution
of human activities.

At the same time, deep learning and NLP (natural language processing) methods have
been gradually applied to the representation learning of urban space, such as Word2vec [3],
Doc2vec [4], GloVe [5], etc. A series of studies that project urban data to vectors keep
coming up in this field. There are many similarities between urban space and natural
language. First, both of them contain a large amount of data without labels, e.g., text and
POIs. Second, both have rich semantic relations. In text, the order of sentences and words
represents the contextual relation, while in geographical space, it is the two-dimensional
spatial distribution of POIs. Third, they both follow a power-law distribution. A small
number of common tokens account for a large proportion in the corpus [6].

On the other hand, the development path of NLP provides a good reference paradigm.
After the appearance of large-scale pre-trained models (PTMs) represented by BERT [7] and
GPT [8], NLP has entered a new stage. The effect of PTMs is impressive and is continually
improved with the expansion of the model parameter. With large amounts of unlabelled
data pre-training and small amount of labelled data fine-tuning, PTMs can easily transfer
the learned knowledge to various tasks without repetitive training. Since previous NLP
methods have been introduced to the geography field and proved effective, there has
yet to be a pre-trained model for geospatial representation learning. Most of the current
studies on geospatial representation learning are regional empirical studies on a small
scale area, commonly one city or one district, without further utilization of the large-scale
urban data. Moreover, most of these end-to-end models can only serve specific tasks, such
as land-use classification.The current use of these models is still limited. Therefore, this
paper explores the application of a pre-training paradigm in geospatial representation
learning and expands the downstream tasks. Following the current pre-training paradigm,
combined with the characteristics of geographic data, the level-7 Geohash grid is taken as
the spatial base unit, and the POI type is considered a token. By masking part of the tokens
and then predicting, we pre-train GeoBERT. Through fine-tuning, the grid embedding
learned by GeoBERT can be used for various downstream tasks. The main contributions of
this paper are as follows:

• To our limited knowledge, this study introduces the first large-scale pre-training
geospatial representation learning model called GeoBERT. Through self-supervised
learning, we pre-train GeoBERT on about 17 million POIs from the top 30 Chinese
cities by GDP.

• We propose five practical downstream tasks for geospatial representation learning and
validate them on GeoBERT, which dramatically expands the scope of current research.
These tasks are of guiding significance to actual business activities.

• Numerous experiments have shown that with just simple fine-tuning, GeoBERT
outperforms previous NLP methods used in this field, proving that pre-training with
large urban data is more effective in extracting geospatial information.

• GeoBERT is highly scalable.The learned grid embedding of GeoBERT can be used as
the base representation of the grid and concat with additional features to improve
performance.

• From the perspective of the attention mechanism, we compare several ways of con-
structing POI sequences and dive into what GeoBERT has learned from large-scale
POI data, which are neglected by previous research.

2. Related Work
2.1. Geospatial Representation Learning

In a broader range of geography sciences, a common requirement for artificial intelli-
gence is to learn the representation of an area. Various types of spatial data are encoded into
lower-dimension vectors in hidden space that can be easily incorporated into deep learning
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models [9]. In the early stages, the most common way of quantifying large-scale urban infor-
mation is to analogise urban areas to documents and urban functions to themes. Typically,
the topic-based models, e.g., LDA (latent Dirichlet allocation) are used to identify urban
functional areas [10,11]. With advances in deep learning, neural-network-based methods
have been increasingly used in urban computing. Word2vec proposed by Mikolov et al. [12]
is used to compute the POI-type embedding and model the relationship between the spa-
tial distribution of POIs and land-use type [3]. However, Word2vec ignores statistical
information in geospatial data, such as global co-occurrence frequency. To address this
shortcoming, based on GloVe, Zhang et al. [5] extracted and identified urban functions on
the scale of traffic area by integrating co-occurrence information and background space of
POIs. A series of related papers have been put forward continuously, such as POI2vec [13],
Region2vec [14], Location2vec [15], and Bloc2vec [16], etc.

To better understand the underlying information about human activities, multi-source
urban data have been investigated to perceive human social activities, such as trajectory
data [17], social media data [18,19], and user comment data on tourism websites [20]. In
City2vec [21], researchers parse the cell phone number data in massive POIs and construct a
city mobile network. Then GNN (graph neural network) models are applied to identify city
agglomerations and capture long-term, long-distance population migrations. By utilizing
spatially explicit random walks in POI networks, Huang et al. [22] learned the spatial
co-occurrence of POIs, and then aggregated region embedding with LSTM and attention
mechanism to estimate urban functional distributions.

2.2. Pre-Trained Models

Due to the self-supervised learning tasks and huge models parameters, PTMs, rep-
resented by GPT (2018) [8] and BERT(2018) [7], have achieved great success in the past
few years. By pre-training on massive unlabelled data, PTMs can effectively capture the
underlying knowledge in the text and store it into the huge parameters. With simple
fine-tuning on quite a few samples, the rich knowledge implicitly encoded in huge pa-
rameters can be transferred to various downstream tasks. After GPT and BERT, more and
more efforts are devoted to the field of large-scale PTMs. Subsequently, RoBERTa [23],
XLNet [24], ALBERT [25], GPT-3 [26], and other variation models constantly refresh the
SOTA in NLP. As the effects continue to improve, the parameter scale and data size used
are also becoming larger, which are increasing by 10 times per year [27]. Most of these
PTMs are Transformer-based [28] structures, and the optimization targets are MLM (mask
language model). The paradigm of “pre-training +fine-tuning” has also been transferred
from the field of natural language to image. Computer vision pre-trained models such as
VIT [29], MAE [30], and BEiT [31] have brought widespread attention.

In addition to general fields, domain PTMs have also been proposed recently, mainly in
the fields of healthcare [32,33], biomedical [34–36], and academic research [37]. Most studies
learn domain-specific knowledge by pre-training on domain-specific corpora through self-
supervised learning tasks. OAG-BERT [38]is an academic PTM that uses heterogeneous
structural knowledge in the academic knowledge graph.

The pre-trained model closest to the model proposed in this paper is
ERNIE-GeoL [39,40], which is proposed by Baidu. ERNIE-GeoL is a geography-and-
language pre-trained model designed and developed for improving the geo-related tasks
at Baidu Maps, such as POI retrieval. It builds a heterogeneous graph based on POIs in
user search history. The core idea is to learn the text attributes of a geographical entity
and focuses on the relationship between “geography location” and “language”. In this
study, we focus on learning the universal representation of urban space for wider applica-
tion. Map retrieval services are not part of our research. There are significant differences
between these two studies in terms of research objectives and methods. To some extent,
the foundation of ERNIE-GeoL is still language, while our study is completely based on
urban space.
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Previous NLP methods used in extracting urban information have proved the similar-
ity between natural language and geographic space and that many methods are transferable.
However, existing work has mainly focused on certain areas. Urban spaces involving com-
plex functional semantic information can greatly benefit from large-scale urban data. A
large-scale pre-trained model for geospatial representation learning that can effectively
support various downstream tasks in the urban domain is urgently required. Our research
aims to bridge this gap.

3. Materials and Methods
3.1. Overall Framework

Figure 1 shows the framework of this study. The overall process can be summarized
in three modules:

1. Build Training Corpus: We collect about 17 million POIs in 30 cities in China and set
the level-7 Geohash grid as the basic unit. Taking POI types as tokens and grids as
sentences, we build three pre-training corpora based on the “shortest path”, “center
distance”, and “random path” methods.

2. Pre-Train GeoBERT: Utilizing the BERT structure, we pre-train GeoBERT by masking
some percent tokens and then predicting those tokens.

3. Fine-tune GeoBERT: GeoBERT is fine-tuned to address five downstream urban tasks.
It is worth mentioning that GeoBERT can be used alone or combined with additional
features.

Figure 1. The overall framework of this study consists of three parts. The part on the left side shows
how we construct pre-training corpora based on POIs and Geohash Grids. The middle part shows
the model structure, which is based on the BERT structure. E represents the input embedding, Trm
refers to a transformer block, and T represents the output token. On the right side is the fine-tuning
module. We design five practical downstream tasks. The grid embedding learned from GeoBERT can
be directly used for fine-tuning or combined with other features.

3.2. Data and Preprocessing

Most of the corpora of the natural language pre-trained model comes from the Internet
and books, where texts are naturally organized. For example, BERT used BooksCorpus
(800M words) [41] and English Wikipedia (2500M words). Similarly, POIs are widely
available on maps. However, large-scale and high quality text data can be easily acquired
while POIs are not. In this study, POI data is collected from AutoNavi, one of China’s most
extensive map service providers. We collect around 17 million POIs in the top 30 cities
in China by GDP. The POI dataset contains three levels of types, specifically, 11 first-
level, 112 s-level, and 214 third-level POI types. In particular, the first-level POI type
includes accommodation, enterprise and business, restaurant, shopping, transportation,
life services, sport and leisure, science and education, health and medical, government, and
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public facilities. The percentage of each first-level category is illustrated in Table 1. Each
POI has either two or three levels of categories. For example, a coffee shop may have a
category hierarchy of “restaurant—coffee shop,” while an Internet cafe may have a category
hierarchy of “sport and leisure—entertainment—Internet cafe”. We use the last level of
category for unity.

Table 1. Quantitative proportion of each first-level POI type in the dataset.

POI Type Number Proportions

accommodation 930,307 5.62%
enterprise and business 2,513,793 15.18%

restaurant 2,498,107 15.09%
shopping 3,603,615 21.76%

transportation 1,385,916 8.37%
life services 2,515,165 15.19%

sport and leisure 865,208 5.23%
science and education 725,916 4.38%

health and medical 683,560 4.13%
government 664,317 4.01%

public facilities 171,141 1.03%

total 16,557,045 100.00%

3.3. Basic Geographic Unit

In previous studies, researchers took traffic analysis zone [3] (TAZ), buffer area [5],or
other urban functional zone (UFZ) [42] as the basic unit to build a training corpus of
POIs. Although this may have more specific practical physical meaning, it is more time-
consuming and less effective in the case of the large-scale corpus. Therefore, we use the
level-7 Geohash grid as the base unit of POIs, which is easy to retrieve. Moreover, we
use a finer-grained grid division, so it can be used for a wider and more refined range of
downstream tasks. Geohash (https://en.wikipedia.org/wiki/Geohash, accessed on 30
November 2022) is a public domain geocode system, which encodes a geographic location
into a short string of letters and digits. Geohash guarantees that the longer a shared prefix
between two geohashes is, the spatially closer together they are. The reverse of this is not
guaranteed, as the two points can be very close but have a short or unshared prefix. The
area of each level of Geohash is illustrated in Table 2. The max scale is calculated around
the equator. In different latitudes, the area will be slightly different. Each level-7 Geohash
grid is 153 m × 153 m near the equator. An example of level-7 Geohash grids in Shanghai
is shown in Figure 2. In the training corpus, 1,582,870 grids are covered.

Table 2. Area of each level Geohash cell.

Geohash Length (Level) Cell Length Cell Width

1 ≤5000 km ≤5000 km
2 ≤1250 km ≤625 km
3 ≤156 km ≤156 km
4 ≤39.1 km ≤19.5 km
5 ≤4.89 km ≤4.89 km
6 ≤1.22 km ≤0.61 km
7 ≤153 m ≤153 m
8 ≤19.1 m ≤19.1 m

https://en.wikipedia.org/wiki/Geohash
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Figure 2. The left part exhibits the area of Shanghai, which covers 404,697 level-7 Geohash grids in
total. On the right, is a slice that covers 20 grids. Each level-7 grid can be represented by a unique
Geohash string of length 7. All the smaller grids that belong to the same larger grid of the upper level
share the same prefix. As shown in the figure, the Geohash of 4 grids in the lower right corner share
six characters “wtw3w3” in the prefix since they all belong to a much larger level-6 Geohash grid.
The same phenomenon can be observed in all four corners.

3.4. Build Training Corpus

In NLP, words are naturally well-organized according to grammar rules. In a corpus,
the sequential order of documents and the contextual relationship between words in each
sentence can be used to simulate the contextual relationship of words in real-world human
languages. However, POIs are distributed irregularly in urban spaces. In other words, the
distribution of POIs is dense in some regions and sparse in others. The spatial distribution
of the different types of POI also varies. Thus, we treat each grid analogously as a sentence
and the POIs within the grid as words. To obtain a sufficient number of words, we select
the last-level categories of POIs as tokens, which is 313 in total. Since the length of the POI
sequence (the number of POIs in a grid) is different, we truncate the POI sequence by the
max length of 64 and pad short sequences to 64 with 0. The maximum length covers 97.33%
situations, as shown in Figure 3. We build our grid-based training corpus on the following
three methods:

Figure 3. Distribution of POI sequence length of grids. The POI sequence length is the number of
POIs in a level-7 Geohash grid. The max length is set to 64, which covers 97.33%.
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3.4.1. Shortest Path

The “shortest path” method introduced by Yao et al. [3] constructs a POI sequence
based on the Greedy Algorithm. If documents are constructed based on the principle of
global optimization, the time cost is exceptionally high, rendering the method unfeasible.
However, when dealing with long sequences (e.g., 800+ POIs in a grid), the original shortest
path method is still too time-consuming. Therefore, we follow Yao et al.’s idea and improve
the algorithm by using a matrix calculation and putting it on a GPU, which significantly
reduces the computation time.

The pseudo-code of our shortest path is illustrated in Algorithm 1. Assuming that
there are n POIs in a given grid G and denoting G = {P1, P2 . . . ., Pn}, the algorithm returns
a sequence L with the shortest path through all POIs. First, we initialize a distance matrix
Mdis(n× n) as the Euclidean distance between each pair of POIs <P, P>. We then take the
farthest POI pair as the start point and the end point of the path, namely Ps and Pe. At this
time, the current path is L = {Ps, Pe}, and the wait-to-insert set is W = {Pw|Pw ∈ G− L}.

The next task is to keep looking for the correct position and insert the right POI
until the set W is empty. The correct position makes the path length shortest under each
loop. The pseudo-code of finding correct location and POI is illustrated in Algorithm 2.
First, we set up a sub-matrix Msub(l × w) considering only all possible locations and
POIs waiting to be inserted; landw represent the length of L and W. Suppose that, at
the step t+1, POI Pi is inserted between Pm, Pn. The path length can be computed as
ηt+1 = ηt + Sm,i + Sin − Sm,n. Specifically, we concat each two adjacent rows in Msub and
obtain a 3D matrix M3d ((l − 1)× 2× w) to represent each possible location. There are
(l − 1) positions in a sequence of length l. Then, we sum the two adjacent rows to obtain
the additional distance. The length reduced when inserting a new POI is calculated as
Edgebreak. Finally, we argmin the loss matrix Mloss. The correct position index idx and the
POI Pins to be inserted in the next step are obtained.

Algorithm 1 Shortest Path For POIs In A Grid

Input: POIs in a Grid G = {P1, P2 . . . ., Pn}
Output: shortest path of POIs in grid L = {Ps . . . , Pi . . . , Pe}

1: Initialize POIs wait-to-insert W = {entities in G}
2: Initialize shortest Path L = {}
3: Initialize matrix Mdis (n× n) as Euclidean distance between each pair of < P, P >.
4: Ps, Pe = argmax(Mdis) {Find the farthest POI pair < Ps, Pe >}
5: L = [Ps, Pe]
6: W = {PW |PW ∈ G− L} {Remove POIs already sorted}
7: while W do
8: idx, Pins = QueryPOI(Mdis, L, W) {Find the POI and location to insert}
9: L.insert(idx, Pins)

10: W.remove(Pinsert)
11: end while
12: return L
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Algorithm 2 Query POI

Input: Euclidean distance between each pair of POIs Mdis; Current shortest path sequence
L; POIs wait to insert W

Output: Insert index idx, Insert POI Pins
1: Msub = Mdis[L][W] {only consider POIs wait to insert}
2: M3d = stack([Msub[idx[0 : −1]], Msub[idx[1 :]]], dim = 1) {obtain all possible positions

to insert by splitting 2d matrix into any 3d matrix with each two adjacent rows}
3: M2d = Sum(M3d, dim = 1) {Calculate additional distances for all possible insertion

positions}
4: Edgebreak = Mdis[L[0 : −1]][:, L[1 :]].diag() {The distance reduced when inserting a new

POI}
5: Mloss = M2d − Edgebreak.repeat(len(W)).T {The total loss of each possible insertion}
6: idx, ins = argmin(Mloss).
7: return idx, Pins

3.4.2. Center Distance Path

POIs in a grid are sorted by the distance between each POI and the grid center. The
principle is shown in Figure 4. This method was also proved effective by Sun et al. [16].
After, the POI type of each POI is used as a token to build a training text.

Figure 4. Construct a POI sequence based on distance ordering from the center point.

3.4.3. Random Path

To compare with the above two methods, we set up an additional random sequence.
The POIs in a grid are randomly sorted into a sequence. The random seed is set to 42.

3.5. Pre-Training GeoBERT

We pre-train the GeoBERT base on the BERT model architecture from Hugging Face
(https://huggingface.co/models, accessed on 30 November 2022), utilizing the powerful
feature extraction ability of deep bidirectional transformers. Special tokens [CLS] and [SEP]
are added at the beginning and end of each sentence, respectively. Input embedding is the
sum of token embedding, token type embedding, and position embedding. Following the
BERT, we randomly mask some percentage of the input POI-type tokens and then predict
those masked tokens. If a token is chosen, it will be replaced by a special token [MASK] for
80% of the time, a random token for 10% of the time, and an original token for 10% of the
time. After many attempts, the mask ration of 15% gives the best overall performance.

3.6. Fine-Tuning GeoBERT

In NLP, fine-tuning refers to incrementally training the pre-trained model with a small
amount of labelled data. With minimal architectural modification, GeoBERT can be applied
to various downstream tasks. We design five geospatial downstream tasks and validate
them on the urban data of Shanghai. To better match downstream task indicators, we use

https://huggingface.co/models
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the updated POI data. The pre-training POI data was collected in March 2022, while the
POI data used in the downstream tasks was collected in September 2022.

3.6.1. POI Number Prediction

The task is to predict the number of POIs in a grid. The number of POIs in a grid
reflects the level of socioeconomic activity in the area, and the label can be obtained from
the data itself, which makes it suitable for measuring the effect of self-supervised language
learning. We choose Shanghai as the study area. After filtering the grids with less than
2 POI, there are a total of 61,521 valid samples. The statistics of the dataset are shown in
Table 3, and the visualization is shown in Figure 5.

Table 3. Statistics of POI number dataset.

Count Mean Std Min 25% 50% 75% Max

61,521 21.97 35.15 3 4 9 25 883

3.6.2. Work/Living Area Prediction

This task is to predict the function of the grid, that is, whether the current grid
functions as a living or working area. Living areas usually have a higher proportion of
people living there, while working areas have more people working inside. The division of
work and residence areas reflects the city’s current functional zoning and design. Accurate
identification of working or living regions is conducive to optimizing urban structure. The
statistics of the dataset are shown in Table 4, and the visualization is shown in Figure 6.

Table 4. Statistics of working/living area dataset.

Living Area Working Area Total

34,049 28,156 62,205

3.6.3. Passenger Flow Prediction

The number of visitors on the grid reflects the commercial activity of the current region,
which has a high reference value for the location decision of chain stores, advertising, and
other marketing activities. Therefore, we design a downstream task to predict the passenger
flow on the grid over a period. The passenger flow data is the aggregation of September
2022. The statistics of the dataset are shown in the Table 5, and the visualization is shown
in Figure 7.

Table 5. Statistics of passenger flow dataset.

Count Mean Std Min 25% 50% 75% Max

1,262,380 955.16 2951.65 1 13 88 580 649,795

3.6.4. House Price Prediction

Housing price prediction is a traditional machine-learning task. Housing price is
highly related to supporting facilities around the house. We explored the ability of GeoBERT
in predicting house prices. The statistics of the dataset are shown in Table 6, and the
visualization is shown in Figure 8.

Table 6. Statistics of house price dataset.

Count Mean Std Min 25% 50% 75% Max

412,662 624,873 54,706 3742 29,415 48,574 84,546 361,633
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Figure 5. The POI number dataset of Shanghai.

Figure 6. The working/living area dataset of Shanghai, where yellow refers to living area and red to
working area.

Figure 7. The passenger flow dataset of Shanghai, where red refers to high-density areas.
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Figure 8. The house price dataset of Shanghai, where red refers to higher house prices.

3.6.5. Store Site Recommendation

Location is considered a critical factor in the success of a store in the modern retail
industry. Choosing an optimal location to open a new store has always been a headache
for brick-and-mortar chain enterprises. We design a site selection recommendation task
and take a large chain joint-stock bank Bt as an example. To avoid label leakage, all “bank”
tokens are eliminated from the dataset. The statistics of the data set are shown in Table 7.
The dataset construction process is shown in Figure 9 below:

1. First, there are too little data for just one bank brand Bt in one city, so we use other
similar large chain joint-stock banks for data enhancement. Specifically, we select nine
other large joint-stock bank brands similar to Bt.

2. Second, the grids of normally operating banks of selected brands are taken as positive
samples.

3. Third, we build the negative samples, which consist of two parts. The first part is the
banks of Bt that have already closed in the past. The second part is those non-bank
POIs within 500 m of the normally operating banks of Bt.

Figure 9. The process of building a bank recommendation dataset.
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Table 7. Statistic of store site recommendation dataset.

Positive Samples Negative Samples Total
(Suitable for Opening a Store) (Unsuitable)

701 1249 1950

We set up two experiments. In the first experiment, only POI data is used to fine-tune
GeoBERT. In the second one, we use the grid embedding learned by GeoBERT as the basic
features and integrate additional grid features to improve the site recommendation task,
which is closer to the actual business situation. We calculate about 131 features, which
describe the geospatial characteristics of grids in different perspectives. GeoBERT is pre-
trained solely on POI data, which can be seen as static information. On the other hand,
additional features, such as passenger flow each hour, can provide dynamic information.
Limited by space, only some representative features are listed as follows.The summary of
primary notations is illustrated in Table 8.

• Passenger flow: Two kinds of features are used to measure the level of passenger flow

in a region. First, we calculate the passenger flow of Grid f lowt
i in each hour t of the

day. Moreover, we aggregate the eight grids around the current grid as a block to
measure the surrounding environment. A block consists of 9 (3*3) adjacent grids. The
calculation principle of block features is the same as the grid features but on a larger
area (9 grids). See Equation (1). So, we omit the calculation formula of block features
in the following features.

G f lowt
i = {N( f lowt)}(t = 1, 2, . . . 24)

Gblock_ f lowt
i =

9

∑
i=1

G f lowt
i (t = 1, 2, . . . 24)

(1)

• Diversity: We calculate the number of POIs of different categories in each grid to reflect
the diversification and heterogeneity of the environment, as shown in Equation (2).
Nc(i) is the number of POIs of category c in Gridi, N(i) is the total number of POIs,
and the Γ is the set of all the POI categories. The diversity of block Gblock

i is calculated
in the same way.

Gdiv
i = ∑

c∈Γ

Nc(i)
N(i)

× log
Nc(i)
N(i)

(2)

• Competitiveness: Stores of the same category in a region will form a competitive
relationship and influence each other. We define the competitiveness feature in
Equation (3). Nc represents the total number of stores of the same category of the
target stores in the area around the candidate location j, and Nc/tar is the number of
stores of the same category except for the target stores in gridi.

Gcompet
i = −Nc/tar(i)

Nc(i)
(3)

• Traffic Convenience: It reflects the accessibility to different means of transportation
(e.g., bus station, subway station, ferry station, etc.), as shown in Equation (4). Here,
tr represents a certain type of transportation, and Ntr(i) is the number of all stations
of the corresponding transportation type tr in Gird i.

Gtra f f ic
i =

Ntr∈Γ(i)
Ntr(i)

(4)
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• Residence: It reflects the surrounding residential conditions. Specifically, it is the
number of residential buildings of different grades, for example, ordinary residence,
high-grade residence, and villa.

Gresidence
i =

Nresc∈Γ(i)
Nres(i)

(5)

After calculating additional features, we can combine them with GeoBERT. Supposing
that the output of the last transformer layer in GeoBERT is h and additional features are x,
we calculate the combined embedding Emb in the following four methods:

• Concat: We directly concatenate the output of the transformer layer in GeoBERT and
all features before the final classifier layer. There is no additional preprocessing.

Emb = h||x (6)

• MLP: We put an MLP (Multilayer Perceptron) layer on additional features first and
then concatenate it with the transformer before the final classifier layer.

Emb = x||MLP(x) (7)

• Weighted: We set a learnable weight matrix for each dimension of additional features
and then sum it with transformer outputs before the final classifier layer, where W
refers to the weight matrix.

Emb = h + W � x (8)

• Gating: We complete a gated summation of transformer outputs and additional
features before the final classifier layer, where β is a hyper parameter and R is an
activation function. Detailed information can be found in the paper [43].

Emb = h + αk

k = W � g + b

g = R(W � h + b)

α = min(
‖h‖2

‖k‖2
∗ β, 1)

(9)

Table 8. Summary of primary notations.

Notations Description

Gi a level-7 geohash grid
Gblock

i 9 (3*3) adjacent grids with Gi in center
N(i) the number of POI in a grid Gi
Emb the final embedding after the merge of GeoBERT and addition features

h the output of the last transformer layer in GeoBERT
x additional features

W a weight matrix for additional features
MLP abbreviation for Multilayer Perceptron
|| concate operation
R activation function

α, β, g, k additional parameters only used in Gating method

4. Experiments and Results
4.1. Baseline and Setup
4.1.1. Baseline

To the best of our knowledge, GeoBERT is the first large pre-trained model in this field.
There are two main types of previous studies. The first is to learn POI-type embedding and
aggregate them to grid embedding. The second is supervised learning models in which
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labels such as land classifications or other business ratios such as sales per square meter
are essential. However, we cannot obtain that much labelled data. In brief, there have not
been suitable models for comparison. Thus, we compare the most widely used geospatial
representation learning model.

• Word2vec (2017): Introduced into geospatial representation learning by Yao et al. [3].
We set the number of POI-type vector dimensions to 200, window size to 5, and epoch
to 20, according to the original paper. After training POI-type embedding, we use
LightGBM [44] for downstream tasks.

• GloVe (2021): Proposed by Zhang et al. [5]. We set the number of POI-type vector
dimensions to 70, window size to 10, and epoch to 10, according to the original paper.
After training POI-type embedding, we use LightGBM for downstream tasks.

4.1.2. Setup

During the pre-training stage, to compress the space taken up by each sentence
and obtain a larger batch size, the maximum sequence length was fixed to 64, which
already covers more than 97% of situations. The batch size was set to 256. The hidden
size was 768. There were 12 hidden layers and 12 attention heads in each layer. The
non-linear activation function was Gelu. The dropout probability for all fully connected
layers in the embeddings, encoder, and pooler was set to 0.1. Other parameters were
set to default. Detailed information can be found on Hugging Face BertConfig at https:
//huggingface.co/docs/transformers/model_doc/bert#transformers.BertConfig (accessed
on 30 November 2022). We used a single Nvidia A100 40G and pre-trained for 100 epochs.
The Python version was 3.8.11, and the CUDA version was 11.6. The deep learning
framework was PyTorch. Training GeoBERT from scratch on our corpus took about two
days. During the fine-tuning period, we put one MLP layer after the output of the last
hidden layer in GeoBERT and applied a dropout of 0.1. We fine-tuned GeoBERT for two to
five epochs using a batch size of 32 and selected the best results. For regression tasks, we
used MSE (mean square error) and MAE(mean absolute error) to evaluate, while F1-score
and Accuracy were used for classification tasks. For regression tasks, the lower the indicator,
the better. For classification tasks, the higher the indicator, the better. In all fine-tuning
datasets, we used 80% for training and 20% for testing under the random seed of 42.

4.2. Downstream Task Results

• POI Number Prediction:The POI number prediction experiment result illustrated in
Table 9 shows that GeoBERT significantly outperformed Word2vec and GloVe in three
different training corpora. Generally, the overall performance of Word2vec was better
than GloVe, while GeoBERT pre-trained on the shortest path corpus achieved the best
result (0.1790 in MSE and 0.1343 in MAE).

• Working\Living Area Prediction:The result of work and living area prediction is
illustrated in Table 10. The GeoBERT series outperformed the series of Word2vec and
GloVe, and GeoBERT pre-trained on random sequence corpus obtained the best results,
with Accuracy of 0.7739 and F1-score 0.7719. However,the difference between groups
and within groups was small. The best model GeoBERT-RandomPath improved the
worst model by 4.91% in Accuracy and by 8.83% in F1-score.

• Passenger Flow Prediction: As exhibited in Table 11, the results in GeoBERT on
passenger flow prediction far exceeded Word2vec and GloVe. GeoBERT pre-trained
on the shortest path corpus obtained the best results, with 0.1446 in MSE and 0.1809 in
MAE. The difference between the three corpora was not quite significant.

• House Price Prediction: As depicted in Table 12, GeoBERT significantly outperformed
the other two models, and the performance difference between these three models
was substantial. GeoBERT pre-trained on the shortest path obtained the best result.

• Store Site Recommendation: The results of store site recommendation with POIs only
are shown in Table 13. GeoBERT achieved better performance, while GeoBERT pre-
trained on center distance corpus obtained the best result, with 0.8359 in Accuracy

https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertConfig
https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertConfig
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and 0.7922 in F1-score. The differences between the three GeoBERT models are not
considerable. The results of store site recommendation with additional features are
illustrated in Table 14. We can see that with additional features, both Accuracy and
F1-score were improved in all cases. Among different combination methods, the MLP
method obtained the best performance, increasing Accuracy by 2.45% and F1-score by
3.04%. The result of these two experiments illustrate the following points:

1. GeoBERT obtains good grid embedding from POI data and can be directly used
for store site recommendation.

2. GeoBERT is scalable and can be jointly used with additional features. The effect
will be improved if more dimensional data is provided.

GeoBERT was pre-trained solely on POI data, which can be seen as static urban
information. On the other hand, additional features, such as passenger flow each
hour, can provide dynamic ubran information. However, in practice, additional
features, such as user profiles and passenger flow data, are hard to access and often
subject to privacy restrictions, while POIs are not. Therefore, GeoBERT alone can
be used to achieve pretty good results which proves that GeoBERT has practical
applied value. To sum up, POI data is the most readily available urban data that
can contain much geospatial information. However, other features can also add
information from different dimensions, especially user consumption behavior and
travel behavior. GeoBERT is effective and having additional features would be better
for more specific tasks.

Table 9. Evaluation on POI number prediction .

Model MSE MAE

GeoBERT-CenterDistance 0.1932 0.1492
GeoBERT-ShortestPath 0.1790 0.1343
GeoBERT-RandomPath 0.1994 0.1383

Word2Vec-CenterDistance 0.2503 0.2354
Word2Vec-ShortestPath 0.2474 0.2330
Word2Vec-RandomPath 0.2659 0.2385

GloVe-CenterDistance 0.3824 0.3150
GloVe-ShortestPath 0.3958 0.3147
GloVe-RandomPath 0.4082 0.3225

The best results are highlighted in bold. (The following are the same.)

Table 10. Evaluation on working\living area prediction.

Model Accuracy F1-Score

GeoBERT-CenterDistance 0.7736 0.7712
GeoBERT-ShortestPath 0.7729 0.7677
GeoBERT-RandomPath 0.7739 0.7719

Word2Vec-CenterDistance 0.7642 0.7359
Word2Vec-ShortestPath 0.7626 0.7337
Word2Vec-RandomPath 0.7638 0.7344

GloVe-CenterDistance 0.7398 0.7093
GloVe-ShortestPath 0.7454 0.7144
GloVe-RandomPath 0.7377 0.7101
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Table 11. Evaluation on passenger flow prediction.

Model MSE MAE

GeoBERT-CenterDistance 0.1491 0.1825
GeoBERT-ShortestPath 0.1446 0.1809
GeoBERT-RandomPath 0.1557 0.1901

Word2Vec-CenterDistance 0.2563 0.2916
Word2Vec-ShortestPath 0.2567 0.2920
Word2Vec-RandomPath 0.2569 0.2913

GloVe-CenterDistance 0.3825 0.3703
GloVe-ShortestPath 0.3772 0.3651
GloVe-RandomPath 0.3865 0.3700

Table 12. Evaluation on house price prediction.

Model MSE MAE

GeoBERT-CenterDistance 0.0574 0.1578
GeoBERT-ShortestPath 0.0556 0.1559
GeoBERT-RandomPath 0.0674 0.1724

Word2Vec-CenterDistance 0.3192 0.4177
Word2Vec-ShortestPath 0.3190 0.4182
Word2Vec-RandomPath 0.3227 0.4188

GloVe-CenterDistance 0.4889 0.5079
GloVe-ShortestPath 0.4935 0.5101
GloVe-RandomPath 0.4945 0.5098

Table 13. Evaluation on store site recommendation (POIs only).

Model Accuracy F1-Score

GeoBERT-CenterDistance 0.8359 0.7922
GeoBERT-ShortestPath 0.8256 0.7777
GeoBERT-RandomPath 0.8358 0.7908

Word2Vec-CenterDistance 0.7846 0.7042
Word2Vec-ShortestPath 0.8000 0.7254
Word2Vec-RandomPath 0.7821 0.6931

GloVe-CenterDistance 0.6744 0.5171
GloVe-ShortestPath 0.6923 0.5455
GloVe-RandomPath 0.6799 0.5039

Table 14. Evaluation on store site recommendation (with additional features).

Concat Method Accuracy F1-Score

MLP 0.8564 (+2.45%) 0.8163 (+3.04%)
Gating 0.8538 (+2.14%) 0.8119 (+2.49%)

Weighted 0.8436 (+0.92%) 0.8103 (+2.28%)
Concat 0.8435 (+0.91%) 0.8000 (+0.98%)

POIs Only 0.8359 (+0.00%) 0.7922 (+0.00%)

5. Discussion
5.1. Result on Downstream Tasks

We can find out that GeoBERT outperforms Word2vec and GloVe on all five down-
stream tasks, which proves that pre-training on large corpora helps extract the geospatial
information of POIs. However, the performance of these three models on different tasks
is different. On classification tasks, Word2vec and GloVe are still competitive, which is
illustrated in Figure 10. For example, in the working\living area prediction task, GeoBERT



Appl. Sci. 2022, 12, 12942 17 of 28

only exceeds the best Word2vec model by 1.5% in Accuracy and 3.82% in F1-score, while in
regression tasks, GeoBERT is substantially superior to Word2vec and GloVe, as shown in
Figure 11. The difference illustrates that GeoBERT learned more accurate representation of
grids and is more capable of fine-grained tasks.

Figure 10. Results of classification tasks. Word2vec and GloVe still achieve good results. GeoBERT
leads Word2vec by 4.49% in Accuracy for the store site recommendation task and 1.51% for the
working \ living area prediction task.

(a) (b) (c)

Figure 11. Self-attention mechanism in GeoBERT. GeoBERT consists of 12 layers and 12 heads in each
layer. Each row represents a layer (from 0 to 11). Each block represents a head (from 0 to 11). The
lines between pairs of tokens in a head show the self-attention weights between them. The darker the
color is, the greater the weight between the two tokens. Different layers are represented by different
colors, while the same color represents heads in the same layer. These are better viewed in color:
(a) GeoBERT-ShortestPath; (b) GeoBERT-CenterDistance; (c) GeoBERT-RandomPath.
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Another interesting finding is about the different training corpora. Among the three
training corpora, GeoBERT pre-trained on the shortest path gives better results in general.
However, this is not absolute; for example, GeoBERT-CenterDistance gives the best store
site recommendation result. The same conclusion can also be drawn for the other two
models. Actually, previous studies have neglected to compare different POI sequences. The
results of five downstream tasks show that the differences between the three corpora are
small, which means the precise context relationship between POIs in a certain area (e.g., a
level-7 Geohash grid) does not play a critical role. It is an interesting finding, and we will
discuss it further later.

5.2. Ablation Study

Section 3.5 mentions that GeoBERT uses 15% as the masking ratio during the pre-
training stage. The following is an ablation study to evaluate the effect of different masking
strategies on the passenger flow prediction task. All the models were pre-trained for
40 epochs to save computing resources and time. We tested the masking ratio for 15%, 30%,
50%, and 70%. From Table 15, it can be seen that GeoBERT is highly robust to different
masking strategies, and overall, 15% performs the best.

Table 15. Ablation over different masking strategies.

Center Distance Shortest Path Random Sequence

Mask Ratio MSE MAE MSE MAE MSE MAE

15% 0.1677 0.2065 0.1697 0.2109 0.1713 0.2090
30% 0.1665 0.2066 0.1652 0.2045 0.1718 0.2114
50% 0.1726 0.2108 0.1715 0.2095 0.1716 0.2111
70% 0.1754 0.2132 0.1653 0.2015 0.1763 0.2166

5.3. What Does GeoBERT Actually Learn?—Part 1: Distilling Common Patterns

In order to determine what GeoBERT learns and the difference between the three kinds
of POI sequences, we delve into the self-attention mechanism. GeoBERT, following the
original BERT model, uses 12 layers with 12 attention heads in each layer. Therefore, there
are 144 (12 × 12) different attention mechanisms in total in which is difficult to intuit the
meaning of its learned weights in such complexity. Fortunately, with the help of attention
visualization tools [45], we can explore the attention patterns of various layers and heads
and analyse the underlying principles involved.

We select a grid with 22 POIs for demonstration purposes. The POI sequences of the
three versions are shown in Table 16. The model views of the three different GeoBERT
models are illustrated in Figure 11. Each has 12 layers and 12 attention heads in each layer.

Table 16. Example POI sequence for attention visualization.

Shortest Path
‘[CLS]’, ‘Teahouse’, ‘Real Estate’, ‘Store’, ‘Restaurant’, ‘Massage’, ‘Express’, ‘Construction’, ‘Chinese Food’, ‘teahouse’, ‘Chinese

Food’, ‘Restaurant’, ‘Park’, ‘Mall Store’, ‘Chinese Food’, ‘KTV’, ‘Office’, ‘Office’, ‘Restaurant’, ‘KTV’, ‘Hotel’, ‘Furniture’, ‘Furniture’,
‘[SEP]’

Center Distance Path
‘[CLS]’, ‘Furniture’, ‘Hotel’, ‘Furniture’, ‘KTV’, ‘KTV’, ‘Restaurant’, ‘Teahouse’, ‘Chinese Food’, ‘Chinese Food’, ‘Restaurant’,

‘Chinese Food’, ‘Mall’, ‘Office’, ‘Park’, ‘Construction’, ‘Office’, ‘Express’, ‘Massage’, ‘Restaurant’, ‘Store’, ‘Real Estate’, ‘Teahouse’,
‘[SEP]’

Random Path
‘[CLS]’, ‘Real Estate’, ‘teahouse’, ‘Office’, ‘Hotel’, ‘Teahouse’, ‘Restaurant’, ‘Express’, ‘Massage’, ‘Store’, ‘Office’, ‘Chinese Food’,
‘Furniture’, ‘Park’, ‘Chinese Food’, ‘Chinese Food’, ‘Construction’, ‘Restaurant’, ‘Restaurant’, ‘KTV’, ‘Mall’, ‘Furniture’, ‘KTV’,

‘[SEP]’
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5.3.1. Pattern 1: Attention to Next Token

Like BERT, most of the attention at a particular position is directed to the next token
in the sequence. Figure 12 is an example of GeoBERT-ShortestPath for Layer 1, Head 10.
Figure 12a on the left shows the attention for all tokens in a grid, while Figure 12b on the
right shows a specific token “Teahouse”, which is directed to the next token “Real Estate”.
This pattern is considered to be related to the backward RNN, where state updates are
made sequentially from right to left.

(a) (b)

Figure 12. The pattern of attention to the next token. The attention mechanism for shortest Path
POI sequence example in Table 16 is illustrated. Note that the index starts at 0. Most tokens have
a heavy attention weight directed to the subsequent tokens. However, this pattern is not absolute
since we can see that some tokens are directed to the other tokens. Colors on the top identify the
corresponding attention head(s), while the depth of color reflects the attention score: (a) attention
weights for all tokens in Layer 1, Head 10; (b) attention weights for selected token ’Teahouse’.

5.3.2. Pattern 2: Attention to Previous Token

In this pattern, much attention is directed to the previous token in the sentence. We still
take the shortest Path POI sequence in Table 16 as an example. The attention mechanism in
GeoBERT-ShortestPath of Layer 0, Head 2, is illustrated in Figure 13. We can find that most
of the attention for “Store” is related to “Real Estate”. Like Pattern 1, this is loosely related
to a sequential RNN, in this case, the forward RNN.
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(a) (b)

Figure 13. The pattern of attention to the previous token. In the example of Layer 0, Head 2, most
tokens show apparent attention weight directed to the previous tokens. Of course, there are some
exceptions, such as the token “Teahouse”, which still has close attention to the next token “Real
Estate”: (a) attention weights for all tokens in Layer 0, Head 2; (b) attention weights for selected
token ’Store’.

5.3.3. Pattern 3: Long-Distance Dependencies

In this pattern, many attention heads tend to have a long-distance dependency. In
particular, attention is paid to identical or related words, including the source word itself.
This pattern is also exhibited in the appendix of the original Transforms [28]. Figure 14
listed below is Layer 6 in GeoBERT-ShortestPath. Most of the attention for the token “Real
Estate” is directed to itself and “Express”. This pattern is not so distinct, with attention
dispersed over many different words in other heads, which can be seen from the different
colors in the right sequence in Figure 14b.

(a) (b)

Figure 14. Pattern of long-distance dependencies. “Real Estate” is directed to itself and “Express” in
(a). However, the attention is also dispersed over many different words which can be seen in (b).
The color in the right sequence represents its corresponding head with yellow for Head 1 and green
for Head 2: (a) attention weights for selected token “Real Estate” in Layer 6, Head 1; (b) attention
weights for selected token “Real Estate” in Layer 6, heads 1 (orange) and 2 (green).
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5.4. What Does GeoBERT Actually Learn?—Part2: Deeper Insights

In Section 5.3, we explore the three common patterns learned by GeoBERT from the
perspective of self-attentions. The above findings explain part of the rationale behind
GeoBERT, but they still require further research. In Part 2, we will drill deeper into
GeoBERT’s attention mechanism and reveal the answer to two key questions.

5.4.1. Question 1: What Is the Difference between the Three POI Sequence
Construction Methods?

In Section 3.4, we proposed three different POI sequence construction methods and pre-
trained three GeoBERT models on them. Previous studies have proven these construction
methods (Shortest Path and Center Distance Path) effective in extracting POI location
information. To date, no study has compared these methods and analyzed the spatial
information in depth in the POI sequences. With the help of Transformer structure’s
powerful information extraction capabilities, we can further explore the difference between
these construction methods and what GeoBERT has learned.

In brief, there is a contextual relationship but no exact back-and-forth relationship
among adjacent POIs in a grid, and GeoBERT can learn this kind of location information
in shallow attention layers. We illustrate the attention mechanism of Layer 1 and Layer
2 for GeoBERT-ShortestPath, GeoBERT-CenterDistance, and GeoBERT-RandomPath in
Figures 15–17, respectively. From Layer 1 and Layer 2 of GeoBERT-ShortestPath (Figure 15)
and GeoBERT-CenterDistance (Figure 16), we can intuitively find that there are higher
attention weights between a token and the two adjacent tokens, presented as pairs of
crossed straight lines in the image, while in the GeoBERT-RandomPath (Figure 17), the
same phenomenon has not been observed. The above findings indicate two things. The
first is that attention Layers 1 and 2 of the GeoBERT can learn the adjacency relationship
between POIs. The second is that in terms of how the POIs are organized, both the shortest
path and the center distance path contain location information, but random sequences
cannot, which is in line with expectations. On the other hand, the pairs of cross lines
between adjacent tokens show that POIs have close context relationships but do not have
strict back-and-forth ones such as natural language, which has more specific grammar and
syntax rules.

(a) (b)

Figure 15. Attention Layer 1 and Layer 2 in GeoBERT-ShortestPath. We can see pairs of cross lines
between adjacent tokens, which means that GeoBERT has learned the position information between
adjacent tokens. (a) Attention Layer 1; (b) Attention Layer 2.
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(a) (b)

Figure 16. Attention Layer 1 and Layer 2 in GeoBERT-CenterDistance. Pairs of cross lines between
adjacent tokens can be clearly observed, and the conclusion is similar to the shortest Path. Moreover,
most of these signs occur at shallow attention layers, basically from Layer 0 to Layer 2. Thus, we
believe that in the shallow attention layers, GeoBERT learns the position information among POIs:
(a) Attention Layer 1; (b) Attention Layer 2.

(a) (b)

Figure 17. Attention Layer 1 and Layer 2 in GeoBERT-RandomPath. Unlike the above two methods,
there were no obvious signs observed. Therefore, we think that no position information has been
acquired by GeoBERT-RandomPath. This phenomenon is reasonable since all POIs are ordered
randomly: (a) Attention Layer 1: (b) Attention Layer 2.

5.4.2. Question 2: Why Do the Three Models Have Similar Effects on All Five
Downstream Tasks?

Section 5.1 compared the GeoBERT models pre-trained on three different corpora.
Results on downstream tasks show that although GeoBERT-ShortestPath achieves the
overall best performance, the difference between the three models is not as significant as
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expected. In this section, we try to answer why these three models perform similarly since
they are pre-trained on different POI sequences.

From the previous question, we know that Center Distance Corpus and Shortest Path
Corpus contain the location information and can be learned by GeoBERT, while Random
Path does not. However, GeoBERT-RandomPath is still competitive, which is worth further
exploration. In our opinion, what matters is not the sequence order of POIs in a grid but the
co-occurrence between POIs. However, the sequence knowledge learned by GeoBERT helps
the model perform better in fine-grained tasks, which explains that GeoBert-RandomPath
performs the worst in regression tasks. (See Tables 9, 11 and 12). What is more important is
that GeoBERT can capture the co-occurrence between POIs and recognize specific tokens
that have more significance in a grid. In other words, the core ability of GeoBERT is to find
the several tokens that play the most critical roles in downstream tasks. Moreover, this
ability is acquired in deeper attention layers. Refer to Figure 11 for the visualization of all
layers and heads.

Figure 18 shows Layer 9, Head 9, and Layer 10, Head 8 in GeoBERT-ShortestPath,
where most tokens have attention weights to token “Departments Store” and token “Hotel”.
Thus, we perceive that these two tokens play a more critical role. We call these kinds of
tokens the “anchor POIs” of a grid. To some extent, these POIs can represent the grid. It is
worth noting that there is not just one such token. In most cases, there are multiple ones
in different layers and heads representing different attributes. Figure 19 exhibits the three
models’ attention Layer 10 (with all heads). It can be determined that tokens “Mall” and
“Hotel” attract the most attention in all cases despite their different locations in the sequence.
This finding also supports our conclusion on the issue of the core ability of GeoBERT. In
addition to this case in Table 16, we list two additional cases in Figures 20 and 21. The same
conclusion can be drawn.

(a) (b)

Figure 18. Two specific attention heads in GeoBERT-ShortestPath. In both figures, tokens “Mall” and
“Hotel” strongly connect with all other tokens. We define this kind of token as the “Anchor POIs” in a
grid. Anchor POIs play essential roles in a grid and to some extent can represent certain attributes of
the whole grid: (a) Layer 9, Head 9; (b) Layer 10, Head 8.
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Figure 19. Attention Layer 10 (with all heads) of three models. Although “Mall’ and “Hotel” are in
different positions in different corpora, they are successfully recognized by the models. As we have
mentioned, the core ability of GeoBERT is to identify the most significant tokens in a grid and capture
co-occurrence. These phenomena only appear in the deep attention layers, basically from Layer 9 to
Layer 11 (layer index starts at 0).

(a) (b)

Figure 20. Attention mechanism for addition Case 1 in GeoBERT-ShortestPath. “CVS” is the abbrevi-
ation for convenience store. In (a), “Guesthouse” obtains attention weights from all other tokens. In
(b), there are two “Bus Stations” in a grid, and both attract the most attention. Moreover, the weights
for the first “Bus Station” are higher. This difference validates that the sequence order plays a role to
some extent: (a) Layer 10, Head 7; (b) Layer 10, Head 8.
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(a) (b)

Figure 21. Attention mechanism for addition Case 2 in GeoBERT-ShortestPath. The phenomenon is
evident, and the above two heads each identify an anchor POI, namely “Supermarket” and “Industry
Park”: (a) Layer 9, Head 9; (b) Layer 10, Head 3.

6. Conclusions and Future Work
6.1. Conclusions

This paper proposes the first pre-trained geospatial representation learning model
called GeoBERT based on POI data and a BERT Model. We collected 17 million POIs and
constructed different POI sequences for each level-7 Geohash grid. The sequence is built
on three methods: the shortest path, the center distance path, and the random path. After
pre-training, GeoBERT was fine-tuned on five downstream tasks. Compared with other
NLP models (Word2vec, GloVe) used in this field, GeoBERT obtained the highest results
on all five tasks. Moreover, GeoBERT is highly scalable. Combining the grid embedding
learned from GeoBERT with additional features can further improve the performance.
Then, we went deep into the attention mechanism in the GeoBERT and analyzed what
GeoBERT actually learns. Through detailed visualization analysis, we reached three main
conclusions.

1. The shortest path and center distance contain the position information among POIs in
a grid, while the random path method does not.

2. GeoBERT learns the position information in the shallow attention layers. In deep
attention layers, GeoBERT captures co-occurrence among POIs and identifies the most
important POIs, called the anchor POIs in a grid.

3. The sequential relationship between POIs does not play an important role. What
matters is the co-occurrence among POIs and the specific anchor POIs learned in deep
attention layers.

6.2. Future Work

The above conclusions guide our subsequent work. Since different POI sequences
have limited effect on the experimental results, we intend to take POIs in a grid as 2D raster
data rather than construct a POI sequence for future work. A grid with POIs can be seen as
an image to some extent. The difficulty, however, is how to process the 2D POI data as an
image and encode it into vectors. From another point of view, we can further optimize our
work in the future by incorporating POI data with satellite images, making it a multi-modal
pre-training model. A simple and straight way is to take POI as text and satellite as image.
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By doing this, we can learn more information about a grid and make the model capable of
more tasks.
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