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The Younger Dryas cold interval represents a time when much of the

Northern Hemisphere cooled from �12.9 to 11.5 kiloyears B.P. The

cause of this event, which has long been viewed as the canonical

example of abrupt climate change, was initially attributed to the

routing of freshwater to the St. Lawrence River with an attendant

reduction in Atlantic meridional overturning circulation. However,

this mechanism has recently been questioned because current proxies

and dating techniques have been unable to confirm that eastward

routing with an increase in freshwater flux occurred during the

Younger Dryas. Here we use new geochemical proxies (�Mg/Ca,

U/Ca, and 87Sr/86Sr) measured in planktonic foraminifera at the

mouth of the St. Lawrence estuary as tracers of freshwater sources to

further evaluate this question. Our proxies, combined with planktonic

�18Oseawater and �13C, confirm that routing of runoff from western

Canada to the St. Lawrence River occurred at the start of the Younger

Dryas, with an attendant increase in freshwater flux of 0.06 � 0.02

Sverdrup (1 Sverdrup � 106 m3
�s�1). This base discharge increase is

sufficient to have reduced Atlantic meridional overturning circulation

and caused the Younger Dryas cold interval. In addition, our data

indicate subsequent fluctuations in the freshwater flux to the St.

Lawrence River of �0.06–0.12 Sverdrup, thus explaining the variabil-

ity in the overturning circulation and climate during the Younger

Dryas.

abrupt climate change � Atlantic meridional overturning circulation �

paleoclimate

Proxies of deepwater formation show that a large reduction in the
Atlantic meridional overturning circulation (AMOC) occurred

at the start of the Younger Dryas event (1–3), suggesting that the
attendant loss of ocean heat transport caused Younger Dryas
cooling in the North Atlantic region. However, the cause of this
ocean response remains unclear, with the leading mechanism,
involving the routing of continental runoff to the St. Lawrence
River (4–8), now questioned on the basis of marine (9–11) and
terrestrial (12, 13) evidence and modeling (14). Moreover, the rate
of the AMOC varied during the Younger Dryas (1–3), which is not
readily explained by the conventional routing argument (4–8). This
debate has led to the questioning of the role of freshwater in forcing
abrupt climate change (13), with important implications to our
understanding of the sensitivity of the AMOC to global warming
and attendant changes in the hydrological cycle.

Here we capitalize on the well known relation between river
geochemistry and underlying bedrock lithology (15) to use changes
in 87Sr/86Sr, U/Ca, and Mg/Ca measured in planktonic foraminifera
tests as tracers of routing of continental runoff derived from distinct
geological terranes. The conventional argument for the cause of the
Younger Dryas (4–8) invokes the opening of the eastern Lake
Agassiz outlet and the Straits of Mackinaw �12,900 calibrated years
B.P. (all dates reported here are in calibrated radiocarbon years
unless otherwise specified) by retreat of the southern Laurentide
Ice Sheet margin, effectively doubling the size of the St. Lawrence
River drainage basin, from 1.35 � 106 km2 to 3.13 � 106 km2 (7)
(Fig. 1). Because the newly added drainage area included signifi-

cantly different bedrock lithologies than those underlying the St.
Lawrence drainage area before this event (16) (Fig. 1), the asso-
ciated routing of surface water should thus be marked by changes
in St. Lawrence water geochemistry (15). To assess geochemical
changes associated with these new sources of surface water, we
picked planktonic foraminifera from two cores in the outer St.
Lawrence estuary (Fig. 1) that span the Younger Dryas interval:
Globigerina bulloides and Neogloboquadrina pachyderma (s) from
core HU90031-047 (45°51.14�N, 57°37.56�W; 473-m depth) and G.
bulloides from core HU90031-044 (44°39.41�N, 55°37.13�W;
1,381-m depth).

Results

Changes in Mg/Ca, U/Ca, and 87Sr/86Sr identify changes in the
source and flux of surface waters reaching the St. Lawrence
estuary during the Younger Dryas (Fig. 2). Mean Mg/Ca values
in G. bulloides from core 044 range from 1.1 to 3 mmol/mol (Fig.
2d). Changes in Mg/Ca in foraminifera reflect temperature- and
salinity-dependent uptake of Mg as well as changes in the [Mg]
and [Ca] of the water (17, 18). We use an existing sea surface
temperature (SST) record from core 044, based on dinoflagel-
late–cyst assemblages (11) (Fig. 2a), to account for SST changes
in our Mg/Ca record by applying the G. bulloides calibration
{Mg/Ca (mmol/mol) � 0.474exp[0.107 � SST(°C)]} (18). The
persistence of sea ice in the St. Lawrence estuary for 9 months
of the year during the Younger Dryas (11) indicates that
planktonic foraminifera grew in the 3 months of summer, the
season of the SST reconstruction. We then estimate salinity
variations in the estuary on the basis of a �18Oseawater record from
core 044 (Fig. 2b), and we applied a salinity calibration [Mg/Ca
(mmol/mol) � 0.311 � salinity] (18). These combined correc-
tions have a propagated error of �30% (16) [see supporting
information (SI) Methods]. Subtracting these temperature and
salinity components from our measured Mg/Ca values and
normalizing to the lowest resulting value produces a �Mg/Ca
record that reflects changes in Mg/Ca of the estuary.

Foraminiferal �Mg/Ca increases by �2.5 mmol/mol at the
onset of the Younger Dryas (Fig. 2d), a signal that had been
masked in our Mg/Ca record by the corresponding decrease in
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SST and salinity (Fig. 2 a and b). We attribute this increase to
the routing of western Canadian runoff to the St. Lawrence River
due to retreat of ice out of the Lake Superior Basin. Specifically,
rivers draining shale and carbonate bedrock in areas of western
Canadian Plains that were routed to the St. Lawrence basin
during the Younger Dryas (Fig. 1) have [Mg] that are �6–10
times higher (�0.6–1.0 mmol/kg) than the [Mg] of the integrated
St. Lawrence River system (�0.1 mmol/kg) (19) before the
Younger Dryas. At �12.7 kiloyears B.P. (kyr B.P.), �Mg/Ca
increases again by �1.5 mmol/mol, indicating a further increase
in freshwater flux from western Canadian Plains.

Using our geochemical mixing model and assuming similar river
chemistry as today and a pre-Younger Dryas flux of 0.07 Sverdrup
(Sv) (7) (1 Sv � 106 m3

�s�1), we find that an increase of 0.07 Sv in
freshwater discharge for the St. Lawrence River (Fig. 3) derived
from these source waters would explain the initial Younger Dryas
�Mg/Ca signal (see SI Methods). The subsequent increase in
�Mg/Ca at 12.7 kyr B.P. can be explained by an additional flux
increase of 0.06 Sv (Fig. 3). Because the dinoflagellate–cyst SST
reconstruction records temperature near the water surface whereas
G. bulloides may live deeper in the mixed layer, the increases in
�Mg/Ca and modeled base flow discharge during the Younger
Dryas are maximum estimates. However, evidence for atmospheric
cooling in Maritime Canada (20) and mixed-layer cooling in the
shelf water of the North Atlantic adjacent to the St. Lawrence

estuary (10) provides strong support for substantial cooling of the
St. Lawrence estuary during the Younger Dryas and the temper-
ature correction.

Foraminiferal U/Ca in G. bulloides and N. pachyderma (s) from
core 047 and in G. bulloides from core 044 all reach peak values that

Fig. 1. Bedrock map of central–eastern North America (16) showing major

lithologies that influence river geochemistry. Colors are coded according to

bedrock age: red shades are Precambrian, blue shades are Paleozoic, green

shades are Mesozoic, and yellow is Cenozoic. We have identified those geo-

chemical properties of bedrock types that produce distinctive signals in drain-

age basins. The western part of the Canadian Precambrian Shield has higher
87Sr/86Sr than the eastern Shield, Paleozoic sedimentary bedrock underlying

the eastern Great Lakes includes Mg-rich dolomite, and Mesozoic sedimentary

bedrock of the western Canadian Plains is enriched in U and Mg. Also shown

is the outline (in blue) of the 12.5 calibrated kyr B.P. ice margin (26) and the

southwestern margin of the Laurentide Ice Sheet at the start of the Younger

Dryas (13 calibrated kyr B.P.) and near the end of the Younger Dryas (11.5

calibrated kyr B.P.) (26) (dashed black lines) [the age of these margins, how-

ever, is not constrained by dates (26)]. The solid white line is the pre-Younger

Dryas drainage area of the St. Lawrence River with its northern margin

controlled by the ice sheet divide (7). The dashed white line represents the

additional area routed to the St. Lawrence River at the start of the Younger

Dryas (7). White arrows indicate the freshwater drainage routes to the Arctic,

the Gulf of Mexico, and the St. Lawrence River, and the blue arrow indicates

the general location of the eastern outlet for glacial Lake Agassiz. Core

locations in the outer St. Lawrence estuary are shown as a red dot (core

90031-047) and a yellow dot (core 90031-044).

Fig. 2. Geochemical time series (in calibrated radiocarbon kyr B.P.) for the

Younger Dryas interval. (a) Dinoflagellate cyst SST reconstruction (HU90031-

044) (9). (b) Planktonic [N. pachyderma (s)] �18O (gray) (11) and of seawater

(blue) for the St. Lawrence (SL) (HU90031-044); and planktonic (Globigeri-

noides ruber) �18Oseawater record from the Gulf of Mexico (GOM) (purple) (31).

Black squares denote the reported calibrated age control (31). (c) Planktonic

[N. pachyderma (s)] �13C record (green) from the St. Lawrence (HU90031-044)

(courtesy of C. Hillaire-Marcel). (d) Mg/Ca (gray) and �Mg/Ca (black) of G.

bulloides (HU90031-044). (e) U/Ca of G. bulloides (blue from HU90031-044 and

green from HU90031-047) and N. pachyderma (s) (red from HU90031-047). The

offset in U/Ca between 044 and 047 before the Younger Dryas reflects the

different proximity of the cores to the riverine end-member. ( f) Sr isotopes of

G. bulloides (HU90031-044). White symbols with red outline represent ther-

mal ionization MS measurements; red symbols with white outline represent

multicollector inductively coupled plasma MS measurements. The gray bar

denotes the time of eastward routing as inferred from our geochemical

proxies of routing. Horizontal bars at the bottom indicate calibrated radio-

carbon age control for core HU90031-044.
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are �30–35 nmol/mol higher in Younger Dryas samples relative to
older samples (Fig. 2e). The primary sources of seawater U are from
U dissolved in rivers, by colloid and particulate disintegration at
high salinities (practical salinity units �20) (21), and by release
from marine sediments in response to an increase in bottom-water
oxygen, such as may be associated with an increased flux of
oxygenated freshwater into the St. Lawrence estuary during a
routing event. Assuming reasonable values for [U] (25 ppm) in
sediment with a 1-m sediment mixed-layer depth distributed over
the area of the estuary, a change from anoxic to oxic conditions
would release 24 � 106 moles of U to the estuary, corresponding to
a foraminiferal U/Ca signal of �0.7 nmol/mol (22), or significantly
less than our measured values. On the other hand, rivers draining
shale and carbonate bedrock of the western Canadian Plains (Fig.
1) have average [U] values (10–20 nmol/kg) that are 10–20 times
greater than the [U] of the integrated St. Lawrence River system
(23) before the Younger Dryas. Our measured increase in U/Ca is
thus consistent with the routing of U-rich surface waters from the
western Canadian Plains after the opening of the eastern outlet of
Lake Agassiz.

Unlike the �Mg/Ca record, however, the initial U/Ca increase is
gradual until 12.7 kyr B.P., when it rapidly rises to a peak at 12.5 kyr
B.P. We attribute the slow initial rise in U/Ca to the offsetting effect
of [CO3

�2] on U/Ca in foraminifera tests, such that a doubling to
tripling of [CO3

�2] discharged into the estuary due to the increased
area draining carbonate terranes would reduce the U/Ca in fora-
minifera tests by �4 nmol/mol (24). Moreover, U release from
colloid and particulate disintegration at high salinities will increase
exponentially with river flux (see SI Methods). By including the
carbonate ion effect and the breakdown of colloids and particulates,
our mixing model of estuary geochemistry indicates that an increase
in discharge through the St. Lawrence River of 0.05 Sv at the start
of the Younger Dryas would explain the �10 nmol/mol increase in
foraminiferal U/Ca, with an additional flux increase of 0.05 Sv at
12.7 kyr B.P. explaining the subsequent peak U/Ca values (Fig. 3)
(see SI Methods).

Foraminiferal 87Sr/86Sr show little change at the start of the
Younger Dryas, followed by a rapid increase in 87Sr/86Sr at 12.5 kyr
B.P. that is 7 � 10�5 higher than 87Sr/86Sr in samples that predate
the Younger Dryas (Fig. 2f). Global seawater 87Sr/86Sr is invariant
on this timescale, whereas river 87Sr/86Sr varies as a function of
bedrock age and the duration of chemical weathering of granitoid
sediment (25), suggesting that these fluctuations reflect changes in
the 87Sr/86Sr and flux of runoff to the St. Lawrence River. At the
time of initial opening of the eastern Lake Agassiz outlet, exposed
western Canadian Precambrian Shield had been deglaciated for at

least 1,000 years (26), so that 87Sr/86Sr of granitoid sediment would
be comparable to modern bedrock values (0.72450) (25). Our
mixing model (see SI Methods) indicates that an initial flux increase
of 0.06 Sv at the start of the Younger Dryas (Fig. 3) (as suggested
by �Mg/Ca and U/Ca) with higher 87Sr/86Sr associated with older
bedrock of the western Canadian Shield than the younger bedrock
of the eastern Canadian Shield (0.71423) (27) would cause fora-
miniferal 87Sr/86Sr to increase by 1 � 10�5, which is within the
uncertainty of our measurements in the early Younger Dryas
samples. Subsequent retreat of the southwestern LIS margin (26)
(Fig. 1), which was likely enhanced by atmospheric feedbacks
associated with the enlarging area of Lake Agassiz (28), exposed
Precambrian Shield bedrock, thus spiking runoff with high 87Sr/86Sr
(0.79500) due to the release of radiogenic Sr from young granitoid
soils (25). Assuming initial 87Sr/86Sr similar to modern values in
surface waters of Canada (27), we find that a subsequent increase
in freshwater flux of 0.06 Sv (Fig. 3) combined with radiogenic Sr
derived from weathering of freshly exposed granitoid sediment
after ice retreat explains the abrupt increase in 87Sr/86Sr at 12.5 kyr
B.P. (see SI Methods).

Discussion

Our multiproxy approach addresses the fact that, for any given
proxy, additional factors (e.g., temperature and weathering) mod-
ulate the signal of changes in freshwater flux. In doing so, we find
a clear signal of routing of surface waters from western Canada to
the St. Lawrence River at the start of the Younger Dryas, as
originally proposed by Johnson and McClure (4). In particular, our
three geochemical tracers of source waters independently converge
in indicating that freshwater discharge through the St. Lawrence
River increased by 0.06 � 0.02 Sv (average of our three estimates
with 2� error) at the start of the Younger Dryas with a subsequent
increase of 0.06 � 0.01 Sv during the Younger Dryas for a total flux
increase of 0.12 � 0.02 Sv. Our estimate of the initial flux increase
(0.06 � 0.02 Sv) is in good agreement with a previously estimated
flux of �0.07 Sv (7). The total freshwater flux increase of 0.12 �

0.02 Sv would decrease estuarine mixed-layer salinity by 4.1 � 0.6
practical salinity units.

The planktonic �13C record in core 044 provides additional
support for substantial changes in freshwater flux to the Gulf of St.
Lawrence during the Younger Dryas. The �13C of dissolved inor-
ganic carbon in freshwater primarily reflects some combination of
the �13C of soil CO2 derived from decay of organic matter (lighter
values) and the �13C of any underlying carbonate bedrock (heavier
values). We attribute the abrupt 0.32 per mil decrease in �13C (the
only anomaly in the 14.5-kiloyear record; reproducibility 	 0.05 per
mil) at the start of the Younger Dryas (Fig. 2c) to indicate an
increased flux of 12C-enriched surface runoff reflecting the routing
of freshwater from the western Canadian Plains to the St. Law-
rence. However, �13C does not show any change at a time (12.7 to
12.5 kyr B.P.) when �Mg/Ca, U/Ca, and 87Sr/86Sr suggest an
increase in freshwater flux. This lack of a signal may reflect a larger
contribution from 12C-depleted bedrock relative to soil CO2, thus
offsetting any change in �13C associated with an increased fresh-
water flux.

These combined results appear contrary to the modest 0.5 per mil
decrease in �18Ocalcite measured in N. pachyderma (s) from core 044
(Fig. 2b), which deVernal et al. (11) used along with salinity
reconstructions based on dinoflagellate–cysts to argue against any
significant salinity decrease in the St. Lawrence estuary during the
Younger Dryas. However, �18Ocalcite reflects the combination of the
offsetting effects of temperature and salinity, so that a 10°C
decrease in SSTs during the Younger Dryas at this site (11) (Fig. 2a)
would mask an additional 2.25 per mil salinity signal in �18Ocalcite,
corresponding to a net 2.75 per mil decrease in �18Oseawater (Fig. 2b).
Similar to the �Mg/Ca record, this total 2.75 per mil �18Oseawater

decrease is a maximum estimate due to the depth–habitat differ-
ence between the dinoflagellates (the SST source) and N. pachy-

Fig. 3. Time series (in calibrated radiocarbon kyr B.P.) of modeled freshwater

discharge from the St. Lawrence River. The model is initiated with a flux of 0.07

Sv (7) and then solved to match the routing data (see SI Methods). 87Sr/86Sr is

in red, U/Ca is in blue, �18Oseawater is in black, and �Mg/Ca is in purple, with gray

denoting the �30% propagated error (see SI Methods).
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derma (s). However, a freshwater flux increase of 0.11 Sv (Fig. 3)
derived from western Canadian source waters with �18O of �25 per
mil (29) would have decreased estuarine mixed-layer �18O by 2.75
per mil (see SI Methods). This flux increase is in good agreement
with the estimated increase (0.12 � 0.02 Sv) from our three routing
proxies, thus supporting the temperature correction in core 044.

We note that the stacked �18Ocalcite record measured on N.
pachyderma (s) from the continental margin off Nova Scotia also
shows an �0.8 per mil decrease during the Younger Dryas (10) (SI
Fig. 6 a and b), which, if corrected for Younger Dryas cooling
suggested by the large increase in percentage of N. pachyderma (s)
from the same cores (SI Fig. 6c), would approach the �18Oseawater

change suggested from St. Lawrence estuary (see SI Methods and
SI Fig. 6b). In addition, open ocean �18Ocalcite records measured on
G. bulloides and N. pachyderma (s) from Orphan Knoll show a
1–1.25 per mil decrease during the Younger Dryas (30), which
would be closer to the �18Oseawater change in the St. Lawrence
estuary if the temperature decrease was taken into account. The
salinity decrease in the St. Lawrence is also contemporaneous with
a 2.5–2.75 per mil increase in �18Oseawater from the Orca Basin, Gulf
of Mexico (31) (Fig. 2b), thus supporting Johnson and McClure’s
hypothesis (4) that routing of North American runoff from the
Mississippi River to the St. Lawrence River occurred at the start of
the Younger Dryas. Although the dinoflagellate–cyst salinity re-
construction of de Vernal et al. (11) lacks a freshening signal, the
combined evidence from our 87Sr/86Sr, U/Ca, and �Mg/Ca records
as well as the planktonic �13C and �18Oseawater records all indicating
reduced salinity suggest that the dinoflagellate–cyst salinity recon-
struction for the St. Lawrence estuary is in error during the Younger
Dryas.

According to the conventional routing hypothesis, surface waters
from western Canada continued to drain through the eastern outlet
of Lake Agassiz to the St. Lawrence River until �11.5 kyr B.P.,
when ice readvance across the outlet rerouted surface waters either

to the south (Mississippi River) (6–8) or to the northwest (Mack-
enzie River) (32) (Fig. 1). In contrast, all proxies from core 044
indicate that salinity started to increase �12.3–12.4 kyr B.P. and
reached pre-Younger Dryas values by �12 kyr B.P. (Fig. 2),
implying a decrease to pre-Younger Dryas freshwater discharge
(Fig. 3) and suggesting that rerouting occurred earlier. The terres-
trial record of routing during this time period is poorly constrained,
but two lines of evidence suggest that this previously unrecognized
intra-Younger Dryas routing event occurred through the north-
western Clearwater Outlet to the Arctic Ocean via the Mackenzie
River (Fig. 1): a radiocarbon age of 10,310 � 290 14C yr B.P.
(12,040 � 400 calibrated years B.P.) on a piece of wood obtained
in flood deposits from the outlet (32) with two additional support-
ing radiocarbon dates on wood of the same age (33), and a light
planktonic �18O anomaly in a record from the Beaufort Sea that
dates at 12 kyr B.P. (34) using the most recent reservoir age for this
region (26).

Three proxies from core 044 (U/Ca, 87Sr/86Sr, and �13C) indicate
that freshwater flux to the St. Lawrence River subsequently in-
creased for the remainder of the Younger Dryas, whereas
�18Oseawater and �Mg/Ca show no change (Fig. 2). We attribute the
increase in 87Sr/86Sr, U/Ca, and �13C to renewed routing of western
Canadian runoff to the St. Lawrence, possibly due to isostatic uplift
of the northwest outlet to the Arctic Ocean, causing Lake Agassiz
waters to again start draining to the east. Based on our geochemical
modeling, this subsequent rerouting would have increased the flux
out of the St. Lawrence River by 0.06 � 0.01 Sv (Fig. 3) (see SI

Fig. 4. Proxies of AMOC and freshwater routing. (a) 231Pa/230Th record from

the subtropical North Atlantic (red diamonds are the 232Th method, and green

diamonds are the 238U method) (2). Age control is indicated by the black

square. (b) Detrended �14C from Cariaco Basin (1). (c) Planktonic U/Ca (blue),

�13C (green), and 87Sr/86Sr (red) from HU90031-044. The vertical light gray bar

denotes the timing of the Younger Dryas as inferred from our geochemical

proxies of routing, and the vertical dark gray bar denotes the intra-Younger

Dryas event defined by our geochemical routing proxies.
Fig. 5. Proxies of climate change and freshwater routing during the Younger

Dryas. (a) Greenland �18O record (38). (b) �18O from Ammerssee Lake, Germany

(40). (c) �18O from Chauvet Cave, France (39). Black symbols with error bars

denote age control. (d) SST reconstruction from the coast of West Africa (36).

Horizontal bars denote calibrated radiocarbon age control. (e) Planktonic

U/Ca (blue), �13C (green), and 87Sr/86Sr from HU90031-044. ( f) SST reconstruc-

tion from Cariaco Basin (37). (g) �18O from Hulu Cave, China (41). Black symbols

with error bars denote age control. (h) �18O record from Byrd ice core,

Antarctic (42). Vertical gray bars are the same as in Fig. 4.
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Methods). The absence of an equivalent �Mg/Ca signal at this time
may in part reflect source-rock changes in the eastern Great Lakes
region, whereby the opening of more northerly outlets allowed
westerly derived waters from the Agassiz basin to bypass Lakes Erie
and Ontario and flow directly from Lake Huron into the St.
Lawrence River by way of the Ottawa River (9, 26). The attendant
loss of Mg-rich waters due to bypassing the dolomites of the Erie
and Ontario basins (Fig. 1) would thus have counteracted the gain
of Mg-rich waters derived from the Agassiz basin. However, we
should expect to see an �2.5–4 mmol/mol gain in �Mg/Ca relative
to a loss of �1 mmol/mol due to bypassing carbonate bedrock of the
eastern Great Lakes. The absence of a �Mg/Ca signal as well as a
�18Oseawater signal during this late Younger Dryas time may thus
result from the �30% error in the �Mg/Ca record (see SI Methods)
due to the temperature and salinity adjustments (18) and the �20%
error in the SST reconstruction (11) with its propagated effect on
�18Oseawater.

Our source-water tracers thus provide the first direct oceano-
graphic evidence of eastward routing of surface waters from
western Canada to the St. Lawrence River at the start of the
Younger Dryas. According to climate models, our estimated fresh-
water flux increase (0.06 � 0.02 Sv initially, 0.12 � 0.02 Sv
maximum) required to produce measured changes in 87Sr/86Sr,
U/Ca, �Mg/Ca, and �18Oseawater would be sufficient to induce a
significant reduction in the AMOC (35), such as occurred during
the Younger Dryas (1–3) (Fig. 4). Our results thus resolve the
timing of continental routing during this critical period of degla-
ciation and suggest that the increase in base flow discharge in the
St. Lawrence River forced the Younger Dryas cold event. Our
results also offer strategies for investigating whether similar mech-
anisms may have been responsible for other abrupt climate changes.

In addition, our source-water tracers reveal the cause of ocean
and climate variability that occurred during the Younger Dryas. All
our routing proxies show that, rather than a constant flux of
freshwater as generally implied by the conventional routing mech-
anism (7, 8), freshwater base discharge varied during the Younger
Dryas with a two-stepped increase at the start of the Younger Dryas
followed by a decrease to pre-Younger Dryas values centered at

�12 kyr B.P. when freshwater was diverted to the Arctic Ocean.
This intra-Younger Dryas routing event is in excellent agreement
with proxies that indicate an increase in the AMOC (1–3) (Fig. 4)
and attendant warming of the surface ocean (36, 37) (Fig. 5 d and
f) and atmosphere (38–40) (Fig. 5 a–c), increased southeast Asian
monsoon intensity (41) (Fig. 5g), and a cooling over Antarctica (42)
(Fig. 5h) during the Younger Dryas. These same proxies then
suggest that the AMOC subsequently decreased (Fig. 4) with an
attendant climate response at a time when our tracers suggest a
rerouting of western Canadian freshwater back to the St. Lawrence
River (Fig. 5). This tight coupling between changes in freshwater
fluxes to the North Atlantic basin, changes in the AMOC, and
changes in climate further emphasizes the sensitivity of the climate
system to relatively small changes in the hydrological cycle.

Methods

Samples were physically cleaned, prepared with a flow-through
method that removes any effects of diagenesis and overgrowths
(43), and analyzed by high-resolution inductively coupled plasma
MS for U/Ca and Mg/Ca. Sr isotopes were analyzed by multicol-
lector inductively coupled plasma MS and thermal ionization MS.
We constructed age models from previously published 14C ages for
044 (11) and new 14C dates from 044 and 047 (Table 1), giving us
age control approximately every 430 years (Fig. 2). All 14C ages are
reservoir-corrected (11, 26) and calibrated (44). The agreement
between benthic mollusk shell ages and planktonic foraminifera
ages (11) indicates that any changes in the freshwater flux to the
estuary did not affect the reservoir age.
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