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ABSTRACT

As a pivotal junction between the North China and Tarim cratons, the Alxa Terrane provides an ideal window to constrain the �nal closure 

of the middle segment of the Paleo-Asian Ocean (PAO). This study carried out petrological, whole-rock geochemical, and zircon U-Pb-Hf 

isotopic investigations on four major granitic plutonic complexes in the Alxa Terrane. The Bayan Nuru and Yabulai plutonic complexes are 

I-type granitoids that yield crystallization ages of 281–268 Ma and 277–270 Ma, respectively, with negative zircon ε
Hf

(t) values (−11.5 to −3.2), 

primarily sourced from the Neoproterozoic rocks in the region. The Nuergai granitoids yield crystallization ages of 281–268 Ma and show 

I-type af�nities and positive zircon ε
Hf

(t) values (+1.6 to +6.4), indicating an origin related to magma mixing. Emplaced at ca. 241 Ma, the 

Oliji granitoids display varying zircon ε
Hf

(t) values from −0.9 to +11.5, which necessitate a predominant source of mantle-derived materials. A 

compilation of zircon ε
Hf

(t) and whole-rock ε
Nd

(t) values of the magmatic rocks in the Alxa Terrane illustrates a decreasing trend from the Late 

Carboniferous to the Early Permian and an increasing trend during Middle Permian to Triassic time. The marked shift with a large variation of 

zircon ε
Hf

(t) and whole-rock ε
Nd

(t) values at 280–265 Ma indicates a tectonic switch from subduction to post-collision tectonic regimes in the 

Alxa Terrane, marking the �nal closure of the middle segment of the PAO. Comparable isotope variations are also identi�ed from 260 to 245 

Ma magmatic counterparts on the northern margin of the North China Craton, hence suggesting a progressively eastward closure of the PAO.
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INTRODUCTION

As one of the most magni�cent orogens in Earth’s history, the Central 

Asian Orogenic Belt (CAOB) formed from the accretion and amalgamation 

of the Siberia and East Europe cratons to the north and the North China 

and Tarim cratons to the south, due to multiple episodes of subduction and 

closure of the Paleo-Asian Ocean (PAO) (Şengör et al., 1993; Khain et 

al., 2003; Xiao et al., 2003, 2009, 2013, 2015; Jahn, 2004; Windley et al., 

2007; Schulmann and Paterson, 2011; Wilhem et al., 2012; Eizenhöfer et 

al., 2014; Han et al., 2016a, 2016b; Chen et al., 2017). In the past decade, 

considerable progress has been made in understanding the �nal closure of 

the PAO along the Tianshan and Solonker suture zones, which were adjacent 

to the northern margins of the Tarim and North China cratons (Şengör et al., 

1993; Xiao et al., 2003, 2009, 2013, 2015; Windley et al., 2007; Wilhem et 

al., 2012; Eizenhöfer et al., 2014; Han et al., 2016b). However, controversy 

still exists regarding the timing of the �nal closure of the PAO, with differ-

ent perspectives arguing for distinct closure times that range from the Late 

Devonian to the Late Triassic (Xiao et al., 2003, 2009, 2013, 2015; Charvet 

et al., 2007, 2011; Windley et al., 2007; Jian et al., 2008, 2010; Han et al., 

2011, 2016b; Wilhem et al., 2012; Xu et al., 2013; Eizenhöfer et al., 2014, 

2015a, 2015b; Zhang et al., 2015a, 2015b, 2016a, 2016b).

Located between the North China Craton (NNC) to the east and the 

Tarim Craton to the west (Fig. 1A), the Alxa Terrane in westernmost Inner 

Mongolia occupies a crucial place to understand the closure processes 

in the middle segment of the PAO. The terrane is characterized by large 

volumes of late Paleozoic to early Mesozoic magmatic rocks, of which 

the changes of magma sources and isotopic records with time can provide 

important information for unraveling the history of the consumption of 

the middle segment of the PAO. In this study, we carried out �eld-based 

petrological, zircon U-Pb-Hf isotopic and whole-rock major- and trace-

elemental investigations on a variety of Permian to Early Triassic granit-

oids across the Alxa Terrane. By integrating the new results and previous 

data, we aim to better constrain the origin of the magmatic rocks, the 

regional tectonic settings, and the timing of the �nal closure of the PAO.

GEOLOGICAL BACKGROUND

Located in westernmost Inner Mongolia, the Alxa Terrane is a triangu-

lar block separated from the NCC to the east by the Langshan fault (Fig. 

1B). The Alxa Terrane borders the North Qilian Orogen to the southwest 

by the Longshoushan fault and the southernmost CAOB to the north by 

the Enger Us fault (Fig. 1B). The ca. 300 Ma Enger Us ophiolitic mélange 

along the Enger Us fault is considered to demarcate the �nal closure site 

of the PAO (BGMRIM, 1991; Wang et al., 1994; Wu et al., 1998; Xie et 
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al., 2014; Zheng et al., 2014). Largely covered by the Badain Jaran desert, 

the Alxa Terrane is subdivided into the Nuru-Langshan and Shalazhashan 

belts separated by the Badain Jaran fault, along which ca. 275 Ma Quagan 

Qulu ophiolitic mélange outcrops (Fig. 1B) (BGMRIM, 1991; Wang et 

al., 1994; Wu et al., 1998; Zheng et al., 2014).

Precambrian basement rocks and Paleozoic to Mesozoic magmatic 

rocks widely occur in the Nuru-Langshan belt (NLB). The Precam-

brian basements in the belt are composed mainly of ca. 2.5 Ga tonalite-

trondhjemite-granodiorite, 2.3–2.0 Ga orthogneisses reworked by high 

amphibolite-facies metamorphism at 1.93–1.80 Ga, Paleoproterozoic 

paragneisses, and 970–800 Ma magmatic and sedimentary rocks (Geng 

et al., 2002; Li et al., 2004; Peng et al., 2010; Geng and Zhou, 2011; Dan 

et al., 2012, 2014b; Gong et al., 2012; J.X. Zhang et al., 2013; Hu et al., 

2014; Wu et al., 2014; Zhao et al., 2015). Voluminous late Paleozoic to 

early Mesozoic magmatic rocks across the NLB yielded zircon U-Pb ages 

of 418–239 Ma, with a main peak at the Permian time (summarized in 

Liu et al., 2016). In addition, some early Paleozoic dioritic and granitic 

intrusions with zircon ages of 460–423 Ma have been reported in the 

eastern and southern parts of the NLB (Dan et al., 2015a; Liu et al., 2016).

The Shalazhashan belt (SLB) is composed mainly of late Paleozoic 

to early Mesozoic magmatic rocks, with subordinate late Paleozoic sedi-

mentary rocks and minor early Paleozoic magmatic rocks and Precam-

brian basement rocks (Fig. 1B). The late Paleozoic to early Mesozoic 

magmatic rocks in the SLB include predominant 301–247 Ma granitoids 

and subordinate 264–249 Ma diorites and gabbros (Ran et al., 2012; 

W. Zhang et al., 2013; Shi et al., 2014a, 2014b; Yang et al., 2014). The 

late Paleozoic sedimentary successions are represented by the Amushan 

Formation, which has Late Carboniferous to Early Permian depositional 

ages. The lower and middle sequences of the Amushan Formation consist 

mainly of clastic rocks interbedded with ma�c to felsic volcanic rocks 

that yielded zircon U-Pb ages of 320–302 Ma, and the upper sequence is 

a molasse composed of silty shale, sandstone, gravel-bearing sandstone, 

and conglomerate (Lu et al., 2012; W. Zhang et al., 2013).

SAMPLING

In this study, granitic intrusions in the Alxa Terrane were widely sam-

pled, with 17 samples from the eastern to western parts of the NLB and 
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Figure 1. (A) Simpli�ed tectonic sketch map of the Central Asian Orogenic Belt (CAOB) with the location of the Alxa Terrane (modi�ed after Xiao et 

al., 2013, Han et al., 2016a, 2016b) and (B) Geological map of the Alxa Terrane (modi�ed after 1:200,000 geological maps from Bureau of Geology and 

Mineral Resources of Inner Mongolia Autonomous Region (1991) and geological map of Tianshan and its adjacent area, 1:1,000,000). [1]—the Enger Us 

fault; [2]—the Badain Jaran fault; [3]—the Langshan fault; [4]—the Longshoushan fault. SLB—the Shalazhashan belt; NLB—the Nuru-Langshan belt.
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nine samples from the middle part of the SLB. Due to the paucity of the 

outcrops in the Alxa Terrane, the contact relationship between different 

rock types in the same plutonic complex can hardly be recognized in the 

�eld. Detailed locations, lithology, mineral assemblages, and analytical 

results of samples are summarized in Table 1.

The Bayan Nuru Plutonic Complex

Samples 14LQ01A–14LQ01C, 14LQ14A, and 14LQ14B were col-

lected near the Bayan Nuru area in the eastern part of the NLB (Fig. 2A). 

Intruding the Precambrian basement rocks and intruded by Early Triassic 

granitoids, the Bayan Nuru granitic plutonic complex contains ultrama�c 

to intermediate intrusive enclosures occurring as small elliptical or irregu-

lar bodies (Fig. 2A). These intrusions show crystallization ages varying 

from 440 Ma to 270 Ma (Fig. 2A; Liu et al., 2016).

Samples 14LQ01A–14LQ01C are monzogranite with a porphyritic 

texture (Fig. 3A), of which alkali feldspar grains are coarse-grained pheno-

crysts, and quartz grains mostly appear as �ne-grained aggregates showing 

late recrystallization. Samples 14LQ14A and 14LQ14B are syenogranite, 

containing more abundance of alkali feldspar with 1% anhedral muscovite 

and minor minerals of epidote-zoisite and �uorite.

The Yabulai Plutonic Complex

In the middle part of the NLB, four samples (14LQ34A, 14LQ34B, 

14LQ35A, and 14LQ35B) were collected from the Yabulai granodioritic 

plutonic complex, which is intruded by Triassic granitoids in the region 

(Figs. 2B and 3B). The common minerals are hornblende, biotite, quartz 

(38%–45%), alkali feldspar (15%–17%), and plagioclase (35%–45%) (Fig. 

3C), with minor epidote-zoisite and sphene. Hornblende and biotite grains 

show preferred orientations yielding a lineation and a gneissosity, respec-

tively (Figs. 3B and 3C). Quartz grains occasionally tend to be tiny grains 

with undulatory extinction due to ductile shear deformation (Fig. 3C).

The Nuergai Plutonic Complex

Approximately 80 km northwest to Alxa Youqi County (Fig. 1B), the 

Nuergai granitic plutonic complex in the western part of the NLB is 

TABLE 1. SUMMARY OF THE SAMPLING LOCALITY, LITHOLOGY, MINERAL ASSEMBLAGES, AND ANALYTICAL RESULTS

Sample 
number

Latitude 
(°N)

Longitude 
(°E)

Lithology Mineral assemblages* Ages 
(Ma)†

ε
Hf

(t)§ TC
DM 

(Ga)#

Bayan Nuru plutonic complex, eastern Nuru–Langshan belt

14LQ01A 39°53’50.0” 105°00’41.5” Monzogranite Qtz 36%, Afs 30%, Pl 30%, Hbl 2%, Bt 2%, Ep-Zo 268 −6.1 to −3.2 1.67–1.49

14LQ01B 39°53’50.0” 105°00’41.5” Monzogranite Qtz 35%, Afs 25%, Pl 35%, Hbl 2%, Bt 3%, Ep-Zo

14LQ01C 39°53’50.0” 105°00’41.5” Monzogranite Qtz 32%, Afs 25%, Pl 40%, Hbl 1%, Bt 2%, Ep-Zo

14LQ14A 40°11’14.6” 104°48’24.4” Syenogranite Qtz 40%, Afs 40%, Pl 19%, Mus 1%, Ep-Zo, Fl 281 −11.5 to −9.5 2.01–1.90

14LQ14B 40°11’14.6” 104°48’24.4” Syenogranite Qtz 40%, Afs 39%, Pl 20%, Mus 1%, Ep-Zo, Fl

Yabulai plutonic complex, middle Nuru–Langshan belt

14LQ34A 39°43’22.2” 103°07’57.5” Granodiorite Qtz 40%, Afs 15%, Pl 37%, Hbl 3%, Bt 5%, Ep-Zo, Sph 277 −5.1 to −3.0 1.63–1.49

14LQ34B 39°43’22.2” 103°07’57.5” Granodiorite Qtz 45%, Afs 17%, Pl 35%, Hbl 1%, Bt 2%, Ep-Zo, Sph

14LQ35A 39°53’40.4” 103°34’25.6” Granodiorite Qtz 40%, Afs 15%, Pl 40%, Hbl 1%, Bt 4%, Ep-Zo, Sph 270 −7.4 to −6.1 1.75–1.64

14LQ35B 39°53’40.4” 103°34’25.6” Granodiorite Qtz 38%, Afs 10%, Pl 45%, Hbl 2%, Bt 5%, Ep-Zo, Sph

Nuergai plutonic complex, western Nuru–Langshan belt

14LQ26A 39°28’28.3” 101°03’58.9” Quartz diorite Qtz 15%, Pl 55%, Hbl 22%, Bt 8%, Ep-Zo, Ap 269 +1.6 to +3.3 1.18–1.08

14LQ26B 39°28’28.3” 101°03’58.9” Quartz diorite Qtz 20%, Pl 54%, Hbl 18%, Bt 8%, Ep-Zo, Ap

14LQ26C 39°28’28.3” 101°03’58.9” Quartz diorite Qtz 10%, Pl 50%, Hbl 18%, Bt 22%, Ep-Zo, Ap

14LQ30A 39°35’03.3” 100°48’37.7” Syenogranite Qtz 38%, Afs 52%, Pl 9%, Bt 1%, Ep-Zo, Ap 268 +4.3 to +6.4 1.02–0.89

14LQ30B 39°35’03.3” 100°48’37.7” Syenogranite Qtz 40%, Afs 50%, Pl 9%, Bt 1%, Ep-Zo, Ap

14LQ31A 39°36’22.0” 100°40’19.5” Syenogranite Qtz 38%, Afs 55%, Pl 15%, Hbl 1%, Bt 1%, Ep-Zo, Ap 269 +2.6 to +5.3 1.12–0.95

14LQ33A 39°39’01.6” 100°35’06.0” Granodiorite Qtz 30%, Afs 15%, Pl 40%, Hbl 10%, Bt 5%, Ep-Zo, Ap, Sph 281 +1.6 to +3.8 1.20–1.06

14LQ33B 39°39’01.6” 100°35’06.0” Granodiorite Qtz 28%, Afs 12%, Pl 40%, Hbl 15%, Bt 5%, Ep-Zo, Ap, Sph

Oliji plutonic complex, middle Shalazhashan belt

14LQ37A 40°48’53.2” 104°28’19.3” Granodiorite Qtz 30%, Afs 10%, Pl 50%, Hbl 5%, Bt 5%, Ep-Zo, Ap, Sph

14LQ37B 40°48’53.2” 104°28’19.3” Granodiorite Qtz 28%, Afs 12%, Pl 50%, Hbl 4%, Bt 6%, Ep-Zo, Ap, Sph

14LQ38A 40°50’01.2” 104°28’24.5” Granodiorite Qtz 30%, Afs 15%, Pl 47%, Hbl 3%, Bt 5%, Ep-Zo, Ap, Sph 241 +8.2 to +11.5 0.75–0.54

14LQ38B 40°50’01.2” 104°28’24.5” Granodiorite Qtz 30%, Afs 20%, Pl 40%, Hbl 4%, Bt 6%, Ep-Zo, Ap, Sph

14LQ39A 40°50’39.7” 104°27’38.4” Granodiorite Qtz 28%, Afs 15%, Pl 42%, Hbl 5%, Bt 10%, Ep-Zo, Ap, Sph

14LQ44A 40°55’01.0” 104°21’04.1” Monzogranite Qtz 35%, Afs 33%, Pl 30%, Bt 2%, Ep-Zo, Ap 242 −0.8 to +7.4 1.32–0.80

14LQ44B 40°55’01.0” 104°21’04.1” Monzogranite Qtz 40%, Afs 37%, Pl 32%, Bt 1%, Ep-Zo, Ap

14LQ45A 40°56’18.2” 104°19’32.4” Monzogranite Qtz 40%, Afs 35%, Pl 24%, Bt 1%, Ep-Zo, Ap

14LQ45B 40°56’18.2” 104°19’32.4” Monzogranite Qtz 40%, Afs 37%, Pl 22%, Bt 1%, Ep-Zo, Ap

*Qtz—quartz, Afs—alkali feldspar, Pl—plagioclase, Hbl—hornblende, Bt—biotite, Ep—epidote, Zo—zoisite, Mus—muscovite, Fl—fluorite, Sph—sphene, Ap—apatite.
†Measured zircon U-Pb ages in this study.
§ε

Hf
(t) = 10,000 × ([(176Hf/177Hf)

S 
− (176Lu/177Hf)

S 
× (eλt − 1)]/[(176Hf/177Hf)

CHUR 
− (176Lu/177Hf)

CHUR 
× (eλt− 1)] −1). S—Sample; t—measured zircon U-Pb ages in this study; 

CHUR—chondrite. λ = 1.865 ×10−11 a−1. The (176Hf/177Hf)
CHUR

 and (176Lu/177Hf)
CHUR

 at present are 0.282772 and 0.0332, respectively.
#TC

DM
 = 1/λ × ln(1 + [(176Hf/177Hf)

S 
− (176Hf/177Hf)

DM
)]/[(176Lu/177Hf)

C 
− (176Lu/177Hf)

DM
]) + t. C—crust, DM—depleted mantle. The (176Hf/177Hf)

DM
 and (176Lu/177Hf)

DM
 at present are 

0.283251 and 0.0384, respectively. (176Lu/177Hf)
C
 = 0.015.
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characterized by a varied rock assemblage of quartz diorite, granodiorite, 

and syenogranite (Fig. 2C). The relationship of these rock suites is unclear 

due to the paucity of outcrops and intense weathering.

Samples 14LQ26A–14LQ26C are weakly deformed quartz dio-

rite with major mineral assemblages of hornblende (~20%), biotite 

(~10%–20%), plagioclase (50%–55%), and quartz (10%–20%) (Fig. 

3D), of which hornblende is locally altered to epidote-zoisite. The 

syenogranite (samples 14LQ30A, 14LQ30B, and 14LQ31A) contains 

coarse-grained alkali feldspar of >50% (Fig. 3E) and biotite showing 

chlorite alteration, whereas the granodiorite (samples 14LQ33A and 

14LQ33B) comprises more hornblende (10%–15%), biotite (~5%) and 

plagioclase (~40%). Plagioclase grains show local sericite alteration 

(Fig. 3F).

The Oliji Plutonic Complex

The Oliji plutonic complex in the middle part of the SLB intrudes the 

Amushan Formation and is crosscut by a Jurassic granitic porphyry (Fig. 

2D). This plutonic complex is characterized by medium- to coarse-grained 

granodiorite (Fig. 3G) and monzogranite (Fig. 3H).
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Figure 2. Geological maps of (A) the Bayan Nuru area (modi�ed after 1:200,000 geological maps of the Alatanaobao, the Haobusi, the Qinggele, 

and the Jilantai areas); (B) the Yabulai area (after 1:200,000 geological maps of the Kunaitoulabamiao and the Aguimiao areas); (C) the Nuergai area 
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Age data are cited from W. Zhang et al. (2013) and Shi et al. (2014a).
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The granodiorite (samples 14LQ37A and 14LQ37B, 14LQ38A and 

14LQ38B, and 14LQ39A) is composed mainly of quartz (~30%), alkali 

feldspar (10%–20%), plagioclase (40%–50%), hornblende (3%–5%), and 

biotite (5%–10%), with minor epidote-zoisite, apatite, and sphene. Alkali 

feldspar and plagioclase grains show partially clay and sericite alteration, 

respectively. Hornblende and biotite grains occasionally show secondary 

alteration of chlorite and epidote-zoisite. Comparatively, four monzogranite 

samples (14LQ44A, 14LQ44B, 14LQ45A, and 14LQ45B) are characterized 

by more alkali feldspar (>30%) and quartz (35%–40%) with much less bio-

tite. Occasional anhedral muscovite appears due to late alteration of biotite.

ANALYTICAL METHODS AND RESULTS

LA-ICPMS U-Pb Dating of Zircon

Prior to dating analysis for zircons, cathodoluminescence (CL) images 

were taken on a MonoCL3 attached to a scanning electron microscope 

(JSM-6510A, Japan) at Jinyu Technology Co., Ltd., Chongqing, China. 

Zircon U-Pb dating analysis was carried out using a laser ablation-

inductively coupled plasma mass spectrometry (LA-ICPMS) at FocuMS 

Technology Co., Ltd., Nanjing, China. The system comprises a Photon 

Machines Excite 193nm laser ablation system and a quadrupole ICPMS 

(Agilent 7700x). The following were working parameters: 7 Hz repetition 

rate, 6.71 J/cm2 energy, and 40 μm laser spot diameter. Zircon standard 

91500 (Wiedenbeck et al., 1995) was used for U-Pb isotopic ratio correc-

tion, and zircon standard GJ-1 (Jackson et al., 2004) was used as unknown. 

A weighted mean 206Pb/238U age of 601 ± 5 Ma (n = 72) was obtained for 

the latter, in agreement with the recommended value of 600.4 ± 0.6 Ma 

(Jackson et al., 2004). Detailed zircon U-Pb isotopic data are listed in 

GSA Data Repository Table DR11.

Age of the Bayan Nuru Plutonic Complex

Zircons in a monzogranite sample 14LQ01A are euhedral and pris-

matic. They show oscillatory zoning in CL images (Fig. 4A) and high 

Th/U ratios of 0.50–0.87, indicating a magmatic origin. Fourteen analyses 

yield concentrated 206Pb/238U ages, with a weighted mean age of 268 ± 1 

Ma (MSWD = 0.8; Fig. 4A), interpreted as the crystallization age of this 

monzogranite. One grain has an older age of 307 Ma, considered as a 

xenocrystic zircon in the monzogranite. Zircons from the syenogranite 

(sample 14LQ14A) are of a magmatic genesis, showing oscillatory zon-

ing (Fig. 4B) and an average Th/U ratio of 0.48. Twenty-three analyses 

produce a weighted mean 206Pb/238U age of 281 ± 1 Ma (MSWD = 1.0; 

Fig. 4B). Taken together, the crystallization age of the Bayan Nuru gra-

nitic plutonic complex is 281–268 Ma.

Age of the Yabulai Plutonic Complex

Sample 14LQ34A is granodiorite, in which zircons are typical of a 

magmatic genesis with elongated prismatic forms, oscillatory zoning 

(Fig. 4C), and high Th/U ratios of >0.4. Nineteen analyses show similar 
206Pb/238U ages between 280 Ma and 275 Ma, with a weighted mean age of 

277 ± 1 Ma (MSWD = 0.8; Fig. 4C), interpreted as the crystallization age 

of this granodiorite. Similarly, 21 analyzed zircons from a monzogranite 

sample 14LQ35A also show oscillatory zoning (Fig. 4D) with high Th/U 

ratios and give a weighted mean 206Pb/238U age of 270 ± 1 Ma (MSWD = 

1.2; Fig. 4D). Thus, the Yabulai plutonic complex yields a crystallization 

age of 277–270 Ma.

Age of the Nuergai Plutonic Complex

Zircons extracted from a quartz dioritic sample 14LQ26A have stubby 

prismatic forms (Fig. 4E). They show oscillatory zoning (Fig. 4E) and 

varying Th/U ratios from 0.50 to 1.17, re�ecting a magmatic origin. 

Twenty-four analyzed grains have concentrated 206Pb/238U ages, with a 

weighted mean age of 269 ± 1 Ma (MSWD = 0.9; Fig. 4E), interpreted 

as the crystallization age of the quartz diorite. Samples 14LQ30A and 

14LQ31A are monzogranite, in which zircons are commonly elongated 

in shape with ratio aspects of >3 (Figs. 4F and 4G) and characterized 

1 GSA Data Repository Item 2017237, Table DR1: Zircon U-Pb dating results; Table 
DR2: Zircon Hf-isotope compositions; and Table DR3: Whole-rock major- (wt%) 
and trace-element (ppm) compositions, is available at http://www.geosociety.org 
/datarepository /2017, or on request from editing@geosociety.org.
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Figure 3. Representative �eld photographs and photomicrographs (crossed 

nicols): (A) Monzogranite showing a porphyritic texture in the Bayan Nuru 

plutonic complex; (B) granodiorite yielding weak gneissosity in the Yabulai 

plutonic complex; (C) sample 14LQ34A; (D) sample 14LQ26A; (E) coarse-

grained syenogranite in the Nuergai plutonic complex; (F) sample 14LQ33A; 

(G) middle- to coarse-grained granodiorite in the Oliji plutonic complex; (H) 

middle- to coarse-grained monzogranite in the Oliji plutonic complex; Qtz—

quartz; Afs—alkali feldspar; Pl—plagioclase; Hbl—hornblende; Bt—biotite.
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Figure 4. (A–J) Representative cathodoluminescence images and U-Pb concordia diagrams of zircons 
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by oscillatory zoning and high Th/U ratios of >0.4. Eighteen zircons in 

the former and 20 grains in the latter were analyzed and yield a similar 

weighted mean 206Pb/238U age of 268 ± 1 Ma (MSWD = 0.5; Fig. 4F) 

and 269 ± 1 Ma (MSWD = 0.6; Fig. 4G), respectively, indicating the 

crystallization age of the monzogranite. Zircons in another granodiorite 

sample 14LQ33A are of a magmatic origin with oscillatory zoning (Fig. 

4H) and high Th/U ratios, 17 of which yield a weighted mean 206Pb/238U 

age of 281 ± 2 Ma (MSWD = 1.0; Fig. 4H), relatively older than that of 

the quartz diorite and monzogranite. Taken together, the crystallization 

age of the Nuergai plutonic complex is 281–268 Ma.

Age of the Oliji Plutonic Complex

Zircons from samples 14LQ38A and 14LQ44A show Th/U ratios vary-

ing from 0.39 to 1.10, and oscillatory zoning (Figs. 4I and 4J), indicative 

of a magmatic origin. Twenty analyses from the former and 16 from the 

latter yield an equal weighted mean 206Pb/238U age of 241 ± 1 Ma (MSWD 

= 0.8; Fig. 4I) and 242 ± 1 Ma (MSWD = 1.4; Fig. 4J), respectively, 

interpreted as the crystallization age of the Oliji granitoids. In addition, 

�ve inherited and/or xenocrystic zircons in sample 14LQ44A show older 

concordant 206Pb/238U ages between 271 Ma and 251 Ma, coincident with 

the giant Permian magmatic event (272–250 Ma) in the SLB (Ran et al., 

2012; W. Zhang et al., 2013; Shi et al., 2014a, 2014b).

Zircon Hf-Isotope Compositions

Zircon Lu-Hf isotope analysis (presented in GSA Data Repository 

Table DR2) was conducted using a Neptune Plasma multi-collector 

ICPMS attached to a New Wave ArF 193 nm COMPex Pro laser ablation 

system at the State Key Laboratory of Mineral Deposits Research, Nan-

jing University (NJU), China. The adopted working parameters were: 44 

μm ablation pit diameter, 8 Hz repetition rate, and 25 s ablation time. In 

order to monitor reliability and stability of the instrument, two reference 

zircon standards 91500 and Mud Tank were analyzed. Mean 176Hf/177Hf 

ratios of 0.282306 ± 0.000022 (n = 21) and 0.282502 ± 0.000017 (n = 

22) were obtained, respectively, equal to suggested values for 91500 

(0.282284 ± 0.000003; Wiedenbeck et al., 1995) and Mud Tank (0.282497 

± 0.000018; Hawkesworth and Kemp, 2006) within the error. In order to 

calculate the zircon initial 176Hf/177Hf ratios, ε
Hf

(t) values, depleted mantle 

model ages and two-stage model ages (TC
DM

), the following parameters 

were adopted. The decay constant is 1.865 × 10−11 per year for 176Lu 

(Scherer et al., 2001). The 176Hf/177Hf and 176Lu/177Hf ratios for chondrite 

and depleted mantle at present are 0.282772 and 0.0332 (Blichert-Toft 

and Albarede, 1997) and 0.283251 and 0.0384 (Vervoort and Blichert-

Toft, 1999), respectively. The 176Lu/177Hf ratio for the average continental 

crust is 0.015 (Grif�n et al., 2002).

The ca. 268 Ma zircons from the Bayan Nuru plutonic complex show 

homogeneous and negative ε
Hf

(t) values from −6.1 to −3.2, and two-stage 

model ages (TC
DM

) of 1.67–1.49 Ga, whereas the ca. 281 Ma zircons in 

the Bayan Nuru plutonic complex yield relatively more negative ε
Hf

(t) 

values and older TC
DM

 ages (Fig. 5A). The 277–270 Ma zircons from the 

Yabulai plutonic complex have more clustered and negative ε
Hf

(t) values 

(−7.4 to −3.0) and TC
DM

 ages of 1.75–1.49 Ga (Fig. 5A). In contrast, dif-

ferent granitic samples from the Nuergai plutonic complex display positive 

ε
Hf

(t) values from +1.6 to +6.4 and corresponding younger TC
DM

 ages of 

1.20–0.89 Ga (Fig. 5A).

The ca. 241 Ma zircons in sample 14LQ38A from the Oliji plutonic 

complex display fairly positive ε
Hf

(t) values from +8.2 to +11.5 and young 

TC
DM

 ages of 0.75–0.54 Ga, whereas those in sample 14LQ44A have more 

heterogeneous and enriched Hf-isotope compositions with ε
Hf

(t) values 

varying from −0.8 to +7.4, and older TC
DM

 ages of 1.32–0.80 Ga (Fig. 

5A). In addition, older zircons (256–271 Ma) in sample 14LQ44A show 

positive ε
Hf

(t) values of +5.0 to +7.7 (Fig. 5A).

Whole-Rock Major- and Trace-Element Compositions

Whole-rock major-element compositions were determined using an 

X-ray �uorescence (XRF) spectrometer at the NJU, and whole-rock trace-

elemental analysis was carried out using a quadrupole ICPMS at the 

State Key Laboratory of Ore Deposit Geochemistry, Guiyang Institute of 

Geochemistry (GYIG), Chinese Academy of Sciences, China. Generally, 

analytical precisions for major- and trace-elements are higher than 2% 

and 5%, respectively. Analytical results are given in GSA Data Reposi-

tory Table DR3.

Whole-Rock Major-Element Compositions

The Permian granitoids in the NLB display a large variation in major-

element compositions with SiO
2
 contents varying from 55.0% to 76.8% 

(Fig. 6). The 281–268 Ma Bayan Nuru granitoids and the 277–270 Ma 

Yabulai granodiorites show calc-alkaline to high-K calc-alkaline af�ni-

ties (Fig. 6). They plot into the �eld of weakly peraluminous to meta-

luminous (Fig. 7A) and magnesian series (Fig. 7B), with molar Al
2
O

3
/

(CaO+Na
2
O+K

2
O) (A/CNK) values of 0.97–1.02 and low FeOt/(MgO + 

FeOt) ratios of 0.47–0.82, more akin to I-type granitoids (Whalen et al., 

1987). Comparatively, the 281–268 Ma Nuergai granitoids show a much 
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Figure 5. (A) and (B) Hf-isotope 

compositions of zircons from the 

Permian to Early Triassic granitoids 
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Figure 7. (A) Molar Al
2
O

3
/(CaO + Na

2
O + 

K
2
O) (A/CNK) versus molar Al

2
O

3
/(Na

2
O + 

K
2
O) (A/NK) diagram (Maniar and Piccoli, 

1989); (B) FeOt/(FeOt + MgO) versus SiO
2
 

diagram (after Frost et al., 2001).
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larger variation in major-element compositions. They exhibit roughly 

lower Al
2
O

3
, Na

2
O, K

2
O, and P

2
O

5
 contents (Fig. 6) and lower A/CNK 

values (0.87–0.98) and Al
2
O

3
/TiO

2
 ratios at similar silica contents than 

those of the Bayan Nuru and Yabulai counterparts, indicative of typical 

I-type af�nities (Whalen et al., 1987).

In comparison, the ca. 241 Ma Oliji granitoids in the SLB have lower 

Fe
2
O

3
t and K

2
O contents with lower FeOt/(MgO + FeOt) and Al

2
O

3
/TiO

2
 

ratios at the same SiO
2
 levels than those of the Permian granitoids from the 

NLB (Figs. 6 and 7). These Early Triassic granitoids show I-type features 

(Whalen et al., 1987), belonging to calc-alkaline to high-K calc-alkaline 

(Fig. 6), weakly peraluminous to metaluminous with A/CNK values of 

0.92–1.04 (Fig. 7A), and magnesian series (Fig. 7B).

Whole-Rock Trace-Element Compositions

The Permian granitoids in the NLB and the Early Triassic granitoids 

in the SLB also show a broad range of trace-element compositions, with 

the former containing relatively lower transition elements (e.g., Sc, V, Cr, 

Co, and Ni) and Sr contents, higher Rb, Y, rare-earth elements (REEs) 

and Nb components, and higher Rb/Sr ratios.

Distinct REEs patterns are illustrated in Figures 8A and 8B. The Perm-

ian granitoids in the NLB exhibit varying REEs contents ranging from 81 

ppm to 249 ppm, weak to medium REEs fractionation with light REEs 

(LREEs) / heavy REEs (HREEs) ratios of 5.80–9.49 and (La/Yb)
N
 ratios 

of 5.29–10.30, and strongly to weakly negative Eu anomalies (Eu/Eu* = 

0.11–0.87) (Fig. 8A). In contrast, except two monzogranite samples with 

fairly high silica contents, the Early Triassic granitoids in the SLB mostly 

display lower REEs contents of 46–135 ppm, stronger REEs fractionation 

with higher LREEs/HREEs and (La/Yb)
N
 ratios, and less negative Eu 

anomalies (Eu/Eu* = 0.80–0.98) (Fig. 8B).

In the mid-ocean ridge basalt (MORB)–normalized, incompatible–

trace-element spidergrams (Figs. 8C and 8D), almost all the Permian 

and Early Triassic granitoids in this study demonstrate relative depletions 

in high �eld strength elements (HFSEs, e.g., Nb, Ta, and Ti) and P and 

relative enrichments in K, Rb, and Ce.

DISCUSSION

Permian to Triassic Magmatic Episodes in the Alxa Terrane

LA–ICPMS zircon U-Pb dating on ten samples from four granitic plu-

tonic complexes indicates a Permian to Triassic magmatic event in the Alxa 

Terrane. New results reveal that the crystallization age of the Bayan Nuru 

and Nuergai plutonic complexes is 281–268 Ma, roughly overlapping the 

age of the Yabulai plutonic complex at 277–270 Ma. Therefore, an episode 

of magmatism between 280 and 268 Ma took place in the Alxa Terrane, 

characterized by varied granitoids including quartz diorite, granodiorite, 

monzogranite, and syenogranite. This is consistent with previous studies 

that suggested a Permian magmatic event in the Alxa Terrane (e.g., Dan et 

al., 2014a, 2015b; Liu et al., 2016). Apart from the predominant granitoids, 

some 280–264 Ma ultrama�c to intermediate magmatic rocks were also 

unveiled in the eastern part of the NLB and the middle part of the SLB 

(Feng et al., 2013; L. Zhang et al., 2013; Shi et al., 2014a; Liu et al., 2017).

Sr

K O
2

Rb

Ba

Th

Ta

Nb TiO
2

Ce

P O
2 5

Zr

Hf

Sm Y

Yb

R
o
c
k
\M
O
R
B

1000

100

0.1

0.01

10

1

R
o

c
k

\M
O

R
B

1000

100

0.1

0.01

10

1

1000

100

10

1

R
o

c
k

\C
h

o
n

d
ri

te

1000

100

10

1

R
o

c
k

\C
h

o
n

d
ri

te

La
Ce

Pr
Nd

Sm
Eu

Gd Yb
Tb

Dy

Ho
Er

Tm Lu

Bayan Nuru (281-268 Ma)

Yabulai (277-270 Ma)

Nuergai (281-268 Ma)

Oliji (242-241 Ma)

A C

B D

Figure 8. (A and B) Chondrite-normalized rare-earth element patterns; (C and D) mid-ocean ridge basalt (MORB)–normal-

ized, incompatible-element abundances. Chondrite values are from McDonough and Sun (1995), and MORB values are from 

Pearce (1983).

Downloaded from https://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/9/4/665/2316153/665.pdf
by guest
on 28 November 2018



QIAN LIU ET AL.

674 www.gsapubs.org | Volume 9 | Number 4 | LITHOSPHERE

This study also unveils that the Oliji granitoids were emplaced at ca. 

241 Ma, slightly younger than the previous reported zircon U-Pb ages of 

254–250 Ma for the nearby monzogranite and granodiorite from the Oliji 

plutonic complex (Fig. 2D) (W. Zhang et al., 2013; Shi et al., 2014a). Thus, 

the Oliji granitic plutonic complex most likely evolved in a period from 

the Latest Permian to the Early Triassic. In addition, coeval 255–239 Ma 

ultrama�c to felsic plutonic rocks have also been identi�ed in the SLB 

and the eastern part of the NLB (Zhang et al., 2010; Ran et al., 2012; Shi 

et al., 2014a, 2014b; Wang et al., 2015b).

Petrogenesis

Fractional Crystallization

The Bayan Nuru and Nuergai granitoids in this study contain a large 

variety of rock assemblages with crystallization ages ranging from 281 

Ma to 268 Ma. Fractional crystallization can be the potential cause for 

such a large age span of different granitoids. If this is the case, the younger 

granitoids should have more felsic compositions. However, the ca. 268 

Ma Bayan Nuru monzogranites yield lower SiO
2
 contents than those of 

the ca. 281 Ma syenogranites, while the younger Nuergai quartz diorites 

show much less felsic compositions (Table DR3 [see footnote 1]). Such 

a long period of ca. 13 Ma is also unreasonable for a single fractional 

crystallization process. Therefore, fractional crystallization alone cannot 

explain the distinct geochemical compositions for the Bayan Nuru and 

Nuergai plutonic complexes.

The Yabulai and Oliji granitic plutonic complexes exhibit obvious linear 

correlations for major elements on the Harker diagrams (Fig. 6), suggest-

ing a signi�cant role of fractional crystallization. Negative correlations 

of TiO
2
, Al

2
O

3
, Fe

2
O

3
t, MgO, CaO, and P

2
O

5
 with respect to SiO

2
 (Fig. 6) 

indicate fractional crystallization of ma�c minerals (e.g., biotite and/or 

hornblende) and plagioclase with minor apatite and ilmenite. The posi-

tive correlation between K
2
O and SiO

2
 (Fig. 6) rules out the possibility of 

fractionation of alkali feldspar or biotite. Accordingly, the Yabulai and Oliji 

granitoids show fractional crystallization of hornblende + plagioclase + 

ilmenite + apatite. However, fractional crystallization alone cannot explain 

the distinct geochemical compositions of these granitoids, especially in 

terms of their distinct REE patterns and zircon Hf-isotope compositions.

To conclude, heterogeneous sources were probably a more important 

factor in controlling the petrogenesis of the Permian and Early Triassic 

granitoids in this study.

Sources

The 281–268 Ma Bayan Nuru granitoids and the 277–270 Ma Yabulai 

granitoids show homogenous and enriched zircon Hf-isotope composi-

tions with negative ε
Hf

(t) values and old TC
DM

 ages of 2.01–1.49 Ga, sug-

gesting the involvement of the Precambrian basement rocks as source 

materials. The Neoarchean to Paleoproterozoic basements in the Alxa 

Terrane are excluded because they have fairly older TC
DM

 ages of >2.5 

Ga (Fig. 5B). The Neoproterozoic rocks in the region can potentially be 

source materials, since the zircon Hf-isotope evolutionary array of these 

rocks covers the zircon ε
Hf

(t) values of the Bayan Nuru and Yabulai gra-

nitic plutonic complexes, despite different rock types (Fig. 5B). These 

Neoproterozoic rocks are sporadically exposed in the eastern and south-

western parts of the NLB and consist mainly of predominant 970–840 

Ma gneissic granitoids and metasedimentary sequences yielding youngest 

detrital zircon ages of 910–810 Ma and minor 830–800 Ma ultrama�c 

intrusions and felsic volcanic rocks (Geng et al., 2002; Li et al., 2004; 

Geng and Zhou, 2010; Peng et al., 2010; Dan et al., 2014b; Hu et al., 2014; 

Tang et al., 2014). Among these rock units, the Neoproterozoic granit-

oids and felsic volcanic rocks show high silica contents of mostly >70% 

(Peng et al., 2010; Geng and Zhou, 2011; Dan et al., 2014b), unlikely to 

generate the various granitoids from the Bayan Nuru and Yabulai plutonic 

complexes. In addition, the metasedimentary rocks cannot produce these 

I-type granitic magmas, and the ultrama�c intrusions are also excluded 

because it is dif�cult for granites to be generated by progressive fractional 

crystallization of ma�c magmas (e.g., Clemens et al., 2011; Clemens and 

Stevens, 2012; Nandedkar et al., 2014). Alternatively, we suggest that the 

mixing of quartzofeldspathic rocks (i.e., granitoids and/or metasedimen-

tary rocks) and ultrama�c rocks might have been the potential candidates 

for source materials of these I-type granitoids, as evidenced by a large 

amount of geochemical modeling works (e.g., Gray, 1984; Patiño Douce, 

1995, 1999; Collins, 1998; Moyen et al., 2001). The various inputs of mix-

ing members can contribute to the distinct geochemical compositions for 

the Bayan Nuru plutonic complex.

In comparison, the 281–268 Ma granitoids from the Nuergai plutonic 

complex in the western part of the NLB show more concentrated and 

radiogenic zircon Hf-isotope compositions with positive ε
Hf

(t) values and 

relatively younger TC
DM

 ages of 1.20–0.89 Ga. However, no pre-Permian 

rocks in the Alxa Terrane have the same Meso- to Neoproterozoic model 

ages to generate these granitoids. Instead, the Hf-isotope continuum of the 

Nuergai granitoids lies between a mantle-like component and the package 

of the Neoproterozoic rocks in the region, possibly due to crust-mantle 

magma mixing during their genesis. This interpretation is in accordance 

with I-type af�nities of the Nuergai granitoids because such rocks are com-

monly considered to form in magma mixing processes (e.g., Gray, 1984; 

Foden et al., 2002; Grif�n et al., 2002; Yu et al., 2005; Kemp et al., 2007, 

2009). In order to quantify the proportions of crust- and mantle-derived 

materials, a simpli�ed dual-members mixing model is adopted (Liu and 

Chen, 1991). In this model, the Neoproterozoic component in the region 

is assumed to be the evolved end member. This crust-derived magma is 

assumed to have zircon Hf-isotope compositions of these Neoproterozoic 

rocks (Geng and Zhou, 2011; Dan et al., 2014b), while an average Hf 

content of this crust-derived magma is equal to that of the Bayan Nuru 

and Yabulai granitoids that were sourced from these basement rocks. We 

adopt a Hf-isotope component of “New Crust” proposed by Dhuime et al. 

(2011) as that of the juvenile end member, and an average Hf content of 

this juvenile magma is equal to that of average arc basalts and andesites 

(Kelemen et al., 2003). Our calculated results show that ~70% mantle-

derived materials should have been added to generate the Nuergai gran-

itoids. If the crust member involves older Archean to Paleoproterozoic 

basements in the region, the proportion of the juvenile materials would 

be larger. The geochemical heterogeneity of the Nuergai granitoids can be 

explained by various proportions of crust- and mantle-derived materials.

Similarly, the ca. 242 Ma monzogranite from the Oliji plutonic com-

plex in the SLB displays a large variation of zircon ε
Hf

(t) values ranging 

from −0.8 to +7.4, also consistent with the crust-mantle magma mixing 

model. In contrast, the ca. 241 Ma granodiorite in the Oliji plutonic com-

plex shows fairly positive zircon ε
Hf

(t) values from +8.2 to +11.5, re�ecting 

primarily mantle-derived materials. Calculated results of the simpli�ed 

dual members mixing model suggest that ~76% ma�c end member may 

have been added in producing the monzogranite magma and up to 90% 

for the granodiorite with such depleted zircon Hf-isotope compositions. 

Such a large proportion emphasizes a considerably signi�cant role of 

juvenile materials that are most likely the newly accreted lower crust.

Tectonic Setting

Permian Granitoids

A giant Permian granitic �are-up has been identi�ed in the Alxa Ter-

rane, whose tectonic setting, however, is still controversial, with different 
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models advocating oceanic subduction, post-collisional, or mantle-plume 

settings (Ran et al., 2012; Shi et al., 2012; L. Zhang et al., 2013; W. Zhang 

et al., 2013; Dan et al., 2014a; Lin et al., 2014; Hu et al., 2015; Wang 

et al., 2015b).

The mantle-plume setting seems inadequate to account for the rela-

tively smaller size (~0.05 Mkm2) of the Permian granitic event in the Alxa 

Terrane than that of common silicic igneous provinces (>0.10 Mkm2; 

Bryan, 2007). Furthermore, mantle-plume–associated high-temperature 

continental �ood basalts and komatiitic sequences (e.g., Campbell et 

al., 1989; Campbell and Grif�ths, 1990) are lacking in the Alxa Terrane.

The post-collisional setting is also not preferred. The Permian mag-

matism was widespread both along the northern margin of the NCC and 

on the Alxa Terrane (Liu et al., 2016). Such a ~2000-km-long linear 

magmatic belt cannot be interpreted in a post-collisional setting. In addi-

tion, the Early Permian porphyries in the eastern part of the Alxa Terrane 

experienced north-vergent deformation (Lin et al., 2014), which is ame-

nable to a compressional south-dipping subduction setting, rather than 

an extensional post-collisional setting.

We thus favor the subduction setting in interpreting the origin of the 

Permian magmatic rocks in the Alxa Terrane based on the following 

lines of evidence:

(1) This study has revealed that the 281–268 Ma Nuergai granitoids 

were sourced from mixing magmas from the Neoproterozoic basements 

and mantle-derived materials, which is prone to occur in a subduction 

setting (e.g., Gill, 1981; Blundy and Sparks, 1992; Tepley et al., 2000; 

Zhou and Li, 2000; Annen et al., 2006; Reubi and Blundy, 2009).

(2) The zircon-saturation temperature calculated from whole-rock 

compositions of granitoids has been a powerful tool to estimate the crys-

tallization temperature of magma at the time when zircon forms (Watson 

and Harrison, 1983). The calculated results reveal that most of the Perm-

ian granitic samples have low crystallization temperatures of 803–670 °C 

(Table DR3 [see footnote 1]). These low-temperature, I-type granitoids 

are more inclined to form at the high �ux of water in a subduction setting 

(e.g., Hermann and Green, 2001; Collins et al., 2016), which goes against 

the mantle-plume or post-collisional models.

(3) A database has been compiled concerning the available zircon 

ε
Hf

(t) and whole-rock ε
Nd

(t) values in the Late Carboniferous to Triassic 

magmatic rocks in the Alxa Terrane. The increasingly evolved isotope 

compositions during Late Carboniferous to Middle Permian time (Figs. 

9A and 9B) are in agreement with an advancing compressional subduction 

setting, instead of an extensional setting in the post-collisional or mantle-

plume regimes (e.g., Kemp et al., 2009; Collins et al., 2011; Roberts et 

al., 2013; Han et al., 2016a).

(4) Coeval 280–268 Ma ultrama�c to intermediate intrusions showing 

arc-like geochemical af�nities have also been reported in the eastern part 

of the NLB, in favor of a subduction regime (Feng et al., 2013; L. Zhang 

et al., 2013; Liu et al., 2017).

Early Triassic Granitoids

The Early Triassic Oliji granitoids in this study are considered to form 

in a post-collisional setting according to following reasons:

(1) These Early Triassic granitic magmas show juvenile isotopic com-

positions (Fig. 5A), placing a predominant role of mantle-derived materi-

als in magma generation. This is amenable to occurring in an extensional 

setting where asthenospheric mantle is prone to ascend and partially melt 

(e.g., Liégeois et al., 1998; Sylvester, 1998; Chen and Arakawa, 2005; 

Yang et al., 2008).

(2) The compiled zircon ε
Hf

(t) and whole-rock ε
Nd

(t) values of the 

magmatic rocks in the Alxa Terrane show an increasingly depleted trend 

from the Middle Permian to the Triassic (Figs. 9A and 9B), which may be 

attributed to the involvement of mantle-derived magmas in an extensional 

setting (e.g., Kemp et al., 2009; Collins et al., 2011).

(3) The 256–249 Ma high-K calc-alkaline granitoids and 266–250 

Ma bimodal intrusive associations with radiogenic isotopic compositions 

have also been identi�ed in the Alxa Terrane, indicating an extensional 

setting in a post-collisional regime since the Late Permian (W. Zhang et 

al., 2013; Lin et al., 2014; Shi et al., 2014a, 2014b).

Constraints on the Timing of the Final Closure of the PAO

The identi�cation of the closure of a major ocean can be suf�ciently 

clued from convergent high-strain zones with large-scale thrust faults and 

regional high-grade metamorphism, blueschist mélanges, and ophiolite 

remnants (e.g., Dewey and Şengör, 1979). However, unlike Himalaya-type 

collision, the middle and eastern segments of the PAO closed as a result 

of multiple accretionary processes via double-sided subduction, lacking 

the records of intensive deformation and high-grade metamorphism (e.g., 

Xiao et al., 2003; Eizenhöfer et al., 2014). In addition, the reservation of 

blueschist and ophiolite remnants in the Alxa Terrane is also scarce. The 

ca. 300 Ma Enger Us and ca. 275 Ma Quagan Qulu ophiolitic mélanges 

sporadically outcrop along two faults in the region, considered as a late 

Paleozoic ocean-arc system (Zheng et al., 2014), which only implies that 

the PAO did not completely disappear prior to Early Permian.

Nevertheless, the radiometric isotopic signatures of igneous rocks 

primarily re�ect the characteristics of magma sources; samples show a 

large spread of zircon ε
Hf

(t) values probably attributed to magma mix-

ing processes, whereas samples exhibit concentrated zircon ε
Hf

(t) values 

re�ecting single old crustal or juvenile source domain. Numerous recent 

studies have ef�ciently correlated the variation of radiometric isotope 

signatures, especially zircon ε
Hf

(t) and whole-rock ε
Nd

(t) values, with 

large-scale switching tectonics (e.g., Jahn et al., 2000; Grif�n et al., 2002; 

Kemp et al., 2009; Collins et al., 2011; Roberts et al., 2013; Smits et 

al., 2014; Boekhout et al., 2015; Han et al., 2016a; Liu et al., 2016). A 

major tectonic change (e.g., advancing-retreating subduction transition, 

oceanic closure, or collision) inevitably affects the magma sources and 

petrogenetic processes of igneous rocks, and hence changes their isotopic 

characteristics.

In general, a compressional geodynamic setting sees isotopic excur-

sion to more enriched compositions (e.g., Smits et al., 2014; Boekhout 

et al., 2015; Han et al., 2016a; Liu et al., 2016), which is the case in the 

Alxa Terrane during Late Carboniferous to Middle Permian time (Figs. 

9A and 9B). In this scenario, the advancing subduction of the PAO pro-

duced compression in the overriding Alxa Terrane and resulted in a local 

increase in crustal thickness and a larger degree of subduction erosion, 

leading to greater crustal assimilation and more enrichment of the mantle. 

Accordingly, gradually evolved isotope signatures were recorded in the 

magmatic arc (Figs. 9A and 9B). In contrast, an extensional setting exhib-

its excursion to more juvenile isotopes (e.g., Smits et al., 2014; Han et al., 

2016a), which is also the case in this study; the Middle Permian to Trias-

sic magmatic rocks in the Alxa Terrane demonstrate increasing ε
Hf

(t) and 

ε
Nd

(t) values (Figs. 9A and 9B), and the majority of the Triassic zircons 

exhibit fairly positive ε
Hf

(t) values (>+5; Fig. 9A), suggesting primarily 

juvenile materials as magma source. This extensional setting most likely 

corresponds to the closure of oceanic domains with collision or accretion 

events (e.g., Smits et al., 2014) or a retreating arc in the oceanic subduc-

tion regime (e.g., Han et al., 2016a). The former model is preferred on 

the basis of the 256–249 Ma high-K calc-alkaline granitoids and 266–250 

Ma bimodal intrusive associations recognized in the region that have been 

considered to form in a post-collisional regime (W. Zhang et al., 2013; Lin 

et al., 2014; Shi et al., 2014a, 2014b). In this case, following the closure 
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of the PAO lithosphere, the overriding Alxa Terrane probably underwent 

crustal thinning in a post-collisional setting. In this scenario, the asthe-

nospheric mantle was upwelled, partially melted, and underplated, �nally 

resulting in magmas with more juvenile isotope signatures. Notably, in the 

transitional period of ca. 280–265 Ma, a marked shift with a very large 

spread of positive to negative ε
Hf

(t) and ε
Nd

(t) values illustrating a mixed 

magma source can be identi�ed, corresponding to a tectonic switch from 

subduction to post-collision due to the closure of the PAO. In this scenario, 

various crustal and mantle components could be involved during magma 

generation, such as old crustal materials, enriched lithospheric mantle, 

and depleted asthenospheric mantle. The involvement of different propor-

tions of crust- and mantle-derived materials possibly produced magmas 

having heterogeneous isotope compositions with a very large spread of 

positive to negative zircon ε
Hf

(t) and whole-rock ε
Nd

(t) values (e.g., Smits 

et al., 2014). Similar cases in which a marked shift with a large variation 

of isotopes is related to the �nal closure of a major ocean also occurred 

in the adjacent areas and worldwide, including ca. 310–300 Ma closure 

of the western segment of the PAO along the northern margin of the 

Tarim Craton (Han et al., 2016b; Zhang et al., 2016a) and ca. 1.2–1.1 Ga 

assembly of the Proterozoic Australia among the North, West, and South 

Australian cratons (Smits et al., 2014). In addition, a Hf-isotope gap is 

also documented in the Alxa Terrane during the transitional period, which 

might have recorded the heterogeneity of the magma source in different 

locations (Figs. 9A and 9B).

The transitional period of 280–265 Ma is also in accordance with the 

sedimentary records in the Alxa Terrane. Xie et al. (2014) identi�ed the 

late Middle Permian to the early Late Permian deep-water radiolarians 

fossils, i.e., albaillellarians, in the exotic siliceous rocks from the ca. 300 

Ma Enger Us ophiolitic mélange, supporting that the �nal disappearance 

of the middle segment of the PAO should have occurred after the Late 

Permian. Moreover, the sedimentological history of the Late Carbonifer-

ous to Early Permian Amushan Formation suggests that the PAO might 
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Figure 9. (A and B) Zircon ε
Hf

(t) and (C and D) whole-rock ε
Nd

(t) values versus ages from the Late Carboniferous to Triassic 

magmatic rocks in the Alxa Terrane and the northern margin of the North China Craton (NCC). Data for other Late Carbonif-

erous to Triassic magmatic rocks in the Alxa Terrane are from Pi et al. (2010), Peng et al. (2013), Wu et al. (2013), W. Zhang et 

al. (2013), Dan et al. (2014a, 2015b), Shi et al. (2014a, 2014b), and Hu et al. (2015). Data for other counterparts on the northern 

margin of the NCC are from Luo et al. (2004, 2007, 2013), Zhang et al. (2004, 2009a, 2009b, 2009c, 2010, 2011, 2012a, 2012b), 

Jiang et al. (2007), Tian et al. (2007), Chen et al. (2009), Feng et al. (2009), Wang et al. (2009), Jian et al. (2010), Hou et al. 

(2011), Zhao et al. (2011), Cao et al. (2013), Mo et al. (2014), and Wang et al. (2015a, 2015b).
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have begun to close in the Early Permian (Lu et al., 2012; W. Zhang et al., 

2013). The lower and middle sequences of this formation contain 320–302 

Ma ma�c to felsic volcanic rocks, clastic rocks, and carbonates, represent-

ing oceanic arc and back-arc basin environments. In contrast, the upper 

sequence of the formation changes to molasse deposition, including silty 

shale, sandstone, gravel-bearing sandstone, and conglomerate, which indi-

cates the swallowing basin from the Late Carboniferous to Early Permian.

Furthermore, a structural analysis in the Langshan area in the eastern 

part of the Alxa Terrane (Lin et al., 2014) reveals north-vergent deforma-

tion for Early Permian porphyries (290–280 Ma) and non-deformation 

for Late Permian dolerites (256 Ma). This implies a tectonic change from 

south-dipping subduction to post-collision between 280 Ma and 256 Ma, 

supporting our interpretation that the �nal closure of the PAO most likely 

occurred at 280–265 Ma.

Eastward Closing of the PAO during Late Carboniferous to 

Middle Triassic Time

Available data show that a ~2000-km-long, ENE-stretching Paleozoic 

magmatic belt developed on the northern margin of the NCC; this belt is 

considered to extend westerly to the Alxa Terrane (summarized in Liu et 

al., 2016). For comparison, the zircon ε
Hf

(t) values of Late Carbonifer-

ous to Triassic magmatic rocks on the northern margin of the NCC are 

illustrated in Figure 9C. It is noteworthy that 330–250 Ma zircons display 

a large spread and roughly decreasing ε
Hf

(t) values with time (Fig. 9C). 

Most importantly, a marked shift with a large variation of positive to 

negative ε
Hf

(t) values appears at 260–245 Ma (Fig. 9C), which is seem-

ingly also present on the whole-rock ε
Nd

(t) values versus age diagram (Fig. 

9D). Subsequently, the isotopic values in the Triassic exhibit an overall 

increasing trend (Figs. 9C and 9D). Accordingly, a complexity of a mixing 

source in the Late Permian to Early Triassic and an increasingly juvenile 

source during Triassic time can be inferred. Such a marked change of Hf 

and Nd isotopic arrays and a subsequent increasing trend are similar but 

posterior to those in the Alxa Terrane and most likely re�ect the timing of 

the main tectonic switch from subduction to post-collision orogenesis on 

the northern margin of the NCC. Moreover, a majority of previous paleo-

geographic, geochronologic, geochemical, and structural investigations 

also support that the �nal closure of the PAO on the northern margin of the 

NCC occurred in the Late Permian to Middle Triassic (Xiao et al., 2003, 

2015; Zhang et al., 2004, 2007, 2009a, 2009b, 2009c, 2012b; Miao et al., 

2007; Windley et al., 2007; Jian et al., 2008; Chen et al., 2009; Wilhem et 

al., 2012; Cao et al., 2013; Eizenhöfer et al., 2014, 2015a, 2015b; Wang 

et al., 2015a). Therefore, we conclude that the closure time of the PAO 

on the northern margin of the NCC, probably between 260 and 245 Ma, 

is slightly younger than that in the Alxa Terrane at 280–265 Ma.

Previous studies have proposed that the PAO completely closed in 

the Late Carboniferous on the western margin of the Tarim Craton, and 

the Latest Carboniferous to Early Permian on its eastern margin (e.g., 

Gao et al., 2011; Han et al., 2011, 2016b; Klemd et al., 2011; Xiao et 

al., 2015; Zhang et al., 2015a, 2015b, 2016a, 2016b). Taken together, it 

can be inferred that a notably eastward closing process of the PAO took 

place during Late Carboniferous to Early Permian time along the north-

ern margin of the Tarim Craton, at the latest Early Permian to Middle 

Permian in the Alxa Terrane, and in the Late Permian to Middle Triassic 

on the northern margin of the NCC.

CONCLUSIONS

(1) New LA-ICPMS zircon U-Pb dating results reveal that the emplace-

ment of Bayan Nuru-Nuergai, Yabulai, and Oliji granitoids occurred at 

281–268 Ma, 277–270 Ma, and ca. 241 Ma, respectively, suggesting a 

Permian to Triassic magmatic event in the Alxa Terrane.

(2) Whole-rock geochemical and zircon Hf-isotopic data suggest that 

the Permian Bayan Nuru and Yabulai granitoids were sourced primarily 

from the Neoproterozoic rocks in the Alxa Terrane, whereas the Perm-

ian Yabulai granitoids were derived from magma mixing of crust- and 

mantle-derived materials, and the Early Triassic Oliji granitoids involved 

more prominent mantle-derived materials.

(3) The marked shift of zircon ε
Hf

(t) and whole-rock ε
Nd

(t) values at 

280–265 Ma demonstrates a robust tectonic switch from subduction to 

post-collision, corresponding to the timing of the �nal closure of the PAO 

in the Alxa Terrane.

(4) An eastward closure of the PAO is inferred, i.e., in the Late Carbon-

iferous to Early Permian along the northern margin of the Tarim Craton, 

at 280–265 Ma in the Alxa Terrane, and at 260–245 Ma on the northern 

margin of the NCC.
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