
GeoCrowd: Enabling Query Answering with Spatial
Crowdsourcing

Leyla Kazemi
IMSC

University of Southern
California

Los Angeles, CA 90089-0781

lkazemi@usc.edu

Cyrus Shahabi
IMSC

University of Southern
California

Los Angeles, CA 90089-0781

shahabi@usc.edu

ABSTRACT
With the ubiquity of mobile devices, spatial crowdsourcing
is emerging as a new platform, enabling spatial tasks (i.e.,
tasks related to a location) assigned to and performed by hu-
man workers. In this paper, for the first time we introduce a
taxonomy for spatial crowdsourcing. Subsequently, we focus
on one class of this taxonomy, in which workers send their
locations to a centralized server and thereafter the server
assigns to every worker his nearby tasks with the objective
of maximizing the overall number of assigned tasks. We for-
mally define this maximum task assignment (or MTA) prob-
lem in spatial crowdsourcing, and identify its challenges. We
propose alternative solutions to address these challenges by
exploiting the spatial properties of the problem space. Fi-
nally, our experimental evaluations on both real-world and
synthetic data verify the applicability of our proposed ap-
proaches and compare them by measuring both the number
of assigned tasks and the travel cost of the workers.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms

Keywords
Spatial Crowdsourcing, Crowdsourced Query, Spatial Task
Assignment

1. INTRODUCTION
Due to the ubiquity of sensors, every person with a mo-
bile phone can now act as a multi-modal sensor collecting
various types of data instantaneously (e.g., picture, video,
audio, location, time, speed, direction, acceleration). Many
studies suggest significant future growth in the number of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’12, November 6-9, 2012. Redondo Beach, CA,
USA
Copyright (c) 2012 ACM ISBN 978-1-4503-1691-0/12/11 ...$15.00.

mobile smart phone users, the phone’s hardware and soft-
ware features, and the broadband bandwidth. Therefore, it
is critical to fully utilize this new platform for various tasks,
among which the most promising is spatial crowdsourcing.

In this paper, we introduce spatial crowdsourcing as the pro-
cess of crowdsourcing a set of spatial tasks (i.e., tasks related
to a location) to a set of workers, which requires the work-
ers to perform the spatial tasks by physically traveling to
those locations. Consider a scenario, in which a requester
is interested in collecting pictures and videos of the anti-
government demonstrations from various locations of a city.
With spatial crowdsourcing, the requester, instead of travel-
ing to the locations of each of the events, issues his query to
a spatial crowdsourcing server (or SC-server). Consequently,
the SC-server crowdsources the query among the available
workers in the vicinity of the events. Once the workers doc-
ument their nearby events, the results are sent back to the
requester.

While crowdsourcing has recently attracted both research
communities (e.g., database [19], image processing [14, 32],
NLP [31]) and industry (e.g., Amazon’s Mechanical Turk [1]
and CrowdFlower [3]), only a few work [12, 10, 23] have stud-
ied spatial crowdsourcing. Moreover, most existing work on
spatial crowdsourcing focus on a particular class of spatial
crowdsourcing called participatory sensing. With participa-
tory sensing, the goal is to exploit the mobile users, for a
given campaign, by leveraging their sensor-equipped mobile
devices to collect and share data. Some real-world examples
of participatory sensing projects include [2, 10, 21, 26]. For
example, the Mobile Millennium project [10] by UC Berke-
ley is a state-of-the-art system that uses GPS-enabled mobile
phones to collect en route traffic information and upload it
to a server in real time. The server processes the contributed
traffic data, estimates future traffic flows and sends traffic
suggestions and predictions back to the mobile users. Simi-
lar projects were implemented earlier by CalTel [21] and Ner-
icell [26] which used mobile sensors/smart phones mounted
on vehicles to collect information about traffic, WiFi access
points on the route and road condition. In CycleSense [2],
bikers report their biking routes to a server during their
daily commute in the Los Angeles area, along with informa-
tion about air quality, hazards, traffic conditions, accidents,
etc.

All these previous studies on participatory sensing focus on

a single campaign and try to address challenges specific to
that campaign. More examples of single campaigns include
[18], which is a campaign for watching petro prices, and [29]
which is a campaign for monitoring the urban air pollution.
However, our focus is on devising a generic crowdsourcing
framework, similar to Amazon Turk, but spatial, where mul-
tiple campaigns can be handled simultaneously. Moreover,
most existing studies on participatory sensing focus on small
campaigns with a limited number of workers, and are not
scalable to large spatial crowdsourcing applications. Finally,
spatial crowdsourcing subsumes participatory sensing by in-
troducing a general framework, which allows any form of
spatial tasks to be assigned and performed by humans.

In this paper, for the first time we introduce a taxonomy for
spatial crowdsourcing. First, we classify spatial crowdsourc-
ing based on people’s motivation. Thereafter, we define two
modes for spatial task publishing. Finally, we define two
ways for spatial task assignment. We focus on one class
of spatial crowdsourcing, in which a set of workers send
their task inquiries to a SC-server. The task inquiry of a
worker, which includes his location along with a set of con-
straints (e.g., a region), is a request that the worker issues
to inform the SC-server of his availability to work. Con-
sequently, the SC-server, who receives the location of the
workers, assigns to every worker his nearby tasks. In this
class of spatial crowdsourcing, the main optimization goal is
to maximize the overall task assignment while conforming
to the constraints of the workers. We refer to this problem
as the maximum task assignment (MTA) problem. The so-
lution to the MTA problem could be straightforward if the
SC-server had a global knowledge of both the spatial tasks
and the workers. However, the SC-server is continuously re-
ceiving spatial tasks from requesters and also task inquiries
from the workers. Therefore, the SC-server can only maxi-
mize the task assignment at every time instance (i.e., local
optimization) with no knowledge of the future.

We propose three alternative solutions to the MTA prob-
lem. Our first approach, namely Greedy (GR), follows the
local optimization strategy by maximizing the task assign-
ment at every time instance. The Greedy approach utilizes
the constraints of the workers to assign to every worker his
nearby tasks. Our second approach, called Least Location
Entropy Priority (LLEP), improves the Greedy approach by
utilizing the entropy of the location. The location entropy
heuristic is based on the intuition that spatial tasks are more
likely to be performed in future if they are located in areas
with higher population of workers (i.e., higher location en-
tropy). Therefore, the LLEP approach improves the overall
task assignment by assigning higher priority to spatial tasks
located in places with lower location entropy, as they are
less likely to be completed in future. With spatial crowd-
sourcing, since workers should physically travel to a location
in order to perform a task, the travel cost of the workers is
also an important factor. Therefore, our third approach, re-
ferred to as Nearest Neighbor Priority (NNP), incorporates
the travel cost of the workers into the task assignment by
assigning higher priority to the tasks with lower travel cost.
Our extensive experiments on both real and synthetic data
show that in comparison with GR, our LLEP approach can
improve the number of assigned tasks by up to 36%, while
the NNP approach can improve the travel cost of the work-

ers by up to 41%. Consequently, based on the objective of
the application, either LLEP or NNP can be applied to solve
the MTA problem.

The remainder of this paper is organized as follows. Section
2 introduces our taxonomy for spatial crowdsourcing. In
Section 3, we discuss a set of preliminaries in the context of
spatial crowdsourcing, and formally define the MTA prob-
lem. Thereafter, in Section 4 we explain our assignment
solutions. Section 5 presents the experimental results. In
Section 6, we review the related work. Finally, in Section 7
we conclude and discuss the future directions of this study.

2. A TAXONOMY OF SPATIAL CROWDSOURC-

ING
Spatial crowdsourcing opens up a new mechanism for spatial
tasks (i.e., tasks related to a location) to be performed by
humans. In this section, we define a taxonomy1 for spatial
crowdsourcing (Figure 1). First, we classify spatial crowd-
sourcing based on people’s motivation. Next, we define two
modes of task publishing in spatial crowdsourcing. Finally,
we define two ways for spatial task assignment in spatial
crowdsourcing.

2.1 Spatial Crowdsourcing Classification
Spatial crowdsourcing is the process of crowdsourcing a set of
spatial tasks to a set of workers, which requires the workers
to be physically located at that location in order to perform
the corresponding task. Spatial crowdsourcing can be classi-
fied based on the motivation of the workers into two classes:
reward-based and self-incentivised (see Figure 1).

Reward-based Spatial Crowdsourcing
With reward-based spatial crowdsourcing, every spatial task
has a price and workers will receive a certain reward for every
spatial task they perform correctly. An example of reward-
based spatial crowdsourcing is [37], where every worker can
receive a small reward for completing and sharing a sensing
task.

Self-incentivised Spatial Crowdsourcing
This class of spatial-crowdsourcing is for people who are
self-incentivised to perform tasks voluntarily. Here, people
usually have other incentives rather than receiving a reward
such as documenting an event or promoting their cultural,
political, or religious views. An example of this class in-
cludes a participatory sensing campaign [2, 10], in which a
group of people are willing to voluntarily report traffic events
(e.g., accidents) by leveraging their sensor-equipped mobile
devices. Our focus in this paper is on this class of spatial
crowdsourcing.

2.2 Spatial Task Publishing Modes
With spatial crowdsourcing, tasks can be published in two
different modes: Worker Selected Tasks (WST) and Server
Assigned Tasks (SAT).

1Note that even though the taxonomy can be generalized
to any type of crowdsourcing (i.e., spatial or non-spatial),
in this paper we focus on the taxonomy in the context of
spatial crowdsourcing.

Figure 1: A taxonomy of spatial crowdsourcing. The

focus of this paper is shown in grey.

Worker Selected Tasks (WST) Mode
With this mode, the SC-server publicly publishes the spatial
tasks and online workers can choose any spatial task in their
vicinity without the need to coordinate with the SC-server.
One advantage of this mode is that since the workers can
choose any arbitrary task in their vicinity autonomously,
they do not need to reveal their locations to the SC-server
for every assignment. However, one drawback of this mode
is that the SC-server does not have any control over the al-
location of spatial tasks. This may result in some spatial
tasks never be assigned, while others get assigned redun-
dantly. Another drawback of WST is that workers choose
tasks based on their own objectives (e.g., choosing the k
closest spatial tasks to minimize their travel cost), which is
not necessarily the ultimate objective of the SC-server (i.e.,
maximizing the overall task assignment). An example of the
WST mode is [12], where users browse for available spatial
tasks, and pick the ones in their neighborhood.

Server Assigned Tasks (SAT) Mode
In this mode, the SC-server does not publish the spatial
tasks to the workers. Instead, any online worker sends his
location to the SC-server. The SC-server after receiving the
locations of all online workers, assigns to every worker his
closeby tasks. The advantage of SAT is that unlike WST, the
SC-server has the big picture, and therefore, can assign to
every worker his closeby tasks while maximizing the overall
task assignment (i.e., global optimization). However, the
drawback is that workers should report their locations to
the SC-server for every assignment, which can pose a privacy
threat. An example of SAT mode is [23], which proposes a
framework for small campaigns, where workers are assigned
to their closeby sensing tasks. Our focus in this paper is on
this mode of spatial crowdsourcing.

2.3 Spatial Task Assignment Modes
So far, we discussed different types of spatial crowdsourcing,
and how spatial tasks can be published. However, we did not
discuss how to verify the validity of the tasks completed by

workers. A malicious worker might intentionally complete a
task incorrectly (e.g., being dishonest about physically going
to the location of the spatial task). In this section, we define
two modes for task assignment in terms of how to verify the
validity of the spatial tasks: single-based task assignment
and redundant-based task assignment.

Single Task Assignment
The general assumption here is that workers are trusted, and
therefore, they complete the spatial tasks correctly with-
out any malicious intentions. Consequently, every spatial
task is only assigned to one worker (preferably to the closest
worker). Examples of this class are [15, 23]. In this paper
our assumption is that all workers are trusted, and thus, we
focus on single-based task assignment.

Redundant Task Assignment
Here, the intuitive assumption, based on the idea of the wis-
dom of crowds [33], is that the majority of the workers can
be trusted. Thus, the data with the majority vote is verified
as correct. This indicates that instead of each spatial task be
completed by a particular worker, it should be completed by
k closeby workers, where k is defined by the requester who
issued the task. Consequently, the higher the value of k, the
more chance that the completed task is correct. An example
of non-spatial redundant-based task assignment is Amazon’s
Mechanical Turk [1].

3. PRELIMINARIES
In this section, we define a set of preliminaries in the context
of self-incentivised single-based spatial crowdsourcing with
the SAT mode. First, we formally define a spatial task.

Definition 1 (Spatial Task). A spatial task t of form
<l, q, s, δ> is a query q to be answered at location l, where l

is a point in the 2D space. The query is asked at time s and
will be expired at time s+ δ.

Note that the query q of a spatial task t can be answered by
a human only if the human is physically located at location
l. For example, consider a scenario, in which the spatial
task is to take a picture from a particular building. This
means that the worker needs to physically go to the exact
location of the building in order to take the picture. For
simplicity, we assume that all tasks take the same amount
of time to finish. With this definition, we now define the
spatial crowdsourced query.

Definition 2 (Spatial Crowdsourced Query). A spa-
tial crowdsourced query (or SC-Query) of form (<t1, t2, ...>

, k) is a set of spatial tasks and a parameter k issued by a
requester, where every spatial task ti is to be crowdsourced k

number of times.

After receiving the SC-queries from all the requesters, the
spatial crowdsourcing server (or SC-server) assigns the spa-
tial tasks of these SC-queries to the available workers. Note
that with the single task assignment mode, the SC-server
should assign every spatial task to only one worker (i.e.,

Figure 2: The spatial crowdsourcing framework

k = 1). Figure 2 shows our spatial crowdsourcing frame-
work. In the following we formally define a worker.

Definition 3 (Worker). A worker, denoted by w, is
a carrier of a mobile device who volunteers to perform spatial
tasks. A worker can be in an either online or offline mode.
A worker is online when he is ready to accept tasks.

Note that with self-incentivised spatial crowdsourcing, work-
ers volunteer to perform spatial tasks without expecting any
reward. Once a worker goes online, he sends a task inquiry
to the SC-server (Figure 2). We now formally define the
task inquiry.

Definition 4 (Task Inquiry or TI). Task inquiry is
a request that an online worker w sends to the SC-server,
when ready to work. The inquiry includes location of w, l,
along with two constraints: A spatial region R, and the max-
imum number of acceptable tasks maxT. The spatial region
R represented by a rectangle is the area in which the worker
can accept spatial tasks. In other words, any task outside
the region will be rejected by the worker. Moreover, maxT is
the maximum number of tasks that the worker is willing to
perform.

Note that the task inquiry is defined for the SAT mode,
where workers should send their locations to the SC-server
for proper task assignment. The workers can also specify
other constraints in their task inquiry (e.g., category of the
task, amount of time they have). However, in this work we
only consider two constraints for every worker (i.e., R and
maxT).

Once the workers send their task inquiries, the SC-server
assigns to every worker a set of tasks, while satisfying each
worker’s constraints. However, the task assignment is not
a one-time process. The SC-server continuously receives
SC-queries from requesters and task inquiries from workers.
Therefore, we define the notion of task assignment instance
set, which is the set of assigned tasks for a given instance of
time.

Definition 5 (Task Assignment Instance Set). Let
Wi={w1, w2, ...} be the set of online workers at time si.

Also, let Ti={t1, t2, ...} be the set of available tasks at time
si. The task assignment instance set, denoted by Ii is the set
of tuples of form <w,t>, where a spatial task t is assigned to
a worker w, while satisfying the workers’ constraints. Also,
|Ii| denotes the number of tasks, which are assigned at time
instance si.

Consequently, the task assignment instance set must con-
form to the constraints of the workers. This means that
for every tuple <w,t>∈ Ii, the spatial task t must be lo-
cated inside the spatial region R of worker w. Moreover,
every worker w can be assigned to at most maxT number of
tasks (i.e., the number of tuples in Ii including w is at most
maxT).

Based on the above definition, We now define the maximum
task assignment problem.

Definition 6 (Maximum Task Assignment (MTA)).
Given a time interval φ = {s1, s2, ..., sn}, let |Ii| be the num-
ber of assigned tasks at time instance si. The maximum task
assignment problem is the process of assigning tasks to the
workers during the time interval φ, while the total number
of assigned tasks (i.e., Σn

i=1|Ii|) is maximized.

Note that in the ideal case, all tasks will be assigned to all
workers. However, this might not be practical due to the
constraints of the workers. Therefore, our optimization goal
is to maximize the number of assigned tasks.

4. ASSIGNMENT PROTOCOL
In order to solve the MTA problem, the SC-server should
have a global knowledge of all the spatial tasks and the work-
ers ([34, 36]). This would allow the SC-server to optimally
assign every task to every worker, so that the total number
of assigned tasks is maximized. However, the SC-server does
not have such knowledge. At every instance of time, the SC-
server receives a set of new tasks from the requesters, and
also a set of new task inquiries from the workers. There-
fore, the SC-server only has a local view of the available
tasks and workers at any instance of time. This means that
a global optimal assignment is not feasible. Instead, the
SC-server tries to optimize the task assignment locally at
every instance of time. The SC-server does this by utiliz-
ing the spatial information that workers share during their
task inquiries. In the following, we propose three solutions
to this problem. All the solutions follow the local optimal
assignment strategy. Our first approach tries to solve MTA
in a greedy way by maximizing the task assignment at ev-
ery instance of time. Our second approach tries to improve
the optimization by applying a heuristic, which utilizes the
location entropy of an area, to maximize the overall assign-
ment. Finally, our third approach tries to maximize the task
assignment while taking into account the travel cost of the
workers.

4.1 Greedy (GR) Strategy
As discussed earlier, with this approach the idea is to do the
maximum assignment at every instance of time. The reason
this approach is called Greedy is that at every instance of

time, it only tries to maximize the current assignment (i.e.,
local optimization instead of global optimization). Note that
this does not necessarily result in a globally optimal answer.
Given a set of online workers Wi={w1, w2, ...}, and a set of
available tasks Ti={t1, t2, ...} at time instance si, the goal
is to assign maximum number of tasks in Ti to workers in
Wi for every instance si, which is equivalent to maximizing
|Ii|. We refer to this as maximum task assignment instance
problem. Thus, our goal in this approach is to maximize the
overall assignment by solving the maximum task assignment
instance problem for every instance of time.

In order to solve the maximum task assignment instance
problem, the idea is to utilize the constraints of the workers
to guarantee that tasks are properly assigned. Note that
without the constraints, a worker might be assigned to a
spatial task in a far distance from his location. However,
with spatial crowdsourcing, since workers need to physically
go to a location to perform a spatial task, the goal is to
assign only a number of tasks within a given distance to the
workers. During the task inquiry, every online worker forms
two constraints: the spatial region R, and the maximum
number of tasks maxT . This means that every worker is
willing to perform at most maxT tasks, which should not be
outside his spatial region R. With the following theorem, we
can solve the maximum task assignment instance problem
by reducing it to the maximum flow problem.

Theorem 1. The maximum task assignment instance prob-
lem is reducible to the maximum flow problem.

Proof. We prove this for time instance si with Wi={w1,

w2, ...} as the set of online workers, and Ti={t1, t2, ...} as
the set of available spatial tasks. Let Gi=(V,E) be the flow
network graph with V as the set of vertices, and E as the set
of edges at time instance si. The set V contains |Wi|+|Ti|+2
vertices. Each worker wj maps to a vertex vj . Each spatial
task tj maps to a vertex v|Wi|+j . We create a new source
vertex src labeled as v0, and a new destination vertex dst
labeled as v|Wi|+|Ti|+1.

The set E contains |Wi|+|Ti|+m edges. There are |Wi|
edges connecting the new src vertex to the vertices mapped
from Wi. For a given edge connecting the src vertex to vertex
vj (mapped from wj) denoted by (src, vj), we set the capac-
ity to maxTj (i.e., c(src, vj)=maxTj), since every worker
is only capable of performing maxT number of tasks. There
are also |Ti| edges connecting the vertices mapped from Ti

to the new dst vertex. We set the capacity of each of these
edges to 1, since every task is to be assigned to one worker
(i.e., single task assignment). Every worker wj has a spatial
region constraint Rj , and can only perform tasks inside its
spatial region. Thus, for every worker wj we add an edge
from vj to all the vertices mapped from Ti, which are inside
the spatial region Rj . For each of these m edges, we also set
the capacity to one.

Figure 3 better clarifies this reduction. Figure 3a shows an
example of a set of workers Wi and a set of available tasks
Ti at time instance si. Every worker wj is associated with
a spatial region Rj . The corresponding flow network graph
Gi is depicted in Figure 3b. As shown in the figure, worker

a) An example of Wi and Ti

b) Flow network graph Gi = (V,E)

Figure 3: An example of the reduction of the maxi-

mum task assignment instance problem to the max-

imum flow problem at instance si

w1 can only accept tasks inside his spatial region (i.e., t2, t5,
and t7). Therefore, the vertex mapped from w1 can transfer
flow to only the three vertices mapped from those tasks (i.e.,
v5, v8, and v10). Moreover, w1 is only willing to accept two
tasks since maxT1 = 2. Therefore, the capacity of the edge
(src, v1) is 2. Finally, the capacity of all the edges connecting
the vertices mapped from spatial tasks (i.e., v4..v13) to the
destination vertex dst are 1, since every spatial task is to be
assigned to one worker.

By reducing to the maximum flow problem, we can now use
any algorithm that computes the maximum flow in the net-
work to solve the maximum task assignment instance prob-
lem. One of the well-known techniques in computing the
maximum flow is the Ford-Fulkerson algorithm [24]. The
idea behind Ford-Fulkerson algorithm is that it starts send-
ing flow from the source vertex to the destination vertex,
as long as there is a path between the two with available
capacity. Consequently, in order to solve the MTA problem
we repeat this step for every instance of time.

The Greedy approach can be marginally improved by incor-
porating conventional non-spatial task scheduling approaches
[8] such as FIFO, or FEFO (first expired, first out)2. With
FEFO, the expiration time of every task can be utilized as
a tiebreaker in the assignment process by prioritizing the
tasks based on their expiration. However, in this paper our
goal is to exploit the spatial properties of the problem space.
Therefore, we introduce two spatial heuristics in our follow-
ing two approaches.

2Our experiments showed that the impact of incorporating
these conventional task scheduling approaches is marginal.

4.2 Least Location Entropy Priority (LLEP)

Strategy
The problem with the Greedy strategy is that at every in-
stance of time, it only tries to maximize the current as-
signment, without considering future optimizations. Even
though we are clairvoyant on neither the future SC-queries
from the requesters nor the future task inquiries from the
workers, we can use some heuristics to maximize the over-
all assignments. One of the heuristics that can improve the
task assignment process is to exploit the spatial characteris-
tics of the environment during the assignment, one of which
is the distribution of the workers in that area. Since ev-
ery spatial task is linked to a location in the environment,
a task is more likely to be completed when located in areas
with higher worker densities. Therefore, the idea is to assign
higher priority to tasks which are located in worker-sparse
areas.

We use entropy of a location to measure the total number
of workers in that location as well as the relative proportion
of their future visits to that location. We refer to this as
location entropy. Location entropy was first introduced in
[16]. A location has a high entropy if many workers visit
that location with equal proportions. Conversely, a location
will have a low entropy if the distribution of the visits to
that location is restricted to only a few workers. Thus, our
heuristic is to give higher priority to tasks which are located
in areas with smaller location entropy, because those tasks
have lower chance of being completed by other workers.

We now formally define the location entropy. For a given
location l, let Ol be the set of visits to location l. Thus, |Ol|
gives the total number of visits to l. Also, let Wl be the set
of distinct workers that visited l. Moreover, let Ow,l be the
set of visits that worker w has made to the location l. The
probability that a random drawn from Ol belongs to Ow,l is

Pl(w) =
|Ow,l|

|Ol|
, which is the fraction of total visits to l that

belongs to worker w. The location entropy for l is computed
as follows:

Entropy(l) = −
∑

w∈Wl

Pl(w)× logPl(w) (1)

By computing the entropy of every location, we can associate
to every task ti of form <li, qi, si, δi> a certain cost, which is
the entropy of its location li. Accordingly, tasks with lower
costs have higher priority, since they have a smaller chance
of being completed. Thus, our goal in this approach is to
assign the maximum number of tasks during every instance
of time while the total cost associated to the assigned tasks
is the lowest. We refer to this problem as the minimum-
cost maximum task assignment instance problem. With the
following theorem, we can solve the minimum-cost maxi-
mum task assignment instance problem by reducing it to
the minimum-cost maximum flow problem [6]. A minimum
cost maximum flow of a network G=(V,E) is a maximum
flow with the smallest possible cost.

Theorem 2. The minimum-cost maximum task assign-
ment instance problem is reducible to the minimum-cost max-
imum flow problem.

Proof. We already proved in Theorem 1 that the maxi-
mum task assignment instance problem is reducible to the
maximum flow problem. In the minimum-cost maximum
task assignment instance problem, every task is associated
with a cost. We prove this for time instance si with Wi={w1,

w2, ...} as the set of online workers, and Ti={t1, t2, ...} as
the set of available tasks. Let Gi=(V,E) be the flow network
graph constructed in the proof of Theorem 1. For every task
tj , let Vj be the set of all vertices mapped from workers Wi

which have edges connected to the vertex mapped from tj
(i.e., v|Wi|+j). For every vertex u ∈ Vj , let (u, v|Wi|+j) be
the edge connected to v|Wi|+j . We associate to (u, v|Wi|+j)
the cost of tj (i.e., a(u, v|Wi|+j) = Entropy(lj)). Moreover,
we set the cost of all other edges in E to 0. Thus, by find-
ing the minimum-cost maximum flow in graph Gi, we have
assigned the maximum number of tasks with the minimum
cost.

In the example of Figure 3, let Entropy(l5) be the location
entropy of the spatial task t5. Since t5 is located in the
spatial regions of the workers w1 and w2, we set the cost of
both edges (v1, v8) and (v2, v8) to Entropy(l5).

According to the above theorem, solving our problem is
equivalent to solving the minimum-cost maximum flow prob-
lem at every time instance. In order to solve the minimum-
cost maximum flow problem, one of the well-known tech-
niques [6] is to first find the maximum flow of the network
using Ford-Fulkerson or any other algorithm which computes
the maximum flow. Thereafter, the cost of the flow can be
minimized by applying linear programming.

Let Gi=(V,E) be the flow network graph constructed in
the proof of Theorem 2 for time instance si. Every edge
(u, v) ∈ E has capacity c(u, v) > 0, flow f(u, v) ≥ 0, and
cost a(u, v) ≥ 0, where the cost of sending the flow f(u, v) is
f(u, v)× a(u, v). Let fmax be the maximum flow sent from
src to dst using the Ford-Fulkerson algorithm. The goal is
to minimize the total cost of the flow, which can be defined
as follows:

∑

(u,v)∈E

f(u, v)× a(u, v) (2)

with the constraints

f(u, v) ≤ c(u, v) (3)

f(u, v) = −f(v, u), (4)

∑

w∈V

f(u,w) = 0 for all u ̸= src, dst (5)

∑

w∈V

f(src, w) = fmax and
∑

w∈V

f(w, dst) = fmax (6)

Since all constraints are linear, and our goal is to optimize
a linear function, we can solve this by linear programming.

Therefore, our LLEP strategy solves the MTA problem by
computing the minimum-cost maximum flow for every time
instance, where the cost is defined in terms of the location
entropy of the tasks.

4.3 Nearest Neighbor Priority (NNP) Strategy
With the both GR and LLEP approaches, our goal was to
maximize the overall task assignment. However, we did not
consider the travel cost (e.g., in time or distance) of the
workers during the assignment process. With spatial crowd-
sourcing, the travel cost becomes a critical issue since work-
ers should physically go to the location of the spatial task
in order to perform the task. Even though the task assign-
ment process satisfies the spatial constraint of every worker
by assigning him only those tasks inside his spatial region, it
does not necessarily assign to every worker those tasks with
the smallest travel costs. With this approach, we incorpo-
rate the travel cost of the workers in the assignment pro-
cess. Our goal is to maximize the task assignment at every
time instance while minimizing the travel cost of the work-
ers whenever possible. Intuitively, tasks which are closer to
a worker have smaller travel costs. This means that we still
try to maximize the overall task assignment. However, we
assign higher priorities to tasks which are closer in spatial
distance to the worker.

We define the travel cost between a worker w and a spatial
task t in terms of the Euclidean distance3 between the two,
denoted by d(w, t). Consequently, by computing the dis-
tance between every worker and his allowable spatial tasks
(i.e., those inside his spatial region), we can associate higher
priorities to the closer tasks. We do this by associating to
every edge between a worker w and a spatial task t a certain
cost, which is the distance between the two (i.e., d(w, t)).
Thus, our problem is to assign the maximum number of
tasks during every time instance, while the total cost of the
assignment is the lowest. Consequently, the problem turns
into the minimum-cost maximum task assignment instance
problem. Therefore, a similar solution to that of Section 4.2
but with a different cost function can be applied to solve
this problem.

5. PERFORMANCE EVALUATION
We conducted several experiments on both real-world and
synthetic data to evaluate the performance of our proposed
approaches: GR, LLEP, and NNP. Below, we first discuss
our experimental methodology. Next, we present our exper-
imental results.

5.1 Experimental Methodology
We performed three sets of experiments. In the first set of
experiments, we evaluated the scalability of our proposed ap-
proaches by varying the number of spatial tasks. In the rest
of the experiments, we evaluated the impact of the workers’
constraints (i.e., R and maxT) on the performance of our
approaches. With these experiments, we used two perfor-
mance measures: 1) the total number of assigned tasks, and
2) the average travel cost for a worker to perform a spatial
task, in which the travel cost is measured in terms of the
Euclidean distance between the worker and the location of
the task.

3Other metrics such as network distance are also applicable

We conducted our experiments with both real-world (REAL)
and synthetic (SYN) data sets. The real-world data set is
obtained from Gowalla [5], a location-based social network,
where users are able to check in to different spots in their
vicinity. The check-ins include the location and the time
that the users entered the spots. For our experiments, we
used the check-in data over a period of 100 days in 2010,
covering the state of California. Moreover, we assumed that
Gowalla users are the workers of our spatial crowdsourcing
system. We picked the granularity of a time instance as one
day. Consequently, we assumed all the users who checked in
during a day as our available workers for that day. More-
over, since users may have various check-ins during a day, for
every user w, we set maxT as the number of check-ins of the
user in that day, and also we set R as the minimum bounding
rectangle of those checked-in locations. Intuitively, checking
in a spot is equivalent to accepting a spatial task at that
location. Moreover, the spatial tasks were randomly gener-
ated for the given spots in the area. In order to compute
the location entropy, we discretesized the latitude and lon-
gitude space into a 0.0002 × 0.0002 grid (approximately 30
meters × 30 meters). For every grid cell, we computed lo-
cation entropy based on the definition explained in Section
4.2. With our synthetic experiments, we randomly gener-
ated data from a uniform distribution for both workers and
spatial tasks. Moreover, we used a similar grid structure as
in REAL for a spatial area of 50 kilometers × 50 kilometers.

In all of our experiments, we varied the number of tasks
between 50k and 200k, with 100k as the default value. We
also set the duration of every spatial task to 40 days (i.e.,
δ = 40). Moreover, we fixed the time interval φ to 100 days.
With the SYN experiments, we fixed the number of work-
ers at 10k. Furthermore, unless mentioned otherwise, we
randomly selected the value of maxT between 1 to 20, and
the spatial region R between 0.01 to 0.05 of the entire area.
Note that since both maxT and R are fixed in REAL (i.e.,
depend on the worker’s check-ins during one day), we only
conducted our first set of experiments with both REAL and
SYN data sets. In the rest of the experiments, in which we
need to vary either maxT or R, we only used SYN. Finally,
for each of our experiments, we ran 500 cases, and reported
the average of the results.

5.2 Scalability
In the first set of experiments, we evaluated the scalability of
our approaches by varying the number of spatial tasks from
50k to 200k. Figure 4a depicts the result of our experiments
using the synthetic data. As the figure demonstrates, the
assignment increases as the number of tasks grows. The
figure also shows that LLEP outperforms both GR and NNP
in terms of the number of assigned tasks (up to 35%), due
to applying the location entropy heuristic. Furthermore, as
the number of tasks grows, the impact of location entropy
heuristic becomes more significant. The reason is that with
a large number of tasks, more tasks appear in the spatial
region of every worker, and thus, a wise selection of the tasks
becomes more critical. Figure 5a depicts similar experiments
using our REAL data. Similarly, the assignment increases
as the number of tasks grows. Moreover, the figure shows
the superiority of LLEP as compared with GR and NNP in
terms of the number of assigned tasks in all cases (up to
30%). Note that our experiments on both REAL and SYN

a) b)

Figure 4: Scalability - Synthetic data

a) b)

Figure 5: Scalability - Real data

data shows that a large number of tasks (more than 50%)
remains unassigned. This happens due to different reasons
such as the constraints of the workers (e.g., the spatial region
of a worker may overlap with only a small number of tasks)
or the expiration of the unassigned tasks.

Figures 4b and 5b depict the impact of varying the number
of tasks on the average travel cost of the workers using SYN
and REAL data, respectively. As the figures show, the aver-
age travel cost of the workers decreases in all cases because
in a task-dense area, there is a higher probability that an as-
signed task is in a closer distance to a worker. Moreover, we
observe that NNP improves the travel cost of the workers as
compared with GR and LLEP by up to 45% using the SYN
data and up to 42% using the REAL data, which proves the
effectiveness of the travel cost heuristic.

5.3 Effect of Maximum Acceptable Tasks Con-

straint
In the next set of experiments, we evaluated the impact of
the maximum acceptable tasks (i.e., maxT) constraint us-
ing the synthetic data. We increased the value of maxT

between [1-10] to [1-40]. Figure 6a illustrates an increase in
the number of assigned tasks as maxT grows. The reason
is that with an increase in maxT , workers are willing to do
more tasks, and thus, the number of assignment increases.
Moreover, similar to the previous experiments, LLEP is the
superior approach in terms of improving the number of task
assignment (up to 36% times better than GR). However, the
impact of location entropy heuristic is more significant for
smaller values of maxT (Figure 6a). The reason is that with
smaller values of maxT , only a small number of tasks should
be selected from those inside the spatial region of a worker.
Therefore, a wise selection of tasks using the location en-
tropy heuristic becomes more significant.

a) b)

Figure 6: Effect of maxT - Synthetic data

Figure 6b depicts an increase in the travel cost as maxT

grows. The reason is that the higher maxT , the more tasks
assigned to every worker, resulting in higher travel cost.
Moreover, while NNP outperforms both GR and LLEP in
terms of the travel cost (between 27% to 39%), its superi-
ority is more significant with smaller values of maxT . The
reason is that as maxT grows, more tasks are selected in-
side the spatial region of the worker. Thus, the impact of
the travel cost heuristic becomes less critical.

5.4 Effect of Spatial Region Constraint
In our final set of experiments, we measured the performance
of our approaches with respect to expanding the spatial re-
gion of every worker from [0.01% 0.05%] to [0.01% 0.2%].
As Figure 7a shows, with an expansion in R, the number of
assigned tasks increases. The reason is that larger spatial
regions cover more number of spatial tasks. That is, more
edges connect the vertices mapped from the workers to the
vertices mapped from the tasks, which leads to more flow in
the corresponding flow network graph. Moreover, Figure 7b
shows the effect of varying R on the travel cost. The figure
illustrates that the travel cost increases with an expansion in
R. This is because as R grows, farther tasks will be assigned
to the workers with higher probability, which increases the
average travel cost.

The main observation from this set of experiments is that
LLEP outperforms both GR and NNP in terms of the num-
ber of task assignment, while the NNP approach is superior
in terms of the travel cost. This shows that based on the
objective of the crowdsourcing application (i.e., maximiz-
ing the assignment or maximizing the assignment with the
minimum possible travel cost), either of the LLEP or NNP
approaches can be selected4.

6. RELATED WORK
As discussed earlier, crowdsourcing has been gathering ex-
tensive attention in the research community. A related sur-
vey in this area can be found in [17]. With the increasing
popularity of crowdsourcing, recently, a set of crowdsourc-
ing services such as Amazon’s Mechanical Turk (AMT) [1]
and CrowdFlower [3] have emerged which allow requesters
to issue tasks that workers can perform for a certain reward.
Crowdsourcing has been largely used in a wide range of ap-
plications. Examples of such applications are image search

4An alternative solution is a hybrid approach which utilizes
both the location entropy and the travel cost in the assign-
ment process, which is the focus of our future work.

a) b)

Figure 7: Effect of R - Synthetic data

[38], natural language annotations [31], video and image an-
notations [14, 32], social games [20, 35], graph search [28],
and search relevance [11]. Also, a number of studies have
focused on analyzing the crowdsourcing platforms. In [30],
the demographics of the AMT workers are studied. Further-
more, [22] analyzes the marketplace for Amazon’s Mechan-
ical Turk. Moreover, the database community has utilized
crowdsourcing in relational query processing [19, 25, 27]. In
[19] a relational query processing system is proposed that
uses crowdsourcing to answer queries that cannot otherwise
be answered.

Despite all the studies on crowdsourcing, only a few studies
[12, 13] have focused on spatial crowdsourcing. In [13], the
problem of crowdsourcing location-based queries over Twit-
ter has been studied, which employs a location-based service
(e.g., Foursquare) to find the appropriate people to answer
the given query. Even though this work focuses on location-
based queries, it does not assign to users any spatial task,
for which the user should go to that location and perform
the corresponding task. Instead, it chooses users based on
their historical Foursquare check-ins. Moreover, in [12], a
crowdsourcing platform with WST mode is proposed, which
utilizes location as a parameter to distribute tasks among
worker.

One class of spatial crowdsourcing is known as participatory
sensing, in which workers form a campaign to perform sens-
ing tasks. Examples of participatory sensing campaigns in-
clude [2, 10, 21, 26], which uses GPS-enabled mobile phones
to collect traffic information. Other examples are [15, 23].
In [15], a participatory sensing framework with WST mode
is proposed, whereas, in [23], a participatory sensing frame-
work with SAT mode is introduced. However, the major
drawback of all the existing work on participatory sensing
is that they focus on a single campaign and try to address
the challenges specific to that campaign. Another drawback
of most existing work on participatory sensing (e.g., [23])
is that they are designed for small campaigns, with a small
number of participants, and are not scalable to large spa-
tial crowdsourcing applications. Finally, while most existing
work on participatory sensing systems focus on a particular
application, our work introduces a generalized framework
for any type of spatial crowdsourcing system.

Another class of spatial crowdsourcing is known as volun-
teered geographic information (or VGI), in which the goal
is to create geographic information provided voluntarily by
individuals. Some examples include WikiMapia [9], Open-

StreetMap [7], and Google Map Maker [4]. These projects
allow the users to generate their own geographic content,
and add it to a pre-built map. For example, a user can add
the features of a location, or the events occurred at that
location. However, the major difference between VGI and
spatial crowdsourcing is that in VGI, users unsolicitedly par-
ticipate by randomly contributing data, whereas in spatial
crowdsourcing, a set of spatial tasks are queried by the re-
questers, and workers are required to perform those tasks.
Moreover, with most VGI projects ([4, 9]), users are not re-
quired to physically go to a particular location in order to
generate data with respect to that location. Finally, as the
name suggests, VGI falls into the class of self-incentivised
spatial crowdsourcing.

7. CONCLUSION AND FUTURE WORK
In this paper, we introduced spatial crowdsourcing as the
process of crowdsourcing a set of spatial tasks to a set of
workers. Moreover, we defined a taxonomy for spatial crowd-
sourcing. We also studied one class of spatial crowdsourc-
ing in more details and formally defined the MTA problem.
Subsequently, we proposed our assignment protocol that in-
cluded three various solutions to the MTA problem, namely
GR, LLEP, and NNP. In our experiments on both real and
synthetic data, we demonstrated that in comparison with
GR, our LLEP approach can improve the number of as-
signed tasks by up to 36%, while the NNP approach can
improve the travel cost of the workers by up to 41%.

As future work, we aim to focus on the other classes of spa-
tial crowdsourcing. Moreover, since location privacy is one
of the major impediments that may hinder workers from
participation in spatial crowdsourcing, we plan to extend
our work to protect the location privacy of the workers.

Acknowledgment
This research is supported in part by Award No. 2011-IJ-
CX-K054 from National Institute of Justice, Office of Justice
Programs, U.S. Department of Justice, as well as NSF grants
CNS-0831505 (CyberTrust) and IIS-1115153, the USC Inte-
grated Media Systems Center (IMSC), and unrestricted cash
and equipment gifts from Northrop Grumman, Google, Mi-
crosoft and Qualcomm. The opinions, findings, and conclu-
sions or recommendations expressed in this publication are
those of the authors and do not necessarily reflect those of
the Department of Justice and the National Science Foun-
dation.

8. REFERENCES
[1] Amazon mechanical turk. http://www.mturk.com.

[2] Center for embedded networked sensing (cens).
http://urban.cens.ucla.edu/projects/.

[3] Crowdflower. http://www.crowdflower.com.

[4] Google map maker.
http://www.wikipedia.org/wiki/Google Map Maker.

[5] Gowalla. http://www.wikipedia.org/wiki/Gowalla.

[6] Minimum-cost maximum flow problem.
http://www.wikipedia.org/wiki/Minimum-cost

flow problem.

[7] Openstreetmap.
http://www.wikipedia.org/wiki/OpenStreetMap.

[8] Scheduling.
http://en.wikipedia.org/wiki/Scheduling(computing).

[9] Wikimapia.
http://www.wikipedia.org/wiki/WikiMapia.

[10] University of california berkeley, 2008-2009.
http://traffic.berkeley.edu/.

[11] O. Alonso, D. E. Rose, and B. Stewart. Crowdsourcing
for relevance evaluation. SIGIR Forum, 42(2):9–15,
2008.

[12] F. Alt, A. S. Shirazi, A. Schmidt, U. Kramer, and
Z. Nawaz. Location-based crowdsourcing: extending
crowdsourcing to the real world. In Proceedings of the
6th Nordic Conference on Human-Computer
Interaction: Extending Boundaries, NordiCHI ’10,
pages 13–22, 2010.

[13] M. Bulut, Y. Yilmaz, and M. Demirbas.
Crowdsourcing location-based queries. In Pervasive
Computing and Communications Workshops
(PERCOM Workshops), 2011 IEEE International
Conference on, pages 513 –518, 2011.

[14] K.-T. Chen, C.-C. Wu, Y.-C. Chang, and C.-L. Lei. A
crowdsourceable qoe evaluation framework for
multimedia content. In Proceedings of the 17th ACM
international conference on Multimedia, MM ’09,
pages 491–500.

[15] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles,
M. Shin, and N. Triandopoulos. Anonysense:
privacy-aware people-centric sensing. In MobiSys ’08,
pages 211–224.

[16] J. Cranshaw, E. Toch, J. Hong, A. Kittur, and
N. Sadeh. Bridging the gap between physical location
and online social networks. In Proceedings of the 12th
ACM international conference on Ubiquitous
computing, Ubicomp ’10, pages 119–128, 2010.

[17] A. Doan, R. Ramakrishnan, and A. Y. Halevy.
Crowdsourcing systems on the world-wide web.
Commun. ACM, 54(4):86–96, 2011.

[18] Y. F. Dong, S. Kanhere, C. T. Chou, and N. Bulusu.
Automatic collection of fuel prices from a network of
mobile cameras. In Proceedings of the 4th IEEE
international conference on Distributed Computing in
Sensor Systems, DCOSS ’08, pages 140–156, 2008.

[19] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh,
and R. Xin. Crowddb: answering queries with
crowdsourcing. In Proceedings of the 2011
international conference on Management of data,
SIGMOD ’11, pages 61–72, 2011.

[20] I. Guy, A. Perer, T. Daniel, O. Greenshpan, and
I. Turbahn. Guess who?: enriching the social graph
through a crowdsourcing game. In Proceedings of the
2011 annual conference on Human factors in
computing systems, CHI ’11, pages 1373–1382.

[21] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen,
M. Goraczko, A. Miu, E. Shih, H. Balakrishnan, and
S. Madden. Cartel: a distributed mobile sensor
computing system. In SenSys’06, pages 125–138.

[22] P. G. Ipeirotis. Analyzing the amazon mechanical turk
marketplace. XRDS, 17(2):16–21, 2010.

[23] L. Kazemi and C. Shahabi. A privacy-aware
framework for participatory sensing. SIGKDD
Explorations, 13(1), 2011.

[24] J. Kleinberg and E. Tardos. Algorithm Design.
Addison-Wesley Longman Publishing Co., Inc., 2005.

[25] A. Marcus, E. Wu, S. Madden, and R. C. Miller.
Crowdsourced databases: Query processing with
people. In CIDR, pages 211–214, 2011.

[26] P. Mohan, V. N. Padmanabhan, and R. Ramjee.
Nericell: rich monitoring of road and traffic conditions
using mobile smartphones. In SenSys’08, pages
323–336.

[27] A. Parameswaran and N. Polyzotis. Answering queries
using humans, algorithms and databases. In
Conference on Inovative Data Systems Research
(CIDR 2011), 2011.

[28] A. Parameswaran, A. D. Sarma, H. Garcia-Molina,
N. Polyzotis, and J. Widom. Human-assisted graph
search: it’s okay to ask questions. Proc. VLDB
Endow., 4(5):267–278, 2011.

[29] E. Paulos, R. Honicky, and E. Goodman. Sensing
atmosphere. In In Workshop on Sensing on Everyday
Mobile Phones in Support of Participatory Research,
2007.

[30] J. Ross, L. Irani, M. S. Silberman, A. Zaldivar, and
B. Tomlinson. Who are the crowdworkers?: shifting
demographics in mechanical turk. In Proceedings of
the 28th of the international conference extended
abstracts on Human factors in computing systems,
CHI EA ’10, pages 2863–2872.

[31] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng.
Cheap and fast—but is it good?: evaluating
non-expert annotations for natural language tasks. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, EMNLP ’08, pages
254–263.

[32] A. Sorokin and D. Forsyth. Utility data annotsation
with amazon mechanical turk. Computer Vision and
Pattern Recognition Workshop, 0, 2008.

[33] J. Surowiecki. The Wisdom of Crowds: Why the Many
Are Smarter Than the Few and How Collective
Wisdom Shapes Business, Economies, Societies and
Nations. 2004.

[34] L. H. U, M. L. Yiu, K. Mouratidis, and N. Mamoulis.
Capacity constrained assignment in spatial databases.
In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data,
SIGMOD ’08, pages 15–28. ACM, 2008.

[35] L. von Ahn and L. Dabbish. Designing games with a
purpose. Commun. ACM, 51(8):58–67, 2008.

[36] R. C.-W. Wong, Y. Tao, A. W.-C. Fu, and X. Xiao.
On efficient spatial matching. In Proceedings of the
33rd international conference on Very large data bases,
VLDB ’07, pages 579–590. VLDB Endowment, 2007.

[37] X. Xie, H. Chen, and H. Wu. Bargain-based
stimulation mechanism for selfish mobile nodes in
participatory sensing network. In Proceedings of the
6th Annual IEEE communications society conference
on Sensor, Mesh and Ad Hoc Communications and
Networks, SECON’09, pages 72–80, 2009.

[38] T. Yan, V. Kumar, and D. Ganesan. Crowdsearch:
exploiting crowds for accurate real-time image search
on mobile phones. In Proceedings of the 8th
international conference on Mobile systems,
applications, and services, MobiSys ’10, pages 77–90.

