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Geodesic convexity and covariance estimation
Ami Wiesel

Abstract—Geodesic convexity is a generalization of classical
convexity which guarantees that all local minima of g-convex
functions are globally optimal. We consider g-convex functions
with positive definite matrix variables, and prove that Kronecker
products, and logarithms of determinants are g-convex.

We apply these results to two modern covariance estimation
problems: robust estimation in scaled Gaussian distributions, and
Kronecker structured models. Maximum likelihood estimation
in these settings involves non-convex minimizations. We show
that these problems are in fact g-convex. This leads to straight
forward analysis, allows the use of standard optimization methods
and paves the road to various extensions via additional g-convex
regularization.

Index Terms—Geodesic convexity, robust covariance estima-
tion, Elliptical distributions, Kronecker models, Martix variate
models, log-sum-exp.

I. INTRODUCTION

Convex optimization has emerged as a powerful signal
processing tool with a growing variety of applications. Formu-
lating an optimization problem in convex form is advantageous
both from a theoretical perspective and from a numerical
perspective. Convex optimization methods can efficiently find
global solutions to large scale problems. These problems can
also be easily generalized by incorporating additional convex
constraints. In order to enjoy these benefits, there is an ongoing
search for new classes of convex functions, and an under-
standing of their modeling power. In this paper, we consider
a generalized form of convexity known as geodesic convexity
(g-convexity) which is associated with positive definite matrix
variables. Its main property is that local minimas of g-convex
functions are also globally optimal. We define new classes of
g-convex functions, and their application to modern covariance
estimation problems.

Two fundamental functions in convex analysis are the
exponential and the logarithm of a sum of exponentials. These
functions are the core ingredient in geometric programming
where positive variables are modeled as exponentials, e.g., in
power control in communication theory [2], [3]. We extend
these results and consider Kronecker products and logarithms
of determinants of positive definite matrices. We no longer
use exponentials to model these matrices. Instead, we provide
a brief review to g-convexity [4]–[6], and prove that the
functions are convex in this generalized notion.

Our first application for the g-convexity results is in the
context of robust covariance estimation. We consider Tyler’s
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method for scatter matrix estimation in scaled Gaussian mod-
els, including Elliptical distributions, generalized Elliptical
distributions, spherically invariant random vectors and com-
pound Gaussian processes [7]–[13]. This method has been
successfully applied to different practical applications rang-
ing from array processing to sensor networks. It has been
generalized to other settings involving regularization [14]–
[18] and incomplete data [19]. Additional recent contributions
addressing covariance estimation in non Gaussian conditions
include [20].

Maximum likelihood (ML) covariance estimation in
scaled Gaussian models involves a non-convex minimization.
Nonetheless, different works proved that the global solution
can be efficiently found via simple fixed point iterations [7],
[10]. Analysis of regularized solutions has been addressed
in [16]. Recently, [17], [21] proved that the negative-log-
likelihood is g-convex in the unknown covariance. Following
these works, we show that the problem is in fact jointly g-
convex in both the covariance and the scaling factors. These
results provide more insight on the analysis and design of
robust covariance estimation methods, and pave the road to
numerous extensions. As an example, we demonstrate how
additional prior knowledge on the covariance or the scaling
can be exploited via g-convex regularization.

Our second application is in the context of structured
covariance estimation. A standard approach to high dimen-
sional covariance estimation is based on low order paramet-
ric models which may be easier to estimate. In particular,
Kronecker structures, also known as separable models, trans-
posable covariances models, or matrix-variate-normal models
are typically used when dealing with random matrices (rather
than random vectors) [22]–[33]. They have been successfully
applied to different applications including wireless commu-
nication, bioinformatics and computer vision. ML estimation
in Kronecker structures involves a non-convex optimization.
It is usually addressed using the iterative Flip-Flop solution
[28]. Uniqueness of the solution has been recently analyzed
in [29], [32]. Based on our g-convexity results, we show that
the negative-log-likelihood is in fact g-convex. This result
complements the known uniqueness results and extends them
to more general scenarios as multi-way Kronecker models. It
allows the use of efficient numerical methods, and suggests
straightforward extensions via additional g-convex regulariza-
tion.

An interesting observation in our work concerns the relation
between the robust and the Kronecker covariance estimation
problems. These two problems originate in different applica-
tions with different goals and by different researchers. Both
problems are traditionally solved by simple iterations, and
satisfy surprising uniqueness results. Our results show that
the problems are in fact g-convex minimizations. Furthermore,
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the derivation suggests that the models themselves are actually
similar. Both use product structures for the unknown covari-
ance. The difference is that robust methods use independent
scalar scalings, whereas Kronecker techniques turn to constant
matrix factors. Armed with this understanding, we propose a
hybrid class of robust Kronecker models which enjoy the best
of both worlds.

The paper is organized as follows. In Section II, we review
and provide new results on g-convexity. In Section III, we
demonstrate the use of these results in the context of robust
covariance estimation. In Section IV, we consider their ap-
plication to Kronecker structured covariance estimation. Next,
in Section V we address hybrid robust Kronecker models. G-
convex regularization schemes are discussed in Section VI,
and optimization details are briefly reviewed in Section VII.
Finally, simulations results are presented in Section VIII, and
concluding remarks are offered in Section IX.

The following notation is used. The sets Rn, Rn,m, Rn++

and Sn++ denote the set of length n vectors, the set of size
n × m matrices, the set of length n vectors with positive
elements and the set of symmetric positive definite matrices,
respectively. The operator ‖ · ‖p denotes the Lp norm. The
superscripts XT and X−1 denote the transpose and inverse
operations. The superscript Xt where X ∈ Sn++ outputs a
matrix with the same eigenvectors as X and eigenvalues to the
power of t. The operator |X| with domain X ∈ Sn++ denotes
the determinant. The vector 1 is the all ones vector. The matrix
diag {a} is diagonal with the elements aj , and diag {X} is a
diagonal matrix with the diagonal elements of X. For a vector
z, we use

√
z, zt, ez and log z to denote vectors with the

elements √zj , ztj , ezj and log zj , respectively. The operators
◦, ⊗ and × denote the Hadamard element wise product,
the Kronecker product and the set product, respectively. By
vec (X) we denote the vector with the stacked columns of
the matrix X. We denote the zero mean multivariate Gaussian
distribution by N (0,Σ) where Σ is the covariance matrix.
Throughout the paper, C will denote a generic constant which
does not depend on the unknowns.

II. GEODESIC CONVEXITY

A. G-convexity on M
We begin with a brief review on general g-convexity on

an arbitrary manifold M. More details are available in [4].
Similar results can be found in [5], [34], [35].

Definition 1. For each pair q0, q1 ∈M we define a geodesic1

qq0,q1t ∈ M for t ∈ [0, 1]. For simplicity, we will omit the
superscripts and assume q0 and q1 are understood from the
context.

Definition 2. A real valued function f with domain M is g-
convex if f(qt) ≤ tf(q1) + (1 − t)f(q0) for any q0, q1 ∈ M
and t ∈ [0, 1]. Equivalently, it is g-convex if f (qt) is convex
in t ∈ [0, 1] for any q0, q1 ∈M.

Proposition 1. Any local minima of a g-convex function over
M is a global minima.

1The exact definition of a geodesic is given in [4]. See also [5], [34], [35]
for similar approaches known as super-convexity or arcwise connectivity.

B. G-convexity on Rm++

Throughout this paper, we will be interested in matrix
variables, but it is instructive to first address the easier case
of vectors.

Classical convexity is a special case of g-convexity when
M = Rm and the geodesics are defined as [36]

zt = tz1 + (1− t)z0, t ∈ [0, 1]. (1)

It is well known that

eazi , log
∑
i

ezi are convex. (2)

Another well known property is

f(ez) is convex in z → f(ez1+z2) is convex in z1, z2. (3)

Alternatively, we can rewrite (1)-(3) in terms of g-convexity.
For this purpose, we define M = Rm++ with the geodesics

qt = qt1q
1−t
0 , t ∈ [0, 1]. (4)

which is identical to (1) via a simple change of variables

z = log q. (5)

The analog of (2) is therefore

qai , log
∑
i

qi are g-convex. (6)

Whereas (3) is equivalent to

f(q) is g-convex in q → f(q1q2) is g-convex in q1, q2. (7)

In this case, a simple change of variables transforms g-
convexity into convexity. The advantage of g-convexity is that
it can be applied in more complicated cases where no such
change of variables is known. In particular, we now show how
to generalize these properties to Sm++.

C. G-convexity on Sm++

Consider the manifold of positive definite matrices Sm++.
With each Q0,Q1 ∈ Sm++ we associate the following
geodesic2 [37]–[39]

Qt = Q
1
2
0

(
Q
− 1

2
0 Q1Q

− 1
2

0

)t
Q

1
2
0 , t ∈ [0, 1]. (8)

Note that (8) reduces to (4) in the scalar case and in the
diagonal case where Qt = diag {qt}.

The matrix versions of (6) are provided in the following
two lemmas.

Lemma 1. Let h ∈ Rm and a ∈ ±1. The function

f (Q) = hTQah (9)

is g-convex in Q ∈ Sm++.

Proof: Consider the eigenvalue decomposition

Q
− 1

2
0 Q1Q

− 1
2

0 = Udiag {d}UT (10)

2This geodesic is defined in page 4 of [37] using the notation Xt =
expm (t logm (X)) where expm and logm are the matrix exponential and
logarithm functions. Similarly, references [38], [39] characterize this geodesic
using only Q0 and a direction parameter.



3

where U is an orthogonal matrix and d ∈ Rm++. Substituting
Qt for Q yields

f (Qt) = hTQ
a
2
0

(
Q
− 1

2
0 Q1Q

− 1
2

0

)at
Q

a
2
0 h

= hTQ
a
2
0 Udiag

{
dat
}

UTQ
a
2
0 h

=

m∑
i=1

[
UTQ

a
2
0 h
]2
i
dati

=

m∑
i=1

[
UTQ

a
2
0 h
]2
i
etalog di (11)

which is convex in t.

Lemma 2. Let a ∈ ±1 and Hi ∈ Rp,m for i = 1, · · · , n be
a set of matrices whose mn columns span Rp. The function

log

∣∣∣∣∣
n∑
i=1

HiQ
aHT

i

∣∣∣∣∣ (12)

is g-convex in Q ∈ Sm++.

Proof: Consider the eigenvalue decomposition in (10).
Then,

log

∣∣∣∣∣
n∑
i=1

HiQ
a
2
0

(
Q
− 1

2
0 Q1Q

− 1
2

0

)at
Q

a
2
0 Hi

∣∣∣∣∣
= log

∣∣∣∣∣
n∑
i=1

HiQ
a
2
0 Udiag

{
dat
}

UTQ
a
2
0 HT

i

∣∣∣∣∣
= log

∣∣∣∣∣∣
n∑
i=1

m∑
j=1

etalog djhijh
T
ij

∣∣∣∣∣∣ (13)

where

hij = HiQ
a
2
0 Uej . (14)

The result then follows by noting that the log determinant
of exponentially weighted positive definite matrices is convex
[40] (see also the appendix).

Next, we generalize the setting and consider the manifold

SJ = Sm1
++ × Sm2

++ × · · · × SmJ
++. (15)

Each point in SJ is a J-tuple of positive definite ma-
trices {Qj}Jj=1. The geodesic between any two J-tuples
{Qj0}Jj=1, {Qj1}Jj=1 ∈ SJ is the J-tuple {Qjt}Jj=1 ∈ SJ
where

Qjt = Q
1
2
j0

(
Q
− 1

2
j0 Qj1Q

− 1
2

j0

)t
Q

1
2
j0, t ∈ [0, 1] (16)

and j = 1, · · · , J . In order to emphasize the use of mul-
tiple variables, we say that a function is jointly g-convex
in {Qj}Jj=1 when it satisfies Definition 2 over these joint
geodesics.

The following lemma is a generalization of (7) to the matrix
case.

Lemma 3. Let f be a real valued and g-convex function on
Sm++ with

∏J
j=1mj = m. Then,

g (Q1, · · · ,QJ) = f (Q1 ⊗ · · · ⊗QJ) (17)

is jointly g-convex in {Qj}Jji=1 ∈ SJ .

Proof: We have

tg (Q11, · · · ,QJ1) + (1− t)g (Q10, · · · ,QJ0)

= tf (Q11 ⊗ · · · ⊗QJ1) + (1− t)f (Q10 ⊗ · · · ⊗QJ0)

[1]
= tf (K1) + (1− t)f (K0)

[2]

≥ f

(
K

1
2
0

(
K
− 1

2
0 K1K

− 1
2

0

)t
K

1
2
0

)
[3]
= f (Q1t ⊗ · · · ⊗QJt)

= g (Q1t, · · · ,QJt) (18)

where [1] is just a definition of K0 and K1, [2] is due to
g-convexity of f , and [3] is based on the properties

(A⊗B) (C⊗D) = (AC⊗BD) (19)

for conforming matrices, and

(A⊗B)
t
=
(
At ⊗Bt

)
(20)

for positive definite matrices, e.g., equation (9.9) and Theorem
9.1 in [41].

III. ROBUST MODEL

In this section, we apply the results in Section II to covari-
ance estimation in scaled Gaussian distributions [7]–[19]. We
model the statistically independent observations as

xi ∼ N (0, qiQ) . (21)

for i = 1, · · · , n, where Q ∈ Sp++ is the unknown covariance
matrix, and q ∈ Rn++ are deterministic factors. We assume
n > p and that xi span Rp. The nuisance factors allow
small variations in the distributions of xi and provide a robust
statistical model. The negative-log-likelihood is

Lrobust (q,Q) =

n∑
i=1

[
xTi (qiQ)

−1
xi + log |qiQ|

]
. (22)

This objective is non-convex in the classical definitions. How-
ever, straight forward application of Lemmas 1-3 yields the
following result.

Theorem 1. The function Lrobust (q,Q) in (22) is jointly g-
convex q and Q.

Previous works using model (21) simplified the problem
and eliminated the unknown q [9], [11]. This can be done by
minimizing (22) with respect to q

q∗i (Q) =
xTi Q−1xi

p
, i = 1, · · · , n (23)

and plugging it back into (22). Alternatively, the measurements
xi can be normalized as [42]

si =
xi
‖xi‖2

, i = 1, · · · , n (24)

so that they will not depend on the unknown q. In both
cases, the concentrated negative-log-likelihood of xi or the
negative-log-likelihood of si, result in the following objective
parameterized by Q:

Lrobust Q (Q) = p

n∑
i=1

log
(
xTi Q−1xi

)
+ nlog |Q|+ C. (25)
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It was recently shown that this function is also g-convex.

Theorem 2 ( [21]). The function Lrobust Q (Q) in (25) is g-
convex in Q.

We now take an opposite approach and concentrate (22)
with respect to Q. The optimal solution is

Q∗ (q) =
1

n

n∑
i=1

1

qi
xix

T
i . (26)

Plugging this solution back into (22) yields

Lrobust q (q) = p

n∑
i=1

log (qi) + nlog

∣∣∣∣∣
n∑
i=1

1

qi
xix

T
i

∣∣∣∣∣+ C. (27)

Direct application of Lemma 2 yields the following result.

Theorem 3. The function Lrobust q (q) in (27) is g-convex in
q.

In fact, using (5) the objective can be expressed as

Lrobust z (z) = p

n∑
i=1

zi + nlog

∣∣∣∣∣
n∑
i=1

e−zixix
T
i

∣∣∣∣∣+ C. (28)

which is classically convex in z (see Lemma 4 in the ap-
pendix).

Theorems 1-3 complement known results on robust covari-
ance estimation in (21). Beginning with the seminal work of
[7] and its numerous extensions, it was proved that the non-
convex ML problem can be efficiently solved using simple
fixed point iterations starting at any initial point. Next, [21]
proved the concentrated negative-log-likelihood is g-convex in
the covariance. Our new contributions are that the negative-
log-likelihood is actually jointly g-convex in both the covari-
ance and the scalings, and that it can be concentrated to a
g-convex minimization in the scalings. Hence, the global so-
lutions to these three problems can be easily found via simple
descent algorithms. Furthermore, additional prior knowledge
on both the covariance and the scalings can be exploited via
g-convex regularization as will be detailed in Section VI.

IV. KRONECKER MODEL

In this section, we apply the results in Section II to
ML estimation in Kronecker structured covariances [22]–[33].
We model the independent and identically distributed (i.i.d.)
observations as

xi ∼ N (0,Q1 ⊗Q2) (29)

for i = 1, · · · , n, where Q1 ∈ Sp1++ and Q2 ∈ Sp2++. Typically,
this model arises when

xi = vec (Xi) (30)

where Xi ∈ Rp2,p1 . In matrix terms, the distribution in (29)
can be expressed as

Xi = Q
1
2
2 WiQ

1
2
1 (31)

where Wi ∈ Rp2,p1 is a matrix of i.i.d., zero mean and
unit variance Gaussian random variables. The negative-log-
likelihood for estimating Q1 and Q2 is

Lkron (Q1,Q2) =

n∑
i=1

xTi (Q1 ⊗Q2)
−1

xi

+log |Q1 ⊗Q2| . (32)

This objective is non-convex in the classical definitions.
Straight forward application of Lemmas 1-3 yields the fol-
lowing observation.

Theorem 4. The function Lkron (Q1,Q2) in (32) is jointly g-
convex in Q1 and Q2.

Thus, the global ML estimate can be found using standard
descent methods starting at any starting point. Additional prior
information on Q1 or Q2 can be exploited via g-convex
regularization as will be detailed in Section VI.

For simplicity, we have considered the Kronecker product
of two positive definite matrices but g-convexity holds in the
general case of multi-way Kronecker models where [43]

x ∼ N (0,Q1 ⊗ · · · ⊗QJ) . (33)

V. HYBRID ROBUST KRONECKER MODEL

An interesting byproduct of our analyses concerns the
relation between the robust and the Kronecker covariance
estimation problems. These originate in different applications
with different goals and by different researchers. However,
our derivation suggests that models (21) and (29), as well as
their solutions, are actually very similar. The only difference is
that (21) uses independent scalar weights, whereas (29) turns
to equal matrix weights Q. This naturally suggests a hybrid
model which we now explore.

The hybrid robust-Kronecker covariance model is

xi ∼ N (0, qi [Q1 ⊗Q2]) (34)

for i = 1, · · · , n, where q ∈ Rn++, Q1 ∈ Sp1++ and Q2 ∈ Sp2++..
The model can also be written in matrix notations as

Xi =
√
qiQ

1
2
2 WiQ

1
2
1 (35)

where Wi ∈ Rp1,p2 are matrices of i.i.d., zero mean and
unit variance random variables. The negative-log-likelihood
for estimating q, Q1 and Q2 is

Lhybrid (q,Q1,Q2) =

n∑
i=1

xTi [qi (Q1 ⊗Q2)]
−1

xi

+log |qi [Q1 ⊗Q2]| . (36)

As before, this function is non-convex, but straight forward
application of Lemmas 1-3 yields the following observation.

Theorem 5. The function Lhybrid (q,Q1,Q2) in (36) is jointly
g-convex in q, Q1 and Q2.

Thus, the global ML solution to the hybrid model can be
found using standard descent methods.
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VI. G-CONVEX REGULARIZATION

In the previous sections we showed that the robust, Kro-
necker and hybrid models lead to g-convex negative-log-
likelihoods which can be easily minimized. These results allow
straight forward generalizations via additional g-convex regu-
larization functions. Indeed, a common approach in statistics
is to regularize ML and solve

min L (·) + λh (·) (37)

where L (·) in (22), (32), or (36) is the appropriate negative-
log-likelihood function, h(·) is a penalty function and λ is
a regularization parameter. The penalties shrink the solution
towards some low order parametric model in order to allow
for bias-variance tradeoff. Alternatively, the penalties can
exploit prior knowledge of the unknown parameters as in
maximum-a-posteriori estimation. Theorems 1-5 motivate the
use of g-convex penalties. These will guarantee that any local
regularized ML estimate will be globally optimal.

We now list a few promising g-convex penalties:
• Scalar penalties:∑

i

log qi,
∑
i

log q−1i ,
∑
i

|log qi|,
∑
i

log2qi (38)

G-convexity of these penalties can be observed by chang-
ing variables to z = log q and noting their classical
convexity in z. Such penalties are appropriate when the
scalings, also known as texture, originate from a known
underlying distribution as in [44], [45]. Depending on the
distribution, these penalties can be used to constrain the
empirical first, second and absolute moments.

• Smoothness: ∑
i

(log qi − log qi−1)
2 (39)

This penalty is appropriate when the scalings originate
from a correlated time series, e.g., [46].

• Matrix penalties:

log Tr
{
Q−1

}
, log

∏
i

[
Q−1

]
ii
, · · · (40)

These g-convex penalties allow improved accuracy by
shrinking the covariance estimate towards a known target,
typically the scaled identity matrix. Proofs and more
details on matrix valued g-convex regularization are avail-
able in [17].

VII. OPTIMIZATION DETAILS

The main message in this paper is that the robust and
the Kronecker negative-log-likelihoods are g-convex. Hence,
each of their local minimas is also globally optimal. These
objectives are smooth and well behaved. Thus, there are
many numerical methods for efficiently finding their local
solutions. The details of these specific implementations are
outside the scope of this paper, but we do briefly discuss them
for completeness.

Efficient solutions to g-convex minimizations over the pos-
itive definite set can be obtained via optimization on man-
ifold techniques [6]. Our experience suggests that there is

no need for such sophisticated methods and that standard
off-the-shelves smooth optimization packages, as Matlab’s
built-in fmincon function, are sufficient. When possible, we
recommend changing variables and transforming the problem
into a standard convex minimization as in (28). In many
cases, simple approaches based on alternating minimizations
also perform well. For example, the hybrid objective in
(36) can be minimized by the classical Flip-Flop method
which alternatively solves for q, Q1 or Q2 while fixing
the other two variables. Another promising approach relies
on the majorization-minimization technique which iteratively
linearizes the concave terms in the non-convex (yet g-convex)
objectives as proposed in [1], [17].

Uniqueness and lack of identifiability are important issues
which should be considered in the optimization. It is well
known that our parametric models lack uniqueness. For ex-
ample, {q,Q} in (21) can be replaced by {αq, 1

αQ} for any
α > 0. Theoretically, this is not important as both solutions are
equally optimal. However, this may cause numerical stability
problems, as well as issues with the choice of regularization
parameters λ in (37). For this purpose it is recommended to use
normalization methods as in [14], [16], to use scale invariant
penalty functions as in [17], or to impose additional constraints
which will promise uniqueness as in [29]. For example, it is
easy to see that (27) is invariant to a scalar multiplication of
q. Thus, without loss of generality, we recommend adding the
g-convex constraint ∑

i

log qi = 0. (41)

VIII. SIMULATIONS

In this section, we provide a few numerical examples using
Monte Carlo simulations. The purpose of these examples is to
demonstrate the high level ideas in this paper, rather than a
detailed practical application which is beyond the scope and
will be pursued elsewhere.

In the first example, we considered robust covariance
estimation with correlated scaling factors. We defined the
unknown covariance matrix Q as a size p = 10 Toeplitz
matrix with the (i, j) elements 0.8|i−j|. In each experiment,
we generated n i.i.d. realizations of a zero mean multivariate
normal of covariance Q with i.i.d. Chi-squared distribution
with 3 degrees of freedom scaling factors. We then correlated
these factors using a length 2 uniform moving average win-
dow. These realizations were used to estimate the unknown
covariance. We compared the naive sample covariance, Tyler’s
original fixed point iteration, and our newly proposed estimator
assuming correlated scaling factors. Specifically, we changed
variables and used Matlab’s fmincon subroutine to minimize
(27) penalized by (39) with λ = 10 subject to the constraints in
(41). Due to the scaling ambiguity, we normalized the true co-
variance and its estimates by their traces before computing the
errors. In Fig. 1, we provide the average normalized squared
Frobenius norm error over 1000 independent experiments. It is
easy to see the performance gain of the robust estimators, and
the advantage of exploiting the additional prior knowledge.
Similar results (not shown) with different values of λ suggest
that the solution is not too sensitive to its exact value.
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Fig. 1. Robust covariance estimation with correlated scalings.

In the second example, we considered the hybrid covariance
model. The scalings qi were i.i.d. scaling factors generated
according to a Chi-squared distribution with 3 degrees of
freedom. We defined the unknown covariance matrices Q1 and
Q2 of respective sizes p1 = 10 and p2 = 2 as Toeplitz matrices
with the (i, j) elements 0.8|i−j|. We compared the naive
sample covariance, the Flip-Flop method and the hybrid ML
estimator. The latter was implemented in a Flip-Flop manner
by alternatively solving for the unknowns in closed form. As
before, we normalized the true covariance and its estimates
by their trace. In Fig. 2, we provide the average normalized
squared Frobenius norm error over 500 independent non-
Gaussian experiments. The hybrid method outperforms its
competitors for all sample sizes considered. For completeness,
Fig. 3 shows the results of a similar experiment with known
factors qi = 1, corresponding to a pure Gaussian setting. Here,
as expected from a robust estimation method, the hybrid ap-
proach performs slightly worse than Tyler, but the degradation
is small and vanishes as the number of samples increase.

IX. DISCUSSION

In this paper, we extended classical convexity results on
exponentials and log-sum-exp functions to g-convexity in pos-
itive definite matrix variables. We then applied these results to
two modern covariance estimation problems. We reformulated
both of these as g-convex minimizations and noted their
similarity. This analysis shed more light on these problems
and paved the road to various generalizations.
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Fig. 2. Hybrid estimation in a non-Gaussian setting.
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Fig. 3. Hybrid estimation in a Gaussian setting.

APPENDIX

In this appendix, we provide results on the convexity of
log determinant functions with exponentially weighted positive
semidefinite matrices. These results have been previously
published in [40] using a different proof and are provided for
completeness.

It is well known that the log-sum-exp function [36, pp. 74]

log

n∑
i=1

ezi (42)

is convex in z ∈ Rn. Indeed, its gradient and Hessian are

g =
y

1Ty

H =

(
1Ty

)
diag {y} − yyT

(1Ty)
2 (43)
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where

y = ez. (44)

Convexity follows since

vTHv =
1

(1Ty)
2

[(
1Ty

) n∑
i=1

v2i yi −
(
vTy

)2]
=

1

(1Ty)
2

[(
uTu

) (
wTw

)
−
(
uTw

)2]
≥ 0, for all v (45)

where

u =
√

y (46)
w = v ◦ √y (47)

and we have used the Cauchy Schwartz inequality.
The next lemma generalizes this convexity result to log-

determinant functions of exponentially weighted positive
semidefinite rank one matrices.

Lemma 4 ( [40]). Let hi ∈ Rp for i = 1, · · · , n be a set of
vectors which span Rp. The function

log

∣∣∣∣∣
n∑
i=1

ezihih
T
i

∣∣∣∣∣ (48)

is convex in z ∈ Rn.

Proof: First, we note that the argument of the determi-
nant is positive definite when {hi}ni=1 span their space, and
therefore inside the domain. Using the chain rule, the gradient
and Hessian can be computed as

g = diag {P}1

H = diag {P} −P ◦P (49)

where

P = YT
(
YYT

)−1
Y

Y = [y1, · · · ,yn]
yi = hie

zi
2 (50)

and P is an orthogonal projection matrix. Due to Lemma 5
below, the Hessian is positive semidefinite and the function is
convex.

Lemma 5. Let P be a projection matrix, then the matrix

diag {P} −P ◦P (51)

is positive semidefinite.

Proof: We need to show that for any vector v

vT [diag {P} −P ◦P]v ≥ 0. (52)

Alternatively, by expressing v as D = diag {v}, we need to
show that for any diagonal matrix D

Tr {Ddiag {P}D} − Tr {PDPD} ≥ 0. (53)

This is equivalent to

Tr
{
PD2

}
− Tr {PDPD} ≥ 0 (54)

which can also be written as

Tr {P [D (I−P)D]} ≥ 0. (55)

The latter holds since P, I−P and D (I−P)D are positive
semidefinite, and the trace of the product of two positive
semidefinite matrices is non-negative.

Interestingly, Lemma 5 can be interpreted as an extension
of the Cauchy Schwartz inequality from vectors to projection
matrices. Indeed, specializing it to the case of a rank one
projection matrix

P =
uuT

uTu
(56)

where u 6= 0, yields

vT

[
diag

{
uuT

uTu

}
− uuT ◦ uuT

(uTu)
2

]
v ≥ 0. (57)

This is equivalent to[
n∑
i=1

u2i

][
n∑
i=1

v2i u
2
i

]
≥
∑
i,j

vivju
2
iu

2
j . (58)

Defining

w = v ◦ u (59)

yields [
n∑
i=1

u2i

][
n∑
i=1

w2
i

]
≥
∑
i,j

wiwjuiuj (60)

results in the Cauchy-Schwartz inequality:(
uTu

) (
wTw

)
≥
(
uTw

)2
. (61)
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