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In this contribution, we review the derivation of the relativistic top geodesic deviation equation. This equation results in a generalization
of the geodesic deviation equation for a pair of nearby point particles. This property is taken into account in investigating the detection of
gravitational waves, and we show how our generalized formula for a relativistic top can be used to study the gravitational wave backgrounds.
Besides of these facts, we argue that our formulation may be of special interest for detecting the inflationary gravitational waves via the
polarization of the cosmic background radiation.

Keywords:Geodesic equation; relativistic top; gravitational waves.

En esta contribución, revisamos la derivación de la ecuación de desviación de geod́esicas para trompos relativistas. Esta ecuación es una
generalizacíon de la ecuación de geod́esicas para un par de objetos puntuales cercanos. Esta propiedad es tomada en cuenta para investigar la
deteccíon de ondas gravitacionales, y mostramos cómo nuestra f́ormula generalizada para un trompo relativista puede ser usada para estudiar
los fondos de ondas gravitacionales. Además de estos hechos, argumentamos que nuestra formulación puede ser de especial interés para
detectar las ondas gravitacionales inflacionarias a través de la polarización en la radiacíon ćosmica de fondo.

Descriptores:Ecuacíon de geod́esicas, trompo relativista; ondas gravitacionales.
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1. Introduction

The importance of the geodesic deviation equation (GDE) for
spinless particles is evident when we study gravitational wave
phenomena and their detection [1, 2]. In fact, all currently
operating projects for the detection of gravitational waves,
including LIGO [3], VIRGO [4] and LISA [5], have among
their root physical bases such an equation. In this contribu-
tion, we review a recently published work [6], which is based
on previous works [7] and [8], where it was proposed that
the relativistic top equations of motion (RTEM) [9] can be
used instead of the GDE for the same purpose of detecting
gravitational radiation.

The main contribution of Ref. 6 is the derivation of a rel-
ativistic top deviation equation (RTDE), which is reduced to
the GDE when the spin tensor associated with the top van-
ishes. Among the main ideas for application of this equation
is the study of gravitational radiation generated by binary pul-
sars and their spin interaction with gravitational waves pro-
duced by a companion object such as a massive black hole
(see [6] and references therein). Instead of focusing our at-
tention on the black hole curvature, we think of the black
hole gravitational waves as being responsible for the timing
effect of the binary pulsars. Our work may be useful, among

other things, for distinguishing these two possibilities. Actu-
ally, our formulation is so general that the companion of the
binary pulsar can be any other source of gravitational waves
such as supernovae or vibrating neutron star systems.

Another very interesting setting where our proposal of
Ref. 6 may find application is the search for the stochastic
gravitational wave background (SGWB) as proposed some
time ago by Detweiler [10], who showed that measurements
of signal arrival time from the pulsar may be used to inves-
tigate properties of this background. The main strategy for
the detection of the SGWB is to consider a number of pulsars
separated at different parts in the sky. It is clear then that our
RTDE formulation may be useful for this proposal.

Ultimately, the RTDE may also have an interesting ap-
plication in connection with the so called inflationary grav-
itational waves (see Ref. 11 and references therein). As is
known, the polarization of the cosmic microwave radia-
tion [12] may solve the problem of detecting the gravitational
waves produced during the inflationary scenario. Just before
the universe became transparent to radiation, the plasma mo-
tion caused by the gravitational waves may be generated by
different sources. In particular, the effect predicted by the
RTDE may be of physical interest in this scenario.
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Our plan for presenting this review is the following. In
Sec. 2, we briefly review one of the possible mechanisms to
obtaining the GDE, and we apply similar techniques to ob-
tain the RTDE formulation. In Sec. 3, we explain how the
RTDE can be applied to the detection of gravitational waves.
Finally, in Sec. 4, we make some final comments.

2. The geodesic deviation equation and the rel-
ativistic top

Several methods can be used to obtain the GDE. Some of
them are, in fact, quite brief. For our purpose, however, it
turns out to be more convenient to follow the one in Ref. 13.

Consider a point particle whose trajectory is described by
the coordinatesxµ(τ), whereτ is the proper time parameter.
The geodesic equation is

d2xµ

dτ2
+ Γµ

αβ(x)
dxα

dτ

dxβ

dτ
= 0. (1)

Here,Γµ
αβ(x) stands for the Christoffel symbols.

A nearby point particle must also satisfy a geodesic equa-
tion. If we use the coordinatesx′µ(τ) to describe the position
of such a nearby point particle, we have

d2x′µ

dτ2
+ Γ′µαβ(x′)

dx′α

dτ

dx′β

dτ
= 0. (2)

By “nearby” we mean that the coordinatesx′µ(τ) can be writ-
ten as

x′µ = xµ + ξµ(x), (3)

with ξµ a very small quantity.
Then we expand to the first order inξµ

Γ′µαβ(x + ξ) = Γµ
αβ(x) + Γµ

αβ ,λ ξλ, (4)

with

Γµ
αβ ,λ =

∂Γµ
αβ

∂xλ
.

Thus, using (3) and (4), we find that Eq. (2) forξµ becomes

d2ξµ

dτ2
+ 2Γµ

αβ

dxα

dτ

dξβ

dτ
+ Γµ

αβ ,λ ξλ dxα

dτ

dxβ

dτ
= 0. (5)

Through some algebraic manipulations, this equation can be
written in a totally covariant expression (see Ref. 6)

D2ξµ

Dτ2
= −Rµ

αλβ

dxα

dτ
ξλ dxβ

dτ
, (6)

which is, of course, the famous geodesic deviation equation
(GDE) for a pair of nearby freely falling particles in a gravi-
tational field background.

Now, we turn to analyzing the equations of motion for
a relativistic top moving in a gravitational field background,
namely

D2xµ

Dτ2
= −1

2
Rµ

αλβ

dxα

dτ
Sλβ , (7)

and
DSµν

Dτ
= 0. (8)

Here Sµν is the internal angular momentum (or the spin
tensor) per unit mass of the top satisfying the Pirani con-
straint [14]

Sµν dxν

dτ
= 0

(see Refs. 15 to 17). It is worth mentioning that formulae (7)
and (8) can be derived by a number of different methods [9].
An important observation is that (7) can be understood as the
analogue of the geodesic equation (1), and in fact it reduces
to (1) when the spin tensorSµν vanishes.

After comparing equations (6) and (7), we note a great
similarity. But in fact they are very different in the sense
that, while equation (6) refers to a pair of nearby point parti-
cles, (7) is associated with just one physical system: a rela-
tivistic top. Nevertheless, this similarity was used as an inspi-
ration to propose that, just as (6) is used to detect gravitational
waves, equation (7) can be used for the same purpose. In or-
der to further understand the real differences between the two
point particle system and the relativistic top, it turns out to be
necessary to derive the analogue of (6) for a pair of nearby
relativistic tops. For this purpose, we suppose that a nearby
top satisfies the corresponding equations of motion,

d2x′µ

dτ2
+Γ′µαβ(x′)

dx′α

dτ

dx′β

dτ
= −1

2
R′µαλβ(x′)

dx′α

dτ
S′λβ . (9)

Consider now a perturbation of the form

x′µ = xµ + ξµ(x) (10)

and

S′µν = Sµν + Sµν ,α ξα(x). (11)

Now, after some algebra, (see Ref. 6 for a full explanation
and also see Ref. 18), we obtain our master equation:

D2ξµ

Dτ2
= −Rµ

αλβ

dxα

dτ
ξλ dxβ

dτ
− 1

2
[Rµ

αλβ

Dξα

Dτ
Sλβ

+ Rµ
αλβ

dxα

dτ
Sλβ ;γ ξγ + Rµ

αλβ ;σ ξσ dxα

dτ
Sλβ ], (12)

which is the covariant form of the relativistic top deviation
equation (RTDE). Clearly, (12) reduces to (6) when the spin
tensorSλβ vanishes. One of the attractive features of (12)
is that the spin angular momentumSλβ of the top appears
to be coupled to gravity via the curvature Riemann tensor
Rµ

αλβ and its gradient. It seems reasonable to think that this
characteristic can provide a better description of the proper-
ties of the underlying intrinsic curvature of the geometry in
question. In particular, we shall see in the next section that
the RTDE may be used to study the different properties of a
gravitational wave background.
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3. The relativistic top deviation equation and
gravitational waves

In this section we summarize the consequences of equa-
tion (12) in the case of gravitational waves. But for com-
pleteness we shall start by reviewing briefly how formula (6)
is used for this particular case.

As usual, consider a gravitational wave in a flat back-
ground where the metricgµν can be written as

gµν = ηµν + hµν , (13)

whereηµν is the Minkowski metric and| hµν |¿ 1. In the
transverse-traceless gauge the conditions

h0µ = 0 , hij,j = 0 , hµ
µ = 0 , (14)

are obeyed, with the indicesi, j, . . . , etc running from1 to
3. The Einstein gravitational field equations imply thathij

satisfies the wave equation

¤2hij = 0, (15)

where¤2 = ∂µ∂µ is the D’Alambertian. In the gauge given
in (14), the space-time components of the Riemann tensor
Ri0j0 have the simple form

Ri0j0 = −1
2
hij ,00 . (16)

Using (14), one discovers thathij can be written as

hij = A+e+
ij + A×e×ij , (17)

whereA+ andA× are two independent dimensionless am-
plitudes ande+

ij ande×ij are polarization tensors. For a wave
traveling in thez- direction, the only nonvanishing compo-
nents ofeij are

e+
xx = −e+

yy ande×xy = e×yx, (18)

and in this caseA+ andA× turn out to be functions only of
t− z.

In a proper reference frame we havex0 = τ, xi = 0, so
thatdx0/dτ = 1 anddxi/dτ = 0. In this reference frame we
find that (6) becomes

d2ξi

dt2
= −Ri

0j0ξ
j . (19)

For a wave propagating in thez- direction, we have

d2ξz

dt2
= 0, , (20)

as well as
d2ξa

dt2
=

1
2
ha

b ,00 ξb , (21)

where now, the Latin indicesa, b, . . . , etc run from 1 to 2.
The formula (21) tells us that only separations of two nearby
point particles in the transverse direction are meaningful.

Let us now address the problem at hand, namely, the fact
that we are interested in applying similar methods as to the
above in the case of a system with two nearby relativistic
tops. For this purpose let us consider the formula (12) in a
proper reference frame. Using the fact thatS0µ = 0, due to
the Twlczyjew-Pirani constraintSµν(dxν/dτ) = 0 and the
symmetries of the Riemann curvature tensor we find that the
time component of (12) is

d2ξ0

dt2
= −1

2
R0

jkl

dξj

dt
Skl, (22)

which for the particular case of a gravitational plane wave
propagating in thez−direction is

d2ξ0

dt2
= −R0

azb

dξa

dt
Szb, (23)

where we used the fact that the only nonvanishing compo-
nents of the Riemann curvature tensor are

Rzazb = R0a0b = −R0azb = −1
2
hab,00 . (24)

Thez component of (12) turns out to be

d2ξz

dt2
= −Rz

azb

dξa

dt
Szb , (25)

where we used (24), and thex andy components are

d2ξa

dt2
= −Ra

0b0ξ
b

−[Ra
0bz

dξ0

dt
Sbz + Ra

0bzS
bz,0 ξ0 + Ra

0bz,0 ξ0Sbz]

−[Ra
zbz

dξz

dt
Sbz + Ra

0bzS
bz,z ξz + Ra

0bz,z ξzSbz]

−Ra
0bzS

bz,a ξa. (26)

Note that in (23), (25) and (26) theSab component of the
spin angular momentum does not appear and only theSzb

component remains. To better understand this, let us define

Si =
1
2
εijkSjk , (27)

whereεijk is the Levi-Civita tensor withεxyz=1. From (27),
we note that thez component of the intrinsic angular mo-
mentum does not play any role in our equations (23), (25)
and (26). This means that no effect is expected when the top
is oriented along the direction of propagation of the gravita-
tional wave .

The second interesting observation is that, ifSzb is non-
vanishing, thend2ξ0/dt2 6= 0 andd2ξz/dt2 6= 0, in contrast
to the case of a pair of nearby point particles in which both
of these terms vanish. The third important observation is that
the d2ξa/dt2 equation contains a large number of terms in
addition to the usual one,Ra

0b0ξ
b. Clearly, this means that the

solution of (26) will not be as simple as in the case, of nearby
point particles.
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Let us concentrate on the terms in (26) not involving
derivatives ofSzb and the Riemann tensor, which presum-
ably represent small order corrections. In this case (26) is
reduced to

d2ξa

dt2
= −Ra

0b0ξ
b −Ra

0bz

dξ0

dt
Sbz −Ra

zbz

dξz

dt
Sbz. (28)

Using (24), we find that (23), (25) and (28) become

d2ξ0

dt2
= −1

2
hab,00

dξa

dt
Szb, (29)

d2ξz

dt2
=

1
2
hab,00

dξa

dt
Szb , (30)

and

d2ξa

dt2
=

1
2
ha

b ,00 ξb−1
2
ha

b ,00
dξ0

dt
Sbz+

1
2
ha

b ,00
dξz

dt
Sbz, (31)

respectively. From (29) and (30) we discover that we can set
ξ0 = −ξz + cte. Therefore (31) becomes

d2ξa

dt2
=

1
2
ha

b ,00 ξb − ha
b ,00

dξz

dt
Sbz. (32)

Note that if at an initial time the spin of the topSbz has ori-
entation such that

ξb − 2
dξz

dt
Sbz = 0, (33)

then there is no transverse motionξa = const. and there-
fore (30) allows the solution

ξz = const. (34)

What this means is that, if the spin of the top is oriented along
the vector separationξa of the two tops, then the gravitational
wave does not produce any effect on the system. This seems
to be a new, interesting result since in the ordinary case of
GDE the wave is always transverse in its physical effects.

Let us now look for a solution to (32) of the form

ξa = ξa
0 +

1
2
ha

b ξb
0 − ha

b (
dξz

dt
|0)Sbz , (35)

whereξa
0 = const. We observe that

dξa

dt
=

1
2
ha

b ,0 ξb
0 − ha

b ,0 (
dξz

dt
|0)Sbz.

Substituting (35) into (30) we find that, to the first order in
h, (30) becomes

d2ξz

dt2
≈ 0 , (36)

Therefore, if initially

dξz

dt
|0= 0

to the first order of approximation, the solution (35) reduces
to the ordinary case of a pair of nearby point particles.

4. Comments
We have been pursuing the possibility of using relativistic
tops as detectors of gravitational waves. In two previous
works [7,8], an isolated top was considered, making it diffi-
cult to compare our results with the case of DGE. In order to
overcome this difficulty and to gain further progress towards
our goal, in this article we have derived the RTDE equation
for a pair of nearby tops. We have shown that the RTDE re-
duces to the GDE when the spin tensor vanishes.

By considering a plane gravitational wave, we find the
solution of the RTDE for two simple cases. In the first case
we discover that, if the internal angular momentum of the top
is oriented along the vector separation of the two tops, the
gravitational wave does not produce any effect on the physi-
cal system. In the second, more general, case we find that the
nearby top will have an effect different from the case of GDE
only to a second order of approximation in the perturbation
hab. At first sight, it would appear that these two cases show
that the RTDE formulation, although it may be theoretically
interesting, does not seem to offer a promising route for ex-
periments. However, rough estimates can show us that this
turns out not to be the case (see Ref. 6 for details).

A possible, interesting extension of the present work
is to apply to the nongeodesic equations of motion of
spinning particles in a teleparallel gravitational back-
ground (GETGB) [19,20] a method similar to the one used
to obtain the RTDE. The GETGB equations are an exten-
sion of the RTEM in the sense that they include torsion in-
teractions in addition to the gravity spin interaction. Re-
cently, Garcia [21] has revisited the motion of spinless parti-
cles in a teleparallel gravitational wave background and pro-
posed an experimental mechanism for detecting torsion via
the GETGB model. The complete picture should be to detect
both gravitational waves, and torsional waves and therefore
it may be interesting for further research to find the non-
deviation geodesic equations associated with the GETGB
model.

Finally, we would like to comment on the possibility of
using the RTDE in connection with the inflationary gravi-
tational wave scenario and world brane cosmology. In the
first case, just before the universe becomes transparent, the
gravitational waves, produced during inflation, interacts with
the plasma, producing polarization patterns of the cosmic
microwave background (CMB). This kind of phenomenon
is especially interesting since recent experiments seems to
have measured the variation of the polarization pattern of the
CMB. The RTDE model can be interesting in this direction
if the spin tensorSλβ is identified as the fermi spin of el-
ementary particles. According to the RTDE, a gravitational
wave should cause two kinds of motions in the constituent
fermionic particles of such a plasma. The first one is the mo-
tion of the particles caused by the forces due to GDE, and the
second is the motion in the plasma caused by the spin-gravity
interaction. Therefore one should expect that the spin-gravity
interaction will also leave a “print” in the polarization pattern
of the CMB.
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In the case of the world brane universes, only gravity
can move in the extra dimensions; all the matter and other
forces are confined to the branes. Only gravitational waves
(or gravitons) travel from brane to brane carrying some en-
ergy information away from the branes. Presumably, such
a gravitational wave affects objects held together by gravity,
such as stars and galaxies, by distances shorter than millime-
ters. But, according to our above rough estimate, such short-
distance changes are also predicted by the RTDE model.
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