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ABSTRACT: In recent years, a number of data structures for global geo-referenced data sets have been 
proposed based on regular, multi-resolution partitions of polyhedra. We present a survey of the most 
promising of such systems, which we call Geodesic Discrete Global Grid Systems (Geodesic DGGSs). 
We show that Geodesic DGGS alternatives can be constructed by specifying five substantially indepen-
dent design choices: a base regular polyhedron, a fixed orientation of the base regular polyhedron 
relative to the Earth, a hierarchical spatial partitioning method defined symmetrically on a face (or 
set of faces) of the base regular polyhedron, a method for transforming that planar partition to the 
corresponding spherical/ellipsoidal surface, and a method for assigning point representations to grid 
cells. The majority of systems surveyed are based on the icosahedron, use an aperture 4 triangle or 
hexagon partition, and are either created directly on the surface of the sphere or by using an equal-
area transformation. An examination of the design choice options leads us to the construction of the 
Icosahedral Snyder Equal Area aperture 3 Hexagon (ISEA3H) Geodesic DGGS.  
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Discrete Global Grid Systems: 
Basic Definitions

Discrete Global Grid

A Discrete Global Grid (DGG) consists of a 
set of regions that form a partition of the 
Earth’s surface, where each region has a 

single point contained in the region associated 
with it. Each region/point combination is a cell. 
Depending on the application, data objects or 
vectors of values may be associated with regions, 
points, or cells. If an application defines only 
the regions, the centroids of the regions form a 
suitable set of associated points. Conversely, if an 
application defines only the points, the Voronoi 
regions of those points form an obvious set of asso-
ciated cell regions. 

Applications often use DGGs with cell regions that 
are irregular in shape and/or size. For example, the 
division of the Earth’s surface into land masses and 
bodies of water constitutes one of the most important 
DGGs. A more general example, the Hipparchus 
System (Lukatella 2002), allows the creation of arbi-
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trarily regular DGGs by generating Voronoi cells on 
the surface of an ellipsoid from a specified set of 
points. But, for many applications, it is desirable to 
have cells consisting of highly regular regions with 
evenly distributed points. 

Regular DGGs are unbiased with respect to spatial 
patterns created by natural and human processes and 
allow for the development of simple and efficient 
algorithms. A single regular DGG may play multiple 
data structure roles. It may function as a raster data 
structure, where each cell region constitutes a pixel. 
It may serve as a vector data structure, where the 
set of DGG points replaces traditional coordinate 
pairs (Dutton 1999). Each data object may be associ-
ated with the smallest cell region in which it is fully 
contained, and these minimum bounding cells may 
then be used as a coarse filter in operations such 
as object intersection. The DGG can also be used 
as a useful graph data structure by taking the DGG 
points as the graph vertices and then connecting 
points associated with neighboring cells with unit-
weight edges.

The most commonly used regular DGGs are those 
based on the geographic (latitude–longitude) coor-
dinate system. Raster global data sets often employ 
cell regions with edges defined by arcs of equal-angle 
increments of latitude and longitude (for example, 
the 2.50 x 2.50, 50 x 50, and 100 x 100 NASA Earth 
Radiation Budget Experiment (ERBE) grids described 
in Brooks (1981)). Data values may also be associ-
ated with points spaced at equal-angle intervals 
of latitude and longitude (for example, the 5’ x 5’ 
spacing of the ETOPO5 global elevation data set 
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(Hastings and Dunbar 1998)). Similarly, vector 
data sets that employ a geographic coordinate 
system to define location values commonly choose 
a specific precision for those values. The choice 
of a specific precision for geographic coordinates 
forms an implicit grid of fixed points at regular 
angular increments of latitude and longitude, and 
a particular data set of that precision can consist 
only of coordinate values chosen from this set of 
fixed points. Ideally, the regions associated with 
the geographic vector coordinate points would be 
the corresponding Voronoi regions on the Earth’s 
surface, although they are more commonly the 
corresponding Voronoi regions on a surrogate 
representation of the Earth’s surface, such as a 
sphere or ellipsoid. In practice, applications often 
implicitly employ Voronoi regions defined on the 
longitude x latitude plane, on which the regions 
are, conveniently, regular planar squares. As we 
shall see, employing a surrogate representation for 
the Earth’s surface on which the cell regions are 
regular planar polygons is a useful and common 
approach in DGG construction.

Discrete Global Grid System
A Discrete Global Grid System (DGGS) is a 
series of discrete global grids. Usually, this series 
consists of increasingly finer resolution grids; 
i.e., the grids in the series have a monotonically 
increasing number of cells. If the grids are defined 
consistently using regular planar polygons on a 
surrogate surface, we can define the aperture of a 
DGGS as the ratio of the areas of a planar polygon 
cell at resolution k and at resolution k+1 (this is 
a generalization of the definition given in Bell et 
al.(1983)). Later we will discuss DGGSs that have 
more than one type of polygonal cell region. In 
these cases there is always one cell type that clearly 
predominates, and the aperture of the system is 
defined using the dominant cell type. 

Kimerling et al. (1999) and Clarke (2002) note 
the importance of regular hierarchical relationships 
between DGGS resolutions in creating efficient data 
structures. Two types of hierarchical relationship 
are common. A DGGS is congruent if and only if 
each resolution k cell region consists of a union of 
resolution k+1 cell regions. A DGGS is aligned if 
and only if each resolution k cell point is also a cell 
point in resolution k+1. If a DGGS does not have 
these properties, the system is defined as incongru-
ent or unaligned. For example, the most widely used 
DGGS is generated implicitly by multiple precisions 
of decimal geographic vector representations. This 
DGGS has an aperture of 10 and is incongruent and 
aligned (Figure 1).

Discrete Global Grid Systems based on the geo-
graphic coordinate system have numerous practical 
advantages. The geographic coordinate system has 
been used extensively since well before the computer 
era and is therefore the basis for a wide array of 
existing data sets, processing algorithms, and soft-
ware. Grids based on square partitions are by far the 
most familiar to users, and they map efficiently to 
common data structures and display devices.

But such grids also have limitations. Discrete 
Global Grid Systems induced by the latitude–lon-
gitude graticule do not have equal-area cell regions, 
which complicates statistical analysis on these grids. 
The cells become increasingly distorted in area, 
shape, and inter-point spacing as one moves north 
and south from the equator. The north and south 
poles, both points on the surface of the globe, map 
to lines on the longitude x latitude plane; the top 
and bottom row of grid cells are, in fact, triangles, 
not squares as they appear on the plane. These polar 
singularities have forced applications such as global 
climate modeling to make use of special grids for 
the polar regions. Square grids in general do not 
exhibit uniform adjacency; that is, each square grid 
cell has four neighbors with which it shares an edge 
and whose centers are equidistant from its center. 
Each cell, however, also has four neighbors with 
which it shares only a vertex and whose centers are 
a different distance from its center than the distance 
to the centers of the edge neighbors. This compli-

Figure 1. A portion of two resolutions (100 and 10 precision) of 
the DGGS implicitly generated by multiple precisions of decimal 
geographic coordinate system vector representations. Note that 
this is an incongruent, aligned hierarchy.
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cates the use of these grids for such applications as 
discrete simulations.

Attempts have been made to create DGGs based 
on the geographic coordinate system but adjusted 
to address some of these difficulties. For example, 
Kurihara (1965) decreased the number of cells with 
increasing latitude so as to achieve more consistent 
cell region sizes. Bailey (1956), Paul (1973), and 
Brooks (1981) used similar adjustments of latitude 
and/or longitude cell edges to achieve cell regions 
with approximately equal areas. But these schemes 
achieved more regular cell region areas at the cost of 
more irregular cell region shapes and more complex 
cell adjacencies. Tobler and Chen (1986) projected 
the Earth onto a rectangle using a Lambert cylin-
drical equal area projection and then recursively 
subdivided that rectangle, but, as in the case of the 
other mentioned approaches, this did not address 
the basic problem that the sphere/ellipsoid and the 
plane are not topologically equivalent.

Geodesic Discrete Global 
Grid Systems

The inadequacies of DGGSs based on the geo-
graphic coordinate system have led a number 
of researchers to explore alternative approaches. 
Many of these approaches involve the use of 
regular polyhedra as topologically equivalent sur-
rogates for the Earth’s surface, and, in our opinion, 
these attempts have led to the most promising 
known options for DGGSs. A number of research-
ers have been inspired directly or indirectly by 
R. Buckminster Fuller’s work in discretizing the 
sphere, which led to his development of the geo-
desic dome (Fuller 1975). We will thus refer to this 
class of DGGSs as Geodesic Discrete Global Grid 
Systems.

Geodesic DGGSs have been proposed for a number 
of specific applications. Inherently regular in design, 
these systems have most commonly been used to 

store raster data sets, but 
they may also be used as 
a substitute for traditional 
coordinate-based vector 
data structures (Dutton 
1999), as data containers, 
or as the basis for graphs 
(as described in the previous 
section). Geodesic DGGSs 
have been used to develop 
statistically sound survey 
sampling designs on the 
Earth’s surface (Olsen et al. 
1998), for optimum path 
determination (Stefanakis 

and Kavouras 1995), for line simplification (Dutton 
1999), for indexing geospatial databases (Otoo and 
Zhu 1993; Dutton 1999; Alborzi and Samet 2000), 
and for the generation of spherical Voronoi diagrams 
(Chen et al. 2003). They have also been proposed 
as the basis for dynamic simulations such as those 
used in global climate modeling (Williamson 1968; 
Sadournay et al. 1968; Heikes and Randall 1995a, 
1995b; Thuburn 1997).

It is highly unlikely that any single Geodesic DGGS 
will ever prove optimal for all applications. Many 
of the proposed systems include design innovations 
in particular areas, though their construction may 
have involved other, less desirable design choices. 
Therefore, rather than surveying individual Geodesic 
DGGSs as monolithic, closed systems, we will take 
the approach here of viewing the construction of a 
Geodesic DGGS as a series of design choices which 
are, for the most part, independent. The following 
five design choices fully specify a Geodesic DGGS: 
1. A base regular polyhedron;
2. A fixed orientation of the base regular 

polyhedron relative to the Earth;
3. A hierarchical spatial partitioning method 

defined symmetrically on a face (or set of 
faces) of the base regular polyhedron;

4. A method for transforming that planar 
partition to the corresponding spherical/
ellipsoidal surface; and

5. A method for assigning points to grid cells.
We will now look at each of these design choices in 

turn, discussing the decisions made in the develop-
ment of a number of Geodesic DGGSs.

Base Regular Polyhedron
As White et al. (1992) and many others have 
observed, the spherical versions of the five platonic 
solids (Figure 2) represent the only ways in which 
the sphere can be partitioned into cells, each con-
sisting of the same regular spherical polygon, with 

Figure 2. Planar and spherical versions of the five platonic solids: the tetrahedron, 
hexahedron (cube), octahedron, dodecahedron, and icosahedron. 
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the same number of polygons 
meeting at each vertex. The 
platonic solids have thus been 
commonly used to construct 
Geodesic DGGSs, although other 
regular polyhedra have some-
times been employed. Among 
these the truncated icosahedron 
has proved to be popular (White 
et al. 1992). It should be noted, 
however, that an equivalently 
partitioned DGGS could be 
constructed using the icosahe-
dron itself. The other regular 
polyhedra remain unexplored 
for DGGS construction, so we 
limit our discussion here to the 
platonic solids.

In general, platonic solids with 
smaller faces reduce the distortion 
introduced when transforming 
between a face of the polyhedron 
and the corresponding spherical 
surface (White et al. 1998). The 
tetrahedron and cube have the larg-
est face size and are thus relatively 
poor base approximations for the 
sphere. But because the faces of the 
cube can be easily subdivided into 
square quadtrees, it was chosen as 
the base platonic solid by Alborzi and 
Samet (2000). The icosahedron has 
the smallest face size and, therefore, 
any DGGSs defined on it tend to 
display relatively small distortions. 
The icosahedron is thus the most 
common choice for a base platonic 
solid. Geodesic DGGSs based on 
the icosahedron include those of 
Williamson (1968), Sadournay 
et al. (1968), Baumgardner and 
Frederickson (1985), Sahr and White 
(1998), White et al. (1998), Fekete 
and Treinish (1990), Thuburn (1997), 
White (2000), Song et al. (2002), and 
(with an adjustment as discussed 
in the next section) Heikes and 
Randall (1995a, 1995b).

Dutton chose the octahedron as 
the base polyhedron for the Global 
Elevation Model (1984) and for the 
Quaternary Triangular Mesh (QTM) 
system (1999), while Goodchild and 
Yang (1992) based a similar system on it, and White 
(2000) used it as an alternative base solid. The octa-

hedron has the advantage that it can be oriented 
with vertices at the north and south poles, and at the 
intersection of the prime meridian and the equator, 

Figure 3c. Spherical icosahedron (in Mollweide projection) oriented for symmetry 
about equator by placing poles at edge midpoints. Note the symmetry about the 
equator and the single vertex falling on land.

Figure 3a. Spherical icosahedron (in Mollweide projection) oriented with vertices 
at poles and an edge aligned with the prime meridian. Note the lack of symmetry 
about the equator.

Figure 3b. Spherical icosahedron (in Mollweide projection) oriented using Fuller’s 
Dymaxion orientation. Note that all vertices fall in the ocean.
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aligning its eight faces with the spherical octants 
formed by the equator and prime meridian. Given a 
point in geographic coordinates, it is then trivial to 
determine on which octahedron face the point lies, 
but, because the octahedron has larger faces than 
the icosahedron, projections defined on the faces 
of the octahedron tend to have higher distortion 
(White et al. 1998).

Wickman et al. (1974) observe that if a point is placed 
in the center of each of the faces of a dodecahedron 
and then raised perpendicularly out to the surface 
of a circumscribed sphere (“stellated”), each of the 
12 pentagonal faces becomes 5 isosceles triangles. 
The stellated dodecahedron thus has 60 triangular 
faces compared to the 20 faces of the icosahedron, 
and an equal area projection can be defined on the 
smaller faces of the stellated dodecahedron with 
lower distortion than on the icosahedron (e.g., Snyder 
1992). However, the triangular faces are no longer 
equilateral and therefore such a projection displays 
inconsistencies along the edges between faces. 

Polyhedron Orientation
Once a base polyhedron is chosen, a fixed orienta-
tion relative to the actual surface of the Earth must 
be specified. Alborzi and Samet (2000) oriented 
the cube by placing face centers at the north and 
south poles. White et al. (1992) oriented the trun-
cated icosahedron such that a hexagonal face cov-
ered the continental United States. Dutton (1984, 
1999), and Goodchild and Yang (1992) oriented 
the octahedron so that its faces align with the 
octants formed by the equator and prime merid-
ian. Wickman et al. (1974) oriented the dodecahe-
dron by placing the center of a face at the north 
pole and a vertex of that face on the prime merid-
ian, thus aligning with the prime meridian an 
edge of one of the triangles created by stellating 
the dodecahedron.

In the case of the icosahedron, the most common 
orientation (Figure 3a) is to place a vertex at each of 
the poles and then align one of the edges emanating 
from the vertex at the north pole with the prime 
meridian. This orientation is used by Williamson 
(1968), Sadournay et al. (1968), Fekete and Treinish 
(1990), and Thuburn (1997).

Heikes and Randall’s (1995a,b) icosahedron-based 
system was developed specifically for performing 
global climate change simulations. They note that in 
the common vertices-at-poles icosahedron placement 
(Figure 3a) the icosahedron is not symmetrical about 
the equator. When a simulation on a DGGS with 
this orientation is initialized to a state symmetrical 
about the equator, and then allowed to run, it evolves 
into a state that is asymmetrical about the equator, 

presumably due to the asymmetry in the underly-
ing icosahedron. To counter this effect they rotate 
the southern hemisphere of the icosahedron by 36 

degrees, and the resulting “twisted icosahedron” is 
symmetrical about the equator.

Fuller (1975) chose an icosahedron orientation 
(Figure 3b) for his Dymaxion icosahedral map 
projection that places all 12 of the icosahedron 
vertices in the ocean so that the icosahedron can 
be unfolded onto the plane without ruptures in 
any landmass. This is the only known icosahedron 
orientation with this property. Note that one com-
pact way of specifying the orientation of a platonic 
solid is by giving the geographic coordinates of 
one of the polyhedron’s vertices and the azimuth 
from that vertex to an adjacent vertex. For platonic 
solids this information will completely specify the 
position of all the other vertices. Using this form 
of specification, Fuller’s Dymaxion orientation can 
be constructed by placing one vertex at 5.24540W 
longitude, 2.30090N latitude and an adjacent one at 
an azimuth of 7.466580 from the first vertex.

We note that if the icosahedron is oriented so that 
the north and south poles lie on the midpoints of 
edges rather than at vertices, then it is symmetrical 
about the equator without further adjustment. While 
maintaining this property we can minimize the number 
of icosahedron vertices that fall on land, following 
Fuller’s lead. The minimal case appears to be an 
orientation (Figure 3c) that has only one vertex on 
land, in China’s Sichuan Province. This orientation 
can be constructed by placing one vertex at 11.250E 
longitude, 58.282520N latitude and an adjacent one 
at an azimuth of 0.00 from the first vertex.

Spatial Partitioning Method
Once we have a base regular polyhedron, we must 
next choose a method of subdividing this polyhe-
dron to create multiple resolution discrete grids. 
In the case of platonic solids one can define the 
subdivision methodology on a single face of the 
polyhedron or on a set of faces that constitute a 
unit that tiles the polyhedron, provided that the 
subdivision is symmetrical with respect to the face 
or tiling unit. Four partition topologies have been 
used: squares, triangles, diamonds, and hexagons. 

Alborzi and Samet (2000) performed an aperture 
4 subdivision to create a traditional square quadtree 
on each of the square faces of the cube. We have 
observed that the preferred choices for base platonic 
solid[s] are the icosahedron, the octahedron, and 
the stellated dodecahedron, each of which has a 
triangular face. The obvious choice for a triangle is 
to subdivide it into smaller triangles. Like the square, 
an equilateral triangle can be divided into n2 (for 
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any positive integer n) 
smaller equilateral tri-
angles by breaking each 
edge into n pieces and 
connecting the break 
points with lines par-
allel to the triangle 
edges (Figure 4). In 
geodesic dome litera-
ture this is referred to 
as a Class I or alternate 
subdivision (Kenner 
1976). Recursively sub-
dividing the triangles 
thus obtained gener-
ates a congruent and 
aligned DGGS with 
aperture n2. 

Small apertures have 
the advantage of generat-
ing more grid resolutions, 
thus giving applications 
more resolutions from 
which to choose. For 
congruent triangle 
subdivision the smallest 
possible aperture is 4 (n 

= 2). This aperture also 
conveniently parallels the 
fourfold recursive subdivi-
sion of the square grid quadtree; many of the algorithms 
developed on the square grid quadtree are transferable 
to the triangle grid quadtree with only minor modifica-
tions (Fekete and Treinish 1990; Dutton 1999). This 
subdivision approach (Figure 4) was used by Wickman 
et al. (1974), Baumgardner and Frederickson (1985), 
Goodchild and Yang (1992), Dutton (1999), Fekete 
and Treinish (1990), White et al. (1998), and Song et 
al. (2002). Congruent and unaligned Class I aperture 
9 (n = 3) triangle hierarchies have been proposed by 
White et al. (1998) and Song et al. (2002). 

An aperture 3 triangle subdivision is also possible. 
In this approach, referred to as the Class II or tria-
con subdivision (Kenner 1976), each triangle edge 
is broken into n = 2m pieces (where m is a positive 
integer). Lines are then drawn perpendicular to 
the triangle edges to form the new triangle grid 
(Figure 5). The Class II breakdown is incongruent 
and unaligned. No Geodesic DGGSs have been 
proposed based on this partition, though the verti-
ces of a Class II breakdown have been used as cell 
points by Dutton (1984) and by Williamson (1968) 
to construct a dual hexagon grid.

Triangles have a number of disadvantages as the 
basis for a DGGS. First, they are not squares; they are 

thus a foreign alternative for many potential users, 
and they do not display as efficiently as squares on 
common output display devices that are based on 
square lattices of pixels. Like square grids, they do 
not exhibit uniform adjacency, each cell having three 
edge and nine vertex neighbors. Unlike squares, the 
cells of triangle-based discrete grids do not have 
uniform orientation; as can be seen in Figures 4 and 
5, some triangles point up while others point down, 
and many algorithms defined on triangle grids must 
take into account triangle orientation.

While the square is the most popular cell region 
shape for planar discrete grids, its geometry makes 
it unusable on the triangle-faced regular polyhedra 
that we have seen are preferred for constructing 
Geodesic DGGSs. However, White (2000) notes that 
pairs of adjacent triangle faces may be combined to 
form a diamond or rhombus, and this diamond may 
be recursively sub-divided in a fashion analogous to 
the square quadtree subdivision (Figure 6). When 
one begins with either the octahedron or icosahe-
dron, this yields a congruent, unaligned Geodesic 
DGGS with aperture 4. Because diamond-based grids 
have a topology identical to square-based quadtree 
grids they can take direct advantage of the wealth 

Figure 4. Three levels of a Class I aperture 4 triangle hierarchy defined on a single triangle 
face.

Figure 5. Three levels of a Class II aperture 3 triangle hierarchy defined on a single triangle 
face.
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of quadtree-based algorithms. But like square grids, 
they do not display uniform adjacency. 

The hexagon has received a great deal of recent 
interest as a basis for planar discrete grids. Among 
the three regular polygons that tile the plane (tri-
angles, squares, and hexagons), hexagons are the most 
compact, they quantize the plane with the smallest 
average error (Conway and Sloane 1988), and they 
provide the greatest angular resolution (Golay 1969). 
Unlike square and triangle grids, hexagon grids do 
have uniform adjacency; each hexagon cell has six 
neighbors, all of which share an edge with it, and 
all of which have centers exactly the same distance 
away from its center. Each hexagon cell has no 
neighbors with which it shares only a vertex. This 
fact alone has made hexagons increasingly popular 
as bases for discrete spatial simulations. Frisch et al. 
(1986) argue that the six discrete velocity vectors of 
the hexagonal lattice are necessary and sufficient to 
simulate continuous, isotropic, fluid flow. A recent 
textbook (Rothman and Zaleski 1997) on fluid flow 
cellular automata is based entirely on hexagonal 
meshes, with discussions of square meshes included 

“only for pedagogical calculations.” Triangle grids, 
which are even more insufficient for this purpose, 
are not mentioned.

Studies by GIS researchers (Kimerling et al. 1999) 
and mathematicians (Saff and Kuijlaars 1997) indi-
cate that many of the advantages of planar hexagon 
grids may carry over into hexagon-based Geodesic 
DGGSs. A hexagon-based grid has been adopted by 
the U.S. EPA for global sampling problems (White et 
al. 1992). And hexagon-based Geodesic DGGSs have 
been proposed at least four times in the atmospheric 
modeling literature (Williamson 1968; Sadournay et 
al. 1968; Heikes and Randall 1995a, 1995b; Thuburn 
1997)—to our knowledge more often than any other 
Geodesic DGGS topology. It should be noted that 
it is impossible to completely tile a sphere with 
hexagons. When a base polyhedron is tiled with 
hexagon-subdivided triangle faces, a non-hexagon 

polygon will be formed 
at each of the polyhedron’s 
vertices. The number of 
such polygons, corre-
sponding to the number 
of polyhedron vertices, will 
remain constant regard-
less of grid resolution. In 
the case of an octahedron 
these polygons will be 
eight squares, in the case 
of the icosahedron they 
will be 12 pentagons.

While single-resolution, 
hexagon-based discrete 

grids are becoming increasingly popular, the use of 
multi-resolution, hexagon-based discrete grid sys-
tems has been hampered by the fact that congruent 
discrete grid systems cannot be built using hexagons; 
it is impossible to exactly decompose a hexagon 
into smaller hexagons (or, conversely, to aggregate 
small hexagons to form a larger one). Hexagons can 
be aggregated in groups of seven to form coarser-
resolution objects which are almost hexagons (Figure 
7), and these can again be aggregated into pseudo-
hexagons of even coarser resolution, and so on. 
Known as Generalized Balanced Ternary (Gibson 
and Lucas 1982), this structure has become the most 
widely used planar multi-resolution, hexagon-based 
grid system. However, it has several problems as a 
general-purpose basis for spatial data structures. The 
first is that the cells are hexagons only at the finest 
resolution. Secondly, the finest resolution grid must 
be determined prior to creating the system, and once 
determined it is impossible to extend the system 
to finer resolution grids. Thirdly, the orientation 
of the tessellation rotates by about 19 degrees at 
each level of resolution. Finally, it does not appear 
to be possible to symmetrically tile triangular faces 
with such a hierarchy, which makes it unusable as a 
subdivision choice for a Geodesic DGGS.

There are, however, an infinite series of apertures 
that produce regular hierarchies of incongruent, 
aligned hexagon discrete grids. It should be noted 
that, as these hierarchies are incongruent, they do not 
naturally induce hierarchical data structures which 
are trees, and thus common tree-based algorithms 
cannot be directly adapted for use on these hexagon 
hierarchies. But it should also be noted that, as indi-
cated previously, traditional multi-resolution vector 
data structures such as the geographic coordinate 
system are also incongruent and aligned. This may 
indicate that hexagon grids are more appropriate 
for vector applications than congruent, unaligned 
triangle and diamond hierarchies.

Figure 6. Three levels of an aperture 4 diamond hierarchy. The coarsest diamond resolution 
consists of two triangle faces as indicated.
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Aperture 4 is the most common choice 
for hexagon-based DGGSs. Figures 8 
and 9 illustrate aperture 4 hexagon 
subdivisions corresponding to the 
Class I and Class II symmetry axes, 
respectively. The DGGSs of Heikes and 
Randall (1995a) and Thuburn (1997) 
are Class I aperture 4 hexagon grids, 
while Williamson (1968) uses a Class 
II aperture 4 hexagon grid. 

As noted above, small apertures 
have the advantage of allowing more 
potential grid choices. Aperture 3 is 
the smallest aperture that yields an 
aligned hexagon hierarchy (Figure 10). 
In aperture 3 hierarchies the orienta-
tion of hexagon grids alternates in 
successive resolutions between Class 
I and Class II. Aperture 3 hexagon 
Geodesic DGGS have been proposed 
by a number of researchers, including 
Sahr and White (1998).

White et al. (1992) proposed hexagon 
grids of aperture 3, 4, or 7, and White 
et al. (1998) discussed hexagon grids 
of aperture 4 (Class I) and 9 (Class II). 
Sadournay et al. (1968) used a Class 
I hexagon grid of arbitrary aperture, 
which is incongruent and unaligned. 
We refer to this approach as an n-frequency hierar-
chy. Note that it is possible to construct incongruent, 
unaligned n-frequency hierarchies using triangles 
and diamonds as well, though, to our knowledge, 
this has not been proposed. 

Figure 11 illustrates the most common partitioning 
methods defined on an icosahedron and projected 
to the sphere using the inverse Icosahedral Snyder 
Equal Area (ISEA) Projection (Snyder 1992).

Transformation
Once a partitioning method has been specified on 
a face or faces of the base polyhedron, a transfor-
mation must be chosen for creating a similar topol-
ogy on the corresponding spherical or ellipsoidal 
surface. There are two basic types of approaches 
(Kimerling et al. 1999). Direct spherical subdivision 
approaches involve creating a partition directly 
on the spherical/ellipsoidal surface that maps to 
the corresponding partition on the planar face(s). 
Map projection approaches use an inverse map 
projection to transform a partition defined on the 
planar face(s) to the sphere/ellipsoid. White et al. 
(1998) provide a comparison of the area and shape 
distortion that occurs under a number of different 
transformation choices.

Perhaps the simplest approach is to perform the 
desired partition directly on the spherical surface, 
using great circle arcs corresponding to the cell 
edges on the planar face(s). The aperture 4 Class 
I triangle subdivision can be performed on the 
sphere by connecting the midpoints of the edges 
of the base spherical triangle and then, recursively 
performing the same operation on each of the 
resulting triangles. This technique was used by 
Baumgardner and Frederickson (1985) and Fekete 
and Treinish (1990). Dutton (1984) performed a 
Class II triangle subdivision on the surface of the 
octahedron and then adjusted the vertices to reflect 
the point elevations.

While this straightforward approach works for 
creating an aperture 4 triangle subdivision, it is 
important to note that, in general, sets of great 
circle arcs corresponding to the edges of planar 
triangle partitions do not intersect in points on the 
surface of the sphere, as they do on the plane. More 
complicated methods are needed to form spherical 
partitions analogous to some of the other planar 
partitions we have discussed.

Williamson (1968) used great circle arcs corre-
sponding to two of the three sets of Class II triangle 
subdivision grid lines to determine a set of triangle 
vertices and then formed the last set of grid lines 
by connecting the existing vertices with great circle 

Figure 7. Seven-fold hexagon aggregation into coarser pseudo-hexagons.
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arcs. These triangle vertices form the center points 
of the dual Class II aperture 4 hexagon grid (the cell 
edges of which are not explicitly defined).

Sadournay et al. (1968) created an aperture m 
(where m = n2 for some positive integer n) Class I 
triangle subdivision on the sphere by breaking each 
edge of the base spherical triangle into n segments 
and connecting the breakpoints of two of the edges 
with great circle arcs. These arcs are then subdivided 
evenly into segments corresponding to the planar 
subdivision. The resulting breakpoints form the 
centers of the dual Class I hexagon grid. Thuburn 
(1997) performed a Class I aperture 4 triangle sub-
division and then calculated the spherical Voronoi 
cells of the triangle vertices to define the dual Class 
I aperture 4 hexagon grid.

A number of researchers have attempted to 
adjust the grids created using great circle arcs to 
meet application-specific criteria. For instance, for 
many applications it would be desirable for the cell 
regions of each discrete grid resolution to be equal 
in area; the grids discussed above do not have this 
property. Wickman et al. (1974) began by connecting 

the midpoints of the base spherical triangle to form 
the first resolution of a Class I aperture 4 triangle 
grid. They then broke each of the new edges at the 
midpoint into two great circle arcs and adjusted the 
position of the breakpoint to achieve equal area quasi-
triangles. This procedure is then applied recursively 
to yield an equal-area DGGS. Rather than using 
great circle arcs for triangle subdivision, Song et al. 
(2002) proposed using small circle arcs optimized 
to achieve equal cell region areas. 

Heikes and Randall (1995a) constructed a Class 
I aperture 4 hexagon grid by taking the spherical 
Voronoi of the vertices of a Class I aperture 4 triangle 
subdivision on their twisted icosahedron. They then 
adjusted the grid using an optimization scheme to 
improve its finite difference properties for use in 
global climate modeling. 

White et al. (1998) evaluated a number of methods 
for constructing triangle subdivisions on spherical 
triangles and observed that using appropriate inverse 
map projections to transform a subdivided planar 
triangle onto a spherical triangle may be more effi-
cient than using recursively defined procedures. Any 

Figure 8. Three levels of a Class I aperture 4 hexagon hierarchy defined on a single triangle face.

Figure 9. Three levels of a Class II aperture 4 hexagon hierarchy defined on a single triangle face.
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projection may be used, provided that it maps the 
straight-line planar face edges to the great-circle arc 
edges of the corresponding spherical face. 

There are at least four projections with this prop-
erty. The common gnomonic projection has this 
property for all polyhedra but exhibits relatively 
large area and shape distortion. Snyder (1992) 
developed equal area projections defined on all of 
the platonic solids, but with greater shape distor-
tion and more irregular spherical cell edges than 
the equal-area method of Song et al. (2002). On 
the icosahedron, the implementation of Fuller’s 
Dymaxion map projection (Fuller 1975) given in 
Gray (1995) also has the required property but with 
less area and shape distortion than the gnomonic 
projection and less shape distortion than Snyder’s 
icosahedral projection, though the Fuller/Gray 
projection is not equal area. Goodchild and Yang 
(1992) used a Plate Carree projection to project the 
faces of the octahedron to the sphere, and Dutton 
(1999) developed the Zenithial OrthoTriangular 
(ZOT) projection for the same purpose.

White et al. (1998) constructed Class I aperture 4 
and 9 triangle grids on planar icosahedral faces. They 
also constructed a Class I aperture 4 hexagon grid by 
taking the dual of the aperture 4 triangle grid and a 
Class II aperture 9 hexagon grid by aggregating the 
cells of the aperture 9 triangle grid. In all cases they 
transformed the resulting cells to the sphere, using 
direct spherical subdivision or the inverse gnomonic, 
Fuller/Gray, or Icosahedral Snyder Equal Area (ISEA) 
map projections.

White et al. (1992) and Alborzi and Samet (2000) 
used the inverse Lambert Azimuthal Equal Area 
projection to project the faces of the truncated 
icosahedron and cube to the sphere. White et al. 
(1992) noted, however, that this projection does 
not map the straight-line planar face edges to the 

corresponding great-circle arc edges and, therefore, 
does not create a true Geodesic DGGS.

Assigning Points to Grid Cells
When specified, the points associated with grid 
cells are usually chosen to be the center points 
of the cell regions. If an inverse map projection 
approach is used to transform the cells from the 
planar faces to the sphere, then it is often conve-
nient to choose the center points of the planar cell 
regions (which do not, in general, correspond to 
the cell region centroids on the Earth’s surface) 
so that the points form a regular lattice, at least 
on patches of the plane. If the cells are formed 
by direct spherical subdivision, the choice of 
points may be complicated by the counter-intui-
tive behavior of great-circle arcs described above. 
Gregory (1999) discussed several alternatives 
for point selection in the case of direct spherical 
subdivision. Dutton’s (1984) GEM DGGS used 
points that are the vertices of a Class II triangle 
subdivision. As described in the previous sub-sec-
tion, the hexagonal DGGSs of Williamson (1968), 
Sadournay et al. (1968), Heikes and Randall 
(1995a), and Thuburn (1997) all specify cell center 
points as the vertices of a dual spherical triangle 
grid. The hexagonal grid cell boundaries, when 
specified, are created by calculating the associated 
spherical Voronoi cells.

Summary and Conclusions
Table 1 summarizes the design choices that define 
each of the Geodesic DGGSs we have discussed. 
Note that the number of options employed to con-
struct a Geodesic DGGS is actually rather small, 
and certain choices clearly predominate in the 

Figure 10. Three levels of an aperture 3 hexagon hierarchy defined on a single triangle face. Note the alternation of hexagon 
orientation (Class II, Class I, Class II, etc.) with successive resolutions.
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existing designs. In particular, the 
icosahedron is clearly the popu-
lar choice for a base polyhedron; 
it is used in 10 of the 16 listed 
grid designs. Methods based on 
direct spherical subdivision are 
employed by about half of the 
grid designs. Also popular are 
equal area transformations, which 
are used by six of the grids. The 
grid designs are almost evenly 
split between triangle and hexa-
gon partitions, but the diamond 
partition is a recent design that 
may yet prove popular due to its 
direct relationship to the square 
quadtree.

We have shown that a Geodesic 
DGGS can be specified through a 
very small number of design choices, 
each of which is relatively indepen-
dent of the others. In effect, future 
Geodesic DGGS designers may pick-
and-choose from the menu of design 
choices to construct a DGGS to meet 
their specific application needs. As 
an example, let us take each of the 
design decisions in turn and attempt 
to construct a good general-purpose 
Geodesic DGGS. 

First, due to its lower distortion 
characteristics we choose the icosa-
hedron for our base platonic solid. 
We orient it with the north and 
south poles lying on edge midpoints, 
such that the resulting DGGS will 
be symmetrical about the equator. 
Next we select a suitable partition. 
The hexagon partition has numerous 
advantages, and we choose aperture 3, 
the smallest possible aligned hexagon 
aperture. Because equal-area cells are 
advantageous for many applications, 
we choose the inverse ISEA projec-
tion to transform the hexagon grid 
to the sphere, and we specify that 
each DGGS point lies at the center 
of the corresponding planar cell 
region. We call the resulting grid 
the ISEA Aperture 3 Hexagonal 
(ISEA3H) DGGS. Figure 12 shows 
the ETOPO5 global elevation data 
set (Hastings and Dunbar 1998) 
binned into four resolutions of the 
ISEA3H DGGS. The elevation value 
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Table 1. Summary of Geodesic DGGS design choices.
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for each ISEA3H cell was calculated by taking the 
arithmetic mean of all ETOPO5 data points that fall 
into that cell region. More information on this and 
other ISEA-based Geodesic DGGSs may be found 
at http://www.sou.edu/cs/sahr/dgg. 

Directions for Further Research
While such studies as White et al. (1998), Kimerling 
et al. (1999), Clarke (2002), and the current work 
have made significant steps in defining and evalu-
ating existing DGGS alternatives there remain a 
number of areas that we believe require further 
research. First, it should be noted that additional 
research may reveal new design choice alterna-
tives that are superior to those already proposed. 

In particular, we feel that further research into 
transformations for Geodesic DGGS definition is 
required. For example, a DGGS projection that 
is equal area, but has less shape distortion than 
the ISEA projection, would be very desirable. 
Additionally, the grids discussed here are defined 
with reference to the sphere; many applications 
will require more accurate definitions referenced 
to ellipsoids. And as specific grids are chosen for 
practical use efficient transformations must be 
defined that will allow data to be moved between 
grids while preserving data quality.

Existing studies have treated DGGSs from the per-
spective of the broader GIS community, but effective 
evaluation of design alternatives can only take place 
in the context of specific applications and end-user 

Figure 11. Three resolutions of icosahedron-based Geodesic DGGS’s using four partition methods: (a) Class I aperture 4 
triangle, (b) aperture 4 diamond, (c) aperture 3 hexagon, and (d) Class I aperture 4 hexagon.
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communities. In particular, the computer data struc-
tures community has yet to play a significant role in 
DGGS evaluation. Input from this community, which 
should play a key role in making appropriate design 
choices in the future, has been primarily limited to 
the adaptation of quadtree algorithms to aperture 
4 triangle grids (in particular the QTM DGGS of 
Dutton (1999)). Hexagon-based Geodesic DGGSs, 
which have clear advantages for many end-users, 
remain largely ignored. A significant effort must be 
made by the data structures community to develop 
and evaluate algorithms for the regular, but non-tree, 
hierarchies they form.
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