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Abstract

We consider kernel methods on general geodesic metric

spaces and provide both negative and positive results. First

we show that the common Gaussian kernel can only be gen-

eralized to a positive definite kernel on a geodesic metric

space if the space is flat. As a result, for data on a Rieman-

nian manifold, the geodesic Gaussian kernel is only posi-

tive definite if the Riemannian manifold is Euclidean. This

implies that any attempt to design geodesic Gaussian ker-

nels on curved Riemannian manifolds is futile. However,

we show that for spaces with conditionally negative defi-

nite distances the geodesic Laplacian kernel can be gen-

eralized while retaining positive definiteness. This implies

that geodesic Laplacian kernels can be generalized to some

curved spaces, including spheres and hyperbolic spaces.

Our theoretical results are verified empirically.

1. Introduction

Standard statistics and machine learning tools require in-

put data residing in a Euclidean space. However, many

types of data are more faithfully represented in general non-

linear metric spaces (e.g. Riemannian manifolds). This is,

for instance, the case when analyzing shapes [10, 16, 26, 33,

41, 56, 58, 66], DTI images [25, 46, 49, 64], motion mod-

els [14,61], symmetric positive definite matrices [12,50,62],

illumination-invariance [13], human poses [32, 47], tree

structured data [20,22,23], metrics [28,31], probability dis-

tributions [2]; for general manifold learning metrics [60] or

in general for data invariant to a group action [42]. The

underlying metric space captures domain specific knowl-

edge, e.g. non-linear constraints, which is available a priori.

The intrinsic geodesic metric encodes this knowledge, often

leading to improved statistical models.

A seemingly straightforward approach to statistics in

metric spaces is to use kernel methods [54], designing ker-

nels k(x, y) which only rely on geodesic distances d(x, y)
between observations [15]:

k(x, y) = exp (−λ(d(x, y))q) , λ, q > 0. (1)

For q = 2 this gives a geodesic generalization of the Gaus-

sian kernel, and q = 1 gives the geodesic Laplacian kernel.

Extends to general

Kernel Metric spaces Riemannian manifolds

Gaussian (q = 2) No (only if flat) No (only if Euclidean)

Laplacian (q = 1) Yes, iff metric is CND Yes, iff metric is CND

Geodesic exp. (q > 2) Not known No

Table 1. Overview of results: For a geodesic metric, when is the

geodesic exponential kernel (1) positive definite for all λ > 0?

While this idea has an appealing similarity to familiar Eu-

clidean kernel methods, we show that it is highly limited if

the metric space is curved.

Positive definiteness of a kernel k is critical for the use

of kernel methods such as support vector machines or ker-

nel PCA, as it ensures the existence of a reproducing kernel

Hilbert space where these methods act [54]. In this paper,

we analyze exponential kernels on geodesic metric spaces

and show the following results, summarized in Table 1.

• The geodesic Gaussian kernel is positive definite (PD)

for all λ > 0 only if the underlying metric space is

flat (Theorem 1). In particular, when the metric space

is a Riemannian manifold, the geodesic Gaussian ker-

nel is PD for all λ > 0 if and only if the manifold

is Euclidean (Theorem 2). This negative result implies

that Gaussian kernels cannot be generalized to any non-

trivial Riemannian manifolds of interest.

• The geodesic Laplacian kernel is PD if and only if the

metric is conditionally negative definite (Theorem 4).

This condition is not generally true for metric spaces,

but it holds for a number of spaces of interest. In par-

ticular, the geodesic Laplacian kernel is PD on spheres,

hyperbolic spaces, and Euclidean spaces (Table 2).

• For any Riemannian manifold (M, g), the kernel (1)

will never be PD for all λ > 0 if q > 2 (Theorem 3).

Generalization of geodesic kernels to metric spaces is

motivated by the general lack of powerful machine learning

techniques in these spaces. In that regard, our first results

are disappointing as they imply that generalizing Gaussian

kernels to metric spaces is not a viable direction forward. In-

tuitively, this is not surprising as kernel methods embed the

data in a linear space, which cannot be expected to capture

the curvature of a general metric space. Our second result is

therefore a positive surprise: it allows the Laplacian kernel

to be applied in some metric spaces, although this has strong

implications for their geometric properties. This gives hope
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Figure 1. Path length in a metric space is defined as the supremum

of lengths of finite approximations of the path.

that other kernels can be generalized, though our third re-

sult indicates that the geodesic exponential kernels (1) have

limited applicability on Riemannian manifolds.

The paper is organized as follows. We state our main

results and discuss their consequences in Sec. 2, postponing

proofs until Sec. 3, which includes a formal discussion of the

preliminaries. This section can be skipped in a first reading

of the paper. Related work is discussed in detail in Sec. 4,

where we also review recent approaches which do not con-

flict with our results. Sec. 5 contains empirical experiments

confirming and extending our results on manifolds that ad-

mit PD geodesic exponential kernels.

2. Main results and their consequences

Before formally proving our main theorems, we state the

results and provide hints as to why they hold. We start with

a brief review of metric geometry and the notion of a flat

space, both of which are fundamental to the results.

In a general metric space (X, d) with distance metric d,

the length l(γ) of a path γ : [0, L] → X from x to y is de-

fined as the smallest upper bound of any finite approxima-

tion of the path (see Fig. 1)

l(γ) = sup
0=t0<t1<...<tn=1,n∈N

n
∑

i=1

d(ti−1, ti).

A path γ : [0, L] → X is called a geodesic [9] from x to

y if γ(0) = x, γ(L) = y and d (γ(t), γ(t′)) = |t − t′|
for all t, t′ ∈ [0, L]. In particular, l(γ) = d(x, y) = L for

a geodesic γ. In a Euclidean space, geodesics are straight

lines. A geodesic from x to y will always be the shortest

possible path from x to y, but geodesics with respect to a

given metric do not always exist, even if shortest paths do.

An example is given later in Fig. 3.

A metric space (X, d) is called a geodesic space if every

pair x, y ∈ X can be connected by a geodesic. Informally, a

geodesic metric space is merely a space in which distances

can be computed as lengths of geodesics, and data points

can be interpolated via geodesics.

Riemannian manifolds are a commonly used class of met-

ric spaces. Here distances are defined locally through a

smoothly changing inner product in the tangent space. In-

tuitively, a Riemannian manifold can be thought of as a

smooth surface (e.g. a sphere) with geodesics corresponding

to shortest paths on the surface. A geodesic distance metric

corresponding to the Riemannian structure is defined explic-

itly as the length of the geodesic joining two points. When-

ever a Riemannian manifold is complete, it is a geodesic

space. This is the case for most manifolds of interest.

Figure 2. If any geodesic triangle in (X, d) can be isometrically

embedded into some Euclidean space, then X is flat. Note in par-

ticular that when a geodesic triangle is isometrically embedded in

a Euclidean space, it is embedded onto a Euclidean triangle — oth-

erwise the geodesic edges would not be isometrically embedded.

Many efficient machine learning algorithms are available

in Euclidean spaces; their generalization to metric spaces is

an open problem. Kernel methods form an immensely pop-

ular class of algorithms including support vector machines

and kernel PCA [54]. These algorithms rely on the specifi-

cation of a kernel k(x, y), which embeds data points x, y in

a linear Hilbert space and returns their inner product. Kernel

methods are very flexible, as they only require the compu-

tation of inner products (through the kernel). However, the

kernel is only an inner product if it is PD, so kernel methods

are only well-defined for kernels which are PD [54].

Many popular choices of kernels for Euclidean data rely

only on the Euclidean distance between data points; for in-

stance the widely used Gaussian kernel (given by (1) with

q = 2). Kernels which only rely on distances form an obvi-

ous target for generalizing kernel methods to metric spaces,

where distance is often the only quantity available.

2.1. Main results

In Theorem 1 of this paper we prove that geodesic Gaus-

sian kernels on metric spaces are PD for all λ > 0 only if

the metric space is flat. Informally, a metric space is flat if

it (for all practical purposes) is Euclidean. More formally:

Definition 1. A geodesic metric space (X, d) is flat in the

sense of Alexandrov if any geodesic triangle in X can be

isometrically embedded in a Euclidean space.

Here, an embedding f : X → X ′ from a metric space

(X, d) to another metric space (X ′, d′) is isometric if

d′ (f(x), f(y)) = d(x, y) for all x, y ∈ X1. A geodesic

triangle abc in X consists of three points a, b and c joined

by geodesic paths γab, γbc and γac. The concept of flatness

essentially requires that all geodesic triangles are identical

to Euclidean triangles; see Fig. 2.

With this, we state our first main theorem:

Theorem 1. Let (X, d) be a geodesic metric space, and

assume that k(x, y) = exp(−λd2(x, y)) is a PD geodesic

Gaussian kernel on X for all λ > 0. Then (X, d) is flat in

the sense of Alexandrov.

1The metric space definition of isometric embedding [9], which is used

when distances are in focus, should not be confused with the definition of

isometric embedding from Riemannian geometry, preserving Riemannian

metrics which are not distances, but tangent space inner products.



This is a negative result, in the sense that most metric

spaces of interest are not flat. In fact, the motivation for

generalizing kernel methods is to cope with data residing in

non-flat metric spaces.

As a consequence of Theorem 1, we show that geodesic

Gaussian kernels on Riemannian manifolds are PD for

all λ > 0 only if the Riemannian manifold is Euclidean.

Theorem 2. Let M be a complete, smooth Riemannian

manifold with its associated geodesic distance metric d. As-

sume, moreover, that k(x, y) = exp(−λd2(x, y)) is a PD

geodesic Gaussian kernel for all λ > 0. Then the Rieman-

nian manifold M is isometric to a Euclidean space.

These two theorems have several consequences. The

first and main consequence is that defining geodesic Gaus-

sian kernels on Riemannian manifolds or other geodesic

metric spaces has limited applicability as most spaces of

interest are not flat. In particular, on Riemannian mani-

folds the kernels will generally only be PD if the original

data space is Euclidean. In this case, nothing is gained by

treating the data space as a Riemannian manifold, as it is

perfectly described by the well-known Euclidean geome-

try, where many problems can be solved in closed form. In

Sec. 4 we re-interpret recent work which does, indeed, take

place in Riemannian manifolds that turn out to be Euclidean.

Second, this result is not surprising: Curvature cannot

be captured by a flat space, and Schönberg’s classical the-

orem (see Sec. 3.1) indicates a strong connection between

PD Gaussian kernels and linearity of the employed distance

measure. This is made explicit by Theorems 1 and 2.

While this paper was in print, a result similar to Theo-

rem 2 appeared in [39]. However, the authors do not note

that as a consequence, Gaussian RBF kernels that use the

geodesic distance only apply to Riemannian manifolds that

are Euclidean spaces, where they coincide with the standard

Gaussian kernels [54]. In order to apply Gaussian kernels

to non-Euclidean spaces they are forced to replace the Rie-

mannian structure by a Euclidean chordal metric.

The obvious next question is the extent to which these

negative results depend on the choice q = 2 in (1), which

results in a Gaussian kernel. A recent result by Istas [35]

implies that for Riemannian manifolds, passing to a higher

power q > 2 will never lead to a PD kernel for all λ > 0:

Theorem 3. Let M be a Riemannian manifold with its as-

sociated geodesic distance metric d, and let q > 2. Then

there is some λ > 0 so that the kernel (1) is not PD.

The existence of a λ > 0 such that the kernel is not PD

may seem innocent; however, as a consequence, the kernel

bandwidth parameter cannot be learned.

In contrast, the choice q = 1 in (1), giving a geodesic

Laplacian kernel, leads to a more positive result: The

geodesic Laplacian kernel will be positive definite if and

only if the distance d is conditionally negative definite

(CND). CND metrics have linear embeddability properties

analogous to those of PD kernels; see Sec. 3.1 for formal

Geodesic metric

Chordal metric
Geodesic metric

Chordal metric

Figure 3. The chordal metric on S
2
⊂

R
3 is measured directly in R

3, while

the geodesic metric is measured along

S
2. Shortest paths with respect to the

two metrics coincide, but the chordal

metric is not a geodesic metric, and

the shortest path is not a geodesic for

the chordal metric, because the short-

est path between two points is longer

than their chordal distance.

definitions and properties. This provides a PD kernel frame-

work which, for several popular Riemannian data manifolds,

takes advantage of the geodesic distance.

Theorem 4. i) The geodesic distance d in a geodesic

metric space (X, d) is CND if and only if the cor-

responding geodesic Laplacian kernel is PD for all

λ > 0.

ii) In this case, the square root metric d√ (x, y) =
√

d(x, y) is also a distance metric, and (X, d√ ) can

be isometrically embedded as a metric space into a

Hilbert space H .

iii) The square root metric d√ is not a geodesic metric,

and d√ corresponds to the chordal metric in H , not

the intrinsic metric on the image of X in H .

In Theorem 4, for φ : X → H , the chordal metric

‖φ(x) − φ(y)‖H measures distances directly in H rather

than intrinsically in the image φ(X) ⊂ H , see also Fig. 3.

In Sec. 4 we discuss several popular data spaces for

which geodesic Laplacian kernels are PD (see Table 2); ex-

amples include spheres, hyperbolic spaces and more. Never-

theless, we see from part ii) of Theorem 4 that any geodesic

metric space whose geodesic Laplacian kernel is always PD

must necessarily have strong linear properties: Its square

root metric is isometrically embeddable in a Hilbert space.

This illustrates an intuitively simple point: A PD kernel

has no choice but to linearize the data space. Therefore, its

ability to capture the original data space geometry is deeply

connected to the linear properties of the original metric2.

3. Proofs of main results

In this section we prove the main results of the paper;

this section may be skipped in a first reading of the paper. In

the first two subsections we review and discuss classical ge-

ometric results on kernels, manifolds and curvature, which

we will use to prove the main results.

3.1. Kernels

A modern and comprehensive treatment of the classical

results on PD and CND kernels referred to here, can be

found in [5, Appendix C].

2Another curious connection between kernels and curvature is found

in [11], which shows that Gaussian and polynomial kernels on Rn and R2,

respectively, have flat feature space images φ(Rn) and φ(R2).



Definition 2. A positive definite (PD) kernel on a topologi-

cal space X is a continuous function k : X ×X → R such

that for any n ∈ N , any elements x1, . . . , xn ∈ X and any

numbers c1, . . . , cn ∈ R, we have

n
∑

i=1

n
∑

j=1

cicjk(xi, xj) ≥ 0.

Definition 3. A conditionally negative definite (CND) ker-

nel on a topological space X is a continuous function

ψ : X ×X → R which satisfies

i) ψ(x, x) = 0 for all x ∈ X

ii) ψ(x, y) = ψ(y, x) for all x, y ∈ X

iii) for any n ∈ N, any elements x1, . . . , xn ∈ X and any

real numbers c1, . . . , cn with
∑n
i=1 ci = 0, we have

n
∑

i=1

n
∑

j=1

cicjψ(xi, xj) ≤ 0.

Example 1. If d : H ×H → R is the metric induced by the

norm on a Hilbert space H , then the map d2 : H ×H → R

given by d2(x, y) = (d(x, y))2 is a CND kernel [5].

The following two theorems are key to understanding the

connection between distance metrics and their correspond-

ing exponential kernels.

Theorem 5 (Due to Schönberg [55], Theorem C.3.2 in [5]).

If X is a topological space and ψ : X×X → R is a contin-

uous kernel on X with ψ(x, x) = 0 and ψ(y, x) = ψ(x, y)
for all y, x ∈ X , then the following are equivalent:

• ψ is a CND kernel

• the kernel k(x, y) = e−λψ(x,y) is PD for all λ ≥ 0.

Theorem 6 (Part of Theorem C.2.3 in [5]). If ψ : X×X →
R is a CND kernel on a topological space X , then there is a

real Hilbert spaceH and a continuous mapping f : X → H

such that ψ(x, y) = ‖f(x)− f(y)‖2H for all x, y ∈ X .

From the above, it is straightforward to deduce:

Corollary 1. If the geodesic Gaussian kernel is PD, then

there is a mapping f : X → H into some Hilbert space H

such that

d(x, y) = ‖f(x)− f(y)‖H

for each x, y ∈ X . Note that this mapping f is not neces-

sarily related to the feature mapping φ : X → V such that

k(x, y) = 〈φ(x), φ(y)〉V .

3.2. Curvature

While curvature is usually studied using differential ge-

ometry, we shall access curvature via a more general ap-

proach that applies to general geodesic metric spaces. This

notion of curvature, originating with Alexandrov and Gro-

mov, operates by comparing the metric space to spaces

whose geometry we understand well, referred to as model

Figure 4. Left: A geodesic triangle, right: the corresponding com-

parison triangles in hyperbolic space H
2, the plane R

2 and the

sphere S
2, respectively.

spaces. The model spaces Mκ are spheres (of positive cur-

vature κ > 0), the Euclidean plane (flat, curvature κ = 0)

and hyperbolic space (negative curvature κ < 0). Since

metric spaces can be pathological, curvature is approached

by bounding the curvature of the space at a given point from

above or below. The bounds are attained by comparing

geodesic triangles in the metric space with triangles in the

model spaces, as expressed in the CAT (κ) condition:

Definition 4. Let (X, d) be a geodesic metric space X . Let

abc be a geodesic triangle of perimeter < 2Dκ, where Dκ

is the diameter of Mκ, that is, Dκ = ∞ for κ ≤ 0, and

Dκ = π√
κ

for κ > 0. There exists a triangle āb̄c̄ in the

model space Mκ with vertices ā, b̄ and c̄ and with geodesic

edges γ̄āb̄, γ̄b̄c̄ and γ̄āc̄, whose lengths are the same as the

lengths of the edges γab, γbc and γac in abc. This is an Mκ-

comparison triangle for abc (see Fig. 4).

For any point x sitting on the segment γbc, there is a cor-

responding point x̄ on the segment γ̄b̄c̄ in the comparison

triangle, such that dMκ
(x̄, b̄) = d(x, b). If we have

d(x, a) ≤ dMκ
(x̄, ā) (2)

for every such x, and similarly for any x on γab or γac, then

the geodesic triangle abc satisfies the CAT (κ) condition.

The metric space X is a CAT (κ) space if any geodesic

triangle abc in X of perimeter < 2Dκ satisfies the CAT (κ)
condition given in eq. 2. Geometrically, this means that tri-

angles in X are thinner than triangles in Mκ. The metric

space X has curvature ≤ κ in the sense of Alexandrov if it

is locally CAT (κ).

While curvature in the CAT (κ) sense allows the study

of curvature through the relatively simple means of geodesic

distances alone, it is a weaker concept of curvature than the

standard sectional curvature used in Riemannian geometry.

Nevertheless, the two concepts are related, as captured by

the following theorem due to Cartan and Alexandrov:

Theorem 7 (Theorem II.1A.6 [9]). A smooth Riemannian

manifold M is of curvature ≤ κ in the sense of Alexandrov

if and only if the sectional curvature of M is ≤ κ.

The proof of the main theorem will, moreover, rely on

the following theorem characterizing manifolds of constant

zero sectional curvature:

Theorem 8 (Part of Theorem 11.12 [45]). Let M be a com-

plete, simply connected m-dimensional Riemannian mani-

fold with constant sectional curvature C = 0. Then M is

isometric to R
m.

We are now ready to prove our main theorems.



3.3. Geodesic Gaussian kernels on metric spaces:
Proof of Theorem 1

As in the statement of Theorem 1, assume that the metric

space (X, d) is a geodesic space as defined in Sec. 2, and that

k(x, y) = e−λd
2(x,y) is a PD geodesic Gaussian kernel on

X for all λ > 0. An important consequence of Theorem 6

is that the map f : X → H must take geodesic segments to

geodesic segments, which in H are straight line segments.

Lemma 1. If γ : [0, L] → X is a geodesic of length L from

a = γ(0) to b = γ(L) in X , then f(γ([0, L])) is the straight

line from f(a) to f(b) in H , and

f (γ(t)) = f(a) +
t

L
(f(b)− f(a)) (3)

for all t ∈ [0, L].

Proof. Since γ : [0, L] → X is a geodesic, it contains every

point γ(t) for all t ∈ [0, L], and since γ is a geodesic of

length L, we have d (γ(0), γ(t)) = t for each t ∈ [0, L], so

‖f (γ(0))− f (γ(t)) ‖ = d (γ(0), γ(t)) = t.

This is only possible if f ◦ γ is the straight line from f(a) to

f(b) inH . Equation (3) follows directly, as it is the geodesic

parametrization of a straight line from f(a) to f(b).

This enables us to prove Theorem 1:

Proof of Theorem 1. Let a, b, c ∈ X be three points in

X and form a geodesic triangle spanned by their joining

geodesics γab, γbc and γca. Then the points f(a), f(b)
and f(c) in H are connected by straight line geodesics

f ◦ γab, f ◦ γbc and f ◦ γca by Lemma 1. These points

and geodesics in H span a 2-dimensional linear subspace of

H in which they form a Euclidean comparison triangle.

Without loss of generality, pick any two points x and y

on the geodesic triangle and measure the distance d(x, y).
The corresponding distance in the comparison triangle is

‖f(x) − f(y)‖, and by the definition of f we know that

d(x, y) = ‖f(x) − f(y)‖, so the geodesic triangle is iso-

metrically embedded into the comparison triangle. Hence,

X is flat in the sense of Alexandrov.

Corollary 2. The metric spaceX is contractible, and hence

simply connected.

Proof. By Theorem 1, X must necessarily be a CAT (0),
and contractible by [9, Corollary II.1.5].

3.4. Geodesic Gaussian kernels on Riemannian
manifolds: Proof of Theorem 2

We prove that for a complete, smooth Riemannian man-

ifold M with associated geodesic distance metric d, if the

geodesic Gaussian kernel k(x, y) = e−λd
2(x,y) is PD for all

λ > 0, then M is isometric to a Euclidean space.

Proof of Theorem 2. We start out by showing that the sec-

tional curvature of M is 0 everywhere.

By Theorem 1, M is a CAT (0) space, so in particular it

has curvature ≤ 0 in the sense of Alexandrov. Therefore, by

Theorem 7, the sectional curvature of M is ≤ 0.

To prove the claim, we need to show that M does not

have any points with negative sectional curvature. To this

end, assume that there is some point p ∈ M such that the

sectional curvature ofM at p is κ < 0. Then, since sectional

curvature on smooth Riemannian manifolds is continuous,

there exists some neighborhood U of p and some κ′ < 0
such that the sectional curvature in U is ≤ κ′ < 0. But then,

by Theorem 7, U also has curvature ≤ κ′ in the sense of

Alexandrov, which cannot hold due to Theorem 1. It follows

that the sectional curvature of M at p cannot be κ < 0;

hence, the sectional curvature of M must be everywhere 0.

Since M is simply connected by Corollary 2, we apply

Theorem 8 to conclude thatM must be isometric to R
m.

3.5. The case q > 2

Proof of Theorem 3. This is a direct consequence of [35,

Theorem 2.12].

3.6. Geodesic Laplacian kernels:
Proof of Theorem 4

Another consequence of Schönberg’s Theorem 5 is that

the geodesic Laplacian kernel defined by (1) with q = 1
is PD if and only if the distance d is CND. This provides

a PD kernel framework which, for several popular Rieman-

nian data manifolds, utilizes the geodesic distance.

Proof of Theorem 4. i) By Theorem 5, d is CND if and

only if the Laplacian kernel k(x, y) = e−λd(x,y) is PD

for all λ > 0.

ii) By Theorem 6, there exists a real Hilbert space H and

a continuous map f : X → H such that

d(x, y) = ‖f(x)− f(y)‖2H for all x, y ∈ X. (4)

That is, d√ (x, y) = ‖f(x) − f(y)‖H for all x, y ∈

X . The map f must be injective, because if f(x) =
f(y) for x 6= y then by (4), 0 = ‖f(x) − f(y)‖H =
d(x, y) > 0, which is false. Therefore, d√ coincides

with the restriction to f(X) of the metric onH induced

by ‖ · ‖. Since the restriction of a metric to a subset

is a metric, d√ is a metric, and by definition, f is an

isometric embedding of (X, d√ ) into H .

iii) Since f is an isometric embedding as metric spaces,

d√ must correspond to the chordal metric in H .

Assume that d√ is a geodesic metric on X , then by

Lemma 1, f maps geodesics in (X, d√ ) to straight line

segments in H . Focusing on a single geodesic segment

γ : [0, L] → X , we obtain

d√ (γ(t), γ(t′)) = ‖f ◦ γ(t)− f ◦ γ(t′)‖ = |t− t′|

for all t, t′ ∈ [0, L]. Since d = d2√ is a metric

by assumption, the square dγ(t, t
′) = |t − t′|2 =



d (γ(t), γ(t′)) is a metric on [0, L]. But this is not true,

as the triangle inequality fails to hold.

Therefore, d√ cannot be a geodesic metric on X .

As noted in Table 2 below, for a number of popular Rie-

mannian manifolds, the geodesic distance metric is CND,

meaning that geodesic Laplacian kernels are PD.

Remark 5. For a CND distance metric d : X × X → R, a

PD kernel k : X × X → R can also be constructed through

the formula k(x, x′) = d(x, x′) − d(x, x0) − d(x0, x
′) [7,

53], where x0 ∈ X is any point. For other distance-based

kernels, e.g. the rational-quadratic kernel, little is known.

4. Implications for popular manifolds and re-

lated work

Many popular data spaces appearing in computer vision

are not flat, meaning that their geodesic distances are not

CND and their geodesic Gaussian kernels will not be PD.

Table 2 lists known results on CND status of some popular

data spaces. In particular, the classical intrinsic metrics on

R
n, Hn and S

n are all CND3. As the Fisher information met-

ric on 1-dimensional normal distributions defines the hyper-

bolic geometry H
2 [2], it will give a CND geodesic metric.

For projective space, on the other hand, [51] provides an ex-

ample showing that the classical intrinsic metric is not CND.

As Grassmannians are generalizations of projective spaces,

their geodesic metrics are therefore also not generally CND.

Symmetric, positive definite (d × d) matrices form an-

other important data manifold, denoted Sym+
d . While the

popular Frobenius and Log-Euclidean [3] metrics on Sym+
d

are actually Euclidean, little is known theoretically about

whether the geodesic distance metrics of non-Euclidean Rie-

mannian metrics on Sym+
d are CND. In Sec. 5 we show

empirically that neither the affine-invariant metric [49] nor

the Fisher information metric on the corresponding fixed-

mean multivariate normal distributions [2, 4] induce a CND

geodesic metric. Note how the qualitatively similar affine-

invariant and Log-Euclidean metrics differ in whether they

generate PD exponential kernels.

Non-manifold data spaces are also popular, e.g. the edit

distance on strings was shown not to be CND by Cortes et

al. [17]. As tree- and graph edit distances generalize string

edit distance, the same holds for these. For this reason, PSD

graph kernels are often similarity-based [8,21], not distance-

based. The metric along a metric tree, on the other hand,

is CND. In Sec. 5 we show empirically that this does not

generalize to the shortest path metric on a geometric graph,

such as the kNN or ǫ-neighborhood graphs often used in

manifold learning [1, 6, 52, 59].

4.1. Relation to previous work

Several PD kernels on manifolds have appeared in the lit-

erature, some of them even Gaussian kernels based on dis-

tance metrics on manifolds such as spheres or Grassman-

3As a curious side note, this implies that
√

‖x− y‖ is a metric on Rn.

nian manifolds, which we generally consider as curved man-

ifolds. The reader might wonder how this is possible given

the above presented results. The explanation is that the dis-

tances used in these kernels are not geodesic distances and,

in many cases, have little or nothing to do with the Rieman-

nian structure of the manifold. We discuss a few examples.

Example 2. In [37], a PD kernel is defined on Sym+
d by us-

ing a geodesic Gaussian kernel with the log-Euclidean met-

ric [49]. The log-Euclidean metric is defined by pulling the

(Euclidean) Frobenius metric on Symd back to Sym+
d via

the diffeomorphic matrix logarithm. Equivalently, data in

Sym+
d is mapped into the Euclidean Symd via the diffeo-

morphic log map, and data is analyzed there. The geodesic

Gaussian kernel is PD because the Riemannian manifold is

actually a Euclidean space. In such cases, the Riemannian

framework only adds an unnecessary layer of complexity.

Example 3. In [38], radial kernels are defined on spheres

S
n by restricting kernels on R

n+1 to S
n, giving radial ker-

nels with respect to the chordal metric on S
n. Due to the

symmetry of Sn, any kernel which is radial with respect to

the chordal metric, will also be radial with respect to the

geodesic metric on S
n. This result is next used to define

PD radial kernels on the Grassmannian manifold Grn and on

the Kendall shape space SPn. However, these kernels are

not radial with respect to the usual Riemannian metrics on

these spaces, but with respect to the projection distance and

the full Procrustes distance, respectively, both of which are

not geodesic distances with respect to any Riemannian met-

ric on Grn and SPn, respectively4. These kernels, thus, have

little to do with the Riemannian geometry of Grn and SPn.

Example 4. In [18] it is noted that since the feature map

φ corresponding to a Euclidean Gaussian kernel maps data

onto a hypersphere S in the reproducing kernel Hilbert

space V [54], it might improve classification to consider the

geodesic distance on S rather than the chordal distance from

V . This is, however, done by projecting each φ(x) ∈ V onto

the tangent space Tφ(x̃)S at a fixed base point φ(x̃), where

the linear kernel in V is employed. This explains why the

resulting kernel kx̃ is PD: the kernel linearizes the sphere

and, thereby, discards the spherical geometry.

Example 5. In [34] and [40], geodesic Laplacian kernels

are defined on spheres; as shown above, these are PD.

Example 6. In [36], a kernel is defined on a general sample

space X by selecting a generating probability distribution

Pθ on X and defining a Fisher kernel on X . Denote by MΘ

the Riemannian manifold defined by a parametrized family

of probability distributions Pθ, θ ∈ Θ, on X endowed with

the Fisher information metric. The kernel k : X × X → R

4Assume that either of these metrics were a Riemannian geodesic dis-

tance metric. The family of PD radial kernels defined in [38] on both Gr

n

and SPn include Gaussian kernels with the projection distance and the

full Procrustes distance, respectively. By our previous results, if these were

geodesic distances with respect to some Riemannian metric, this Rieman-

nian metric would define a Euclidean structure on Gr

n
and SPn, respec-

tively. This is impossible, since these manifolds are both compact.



Space Distance metric Geodesic Euclidean? CND PD Gaussian PD Laplacian

metric? metric? metric? kernel? kernel?

R
n [54, 55] Euclidean metric X X X X X

R
n, n > 2 [35] lq-norm ‖ · ‖q , q > 2 X ÷ ÷ ÷ ÷

Sphere S
n [35] classical intrinsic X ÷ X ÷ X

Real projective space P
n(R) [51] classical intrinsic X ÷ ÷ ÷ ÷

Grassmannian classical intrinsic X ÷ ÷ ÷ ÷
Sym+

d Frobenius X X X X X

Sym+
d Log-Euclidean X X X X X

Sym+
d Affine invariant X ÷ ÷ ÷ ÷

Sym+
d Fisher information metric X ÷ ÷ ÷ ÷

Hyperbolic space H
n [35] classical intrinsic X ÷ X ÷ X

1-dimensional normal distributions Fisher information metric X ÷ X ÷ X

Metric trees [63], [35, Thm 2.15] tree metric X ÷ X ÷ X

Geometric graphs (e.g. kNN) shortest path distance X ÷ ÷ ÷ ÷
Strings [17] string edit distance X ÷ ÷ ÷ ÷

Trees, graphs tree/graph edit distance X ÷ ÷ ÷ ÷
Table 2. For a set of popular metric and manifold data spaces and metrics, we record whether the metric is a geodesic metric, whether it is a

Euclidean metric, whether it is a CND metric, and whether its corresponding Gaussian and Laplacian kernels are PD.

is defined by mapping samples in X to the tangent space

TθMΘ and applying the Riemannian metric at Pθ ∈ MΘ.

This is PD because the kernel is an inner product on data

mapped into a Euclidean tangent space. Again, the statisti-

cal manifold is linearized and the resulting kernel does not

fully respect its geometry.

In several of these examples the data space is linearized

by mapping to a tangent space or into a linear ambient space,

which always gives a PD kernel. It should, however, be

stressed that the resulting kernels neither respect the dis-

tances nor the constraints encoded in the original Rieman-

nian structure. Thus, the linearization will inevitably remove

the information that the kernel was aiming to encode.

In general, whenever a data space is embedded into a

Euclidean/Hilbert space, and the chordal metric is used

in (1), the exponential kernel on a dataset coincides with

an exponential kernel on the dataset embedded in the Eu-

clidean/Hilbert ambient space. This therefore gives a PD

kernel, and by the Whitney embedding theorem [45], uni-

versal kernels can thus be defined on any manifold. These

kernels will, however, disregard any constraints encoded by

the geodesic distance.

It is tempting to refer to the Nash theorem [48], which

states that any Riemannian manifold can be isometrically

embedded into a Euclidean space. Here, however, ”isomet-

ric embedding” refers to a Riemannian isometry, which pre-

serves the Riemannian metric (the smoothly changing in-

ner product) — not to be confused with a distance metric!

Therefore, in a Riemannian isometric embedding f : X →
R
n we typically have d(x, y) 6= ‖f(x) − f(y)‖. A kernel

based on chordal distances in a Nash embedding will, thus,

not generally be related to the geodesic distance.

Note, moreover, that the Nash theorem does not guaran-

tee a unique embedding; in fact there are viable embeddings

generating a wide range of distance metrics inherited from

the ambient Euclidean space. Therefore, an exponential ker-

nel based on the chordal metric will typically have little to

do with the intrinsic Riemannian structure of the manifold.

There exist PD kernels that take full advantage of Rie-

mannian geometry without relying on geodesic distances:

Example 7. Gong et al. [29] design a PD kernel for do-

main adaptation using the geometry of the Grassmann man-

ifold: Let S1 and S2 be two low-dimensional subspaces of

R
n estimated with PCA on two related data sets. This gives

two points x1, x2 on the Grassmann manifold. A test point

can be projected into all possible subspaces along the Grass-

mann geodesic connecting x1 and x2, giving an infinite di-

mensional feature vector in a Hilbert space. Gong et al. [29]

show how to compute inner products in this Hilbert space in

closed-form, thereby providing a PD kernel which takes ge-

ometry into account without relying on geodesic distances.

5. Experiments

We now validate our theoretical results empirically. First,

we generate 500 randomly drawn symmetric PD matrices of

size 3 × 3. We compute the Gram matrix of both the Gaus-

sian and Laplacian kernels under both the affine-invariant

metric [49] and the Fisher information metric on the corre-

sponding fixed-mean multivariate normal distributions [2,4].

Fig. 5a shows the eigenspectrum of the four different Gram

matrices. All four kernels have negative eigenvalues, which

imply that none of them are positive definite. This empiri-

cally proves that neither the affine-invariant metric nor the

Fisher information metric induce CND geodesic distance

metrics in general, although we know this to hold for the

Fisher information metric on Sym+
1 = R+.

Next, we consider kernels on the unit sphere. We gen-

erate data from salient points in the 1934 painting Etude de

femmes by Le Corbusier. At each salient point a HOG [19]

descriptor is computed; as these descriptors are normalized

they are points on the unit sphere. Fig. 5b shows the eigen-

spectrum of the Gram matrix of the geodesic Gaussian and

Laplacian kernels. While the geodesic Gaussian kernel has

negative eigenvalues, the geodesic Laplacian does not. This

verifies our theoretical results from Sec. 4 and Table 2.
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Figure 5. (a)–(e): Eigenspectra of the Gram matrices for different geodesic exponential kernels on different manifolds. (f) Data used in
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We also consider data on the Grassmann manifold. First,

we consider one-dimensional subspaces as spanned by sam-

ples from a 50-dimensional isotropic normal distribution.

We again consider both the Gaussian and the Laplacian ker-

nel; here both under the usual intrinsic metric, but also under

the extrinsic metric [30]. Fig. 5c shows the eigenspectra of

the different Gram matrices. Only the Gaussian kernel un-

der the intrinsic metric appears to have negative eigenvalues,

while the remaining have strictly positive eigenvalues.

Next, we consider 15-dimensional subspaces of R
100

drawn from a uniform distribution on the corresponding

Grassmannian. We only consider kernels under the intrin-

sic metric, and the eigenspectra are shown in Fig. 5d. The

Gaussian kernel has negative eigenvalues, while the Lapla-

cian kernel does not. Note that this does not prove that the

Laplacian kernel is PD on the Grassmannian; in fact, we

know theoretically from [51] that it is generally not.

Finally, we consider shortest-path distances on nearest

neighbor graphs as commonly used in manifold learning.

We take 124 one-digits from the MNIST data set [44],

project them into their two leading principal components,

form a ǫ-neighborhood graph, and compute shortest path

distances. We then compute the eigenspectrum of both the

Gaussian and Laplacian kernel; Fig. 5e show these spectra.

Both kernels have negative eigenvalues, which empirically

show that the shortest-path graph distance is not CND.

6. Discussion and outlook

We have shown that exponential kernels based on

geodesic distances in a metric space or Riemannian mani-

fold will only be positive definite if the geodesic metric sat-

isfies strong linearization properties:

• for Gaussian kernels, the metric space must be flat (or

Euclidean).

• for Laplacian kernels, the metric must be conditionally

negative definite. This implies that the square root met-

ric can be embedded in a Hilbert space.

With the exception of select metric spaces, these results

show that geodesic exponential kernels are not well-suited

for data analysis in curved spaces.

This does, however, not imply that kernel methods can

never be extended to metric spaces. Gong et al. [29] provide

an elegant kernel based on the geometry of the Grassmann

manifold, which is well-suited for domain adaptation. This

kernel is not a geodesic exponential kernel, yet it strongly in-

corporates the geodesic structure of the Grassmannian. As

an alternative, the Euclidean Gaussian kernel is a diffusion

kernel. Such kernels are positive definite on Riemannian

manifolds [43], and might provide a suitable kernel. How-

ever, these kernels generally do not have closed-form ex-

pressions, which may hinder their applicability.

Most existing machine learning tools assume a linear

data space. Kernel methods only encode non-linearity via

a non-linear transformation between a data space and a lin-

ear feature space. Our results illustrate that such meth-

ods are limited for analysis of data from non-linear spaces.

Emerging generalizations of learning tools such as regres-

sion [24, 33, 57] or transfer learning [27, 65] to nonlinear

data spaces are encouraging. We believe that learning tools

that operate directly in the non-linear data space, without a

linearization step, is the way forward.
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