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GEODESIC FLOW IN CERTAIN MANIFOLDS WITHOUT
CONJUGATE POINTS

BY

PATRICK EBERLEINO

Abstract. A complete simply connected Riemannian manifold H without conju-
gate points satisfies the uniform Visibility axiom if the angle subtended at a point p by
any geodesic y of H tends uniformly to zero as the distance from p to y tends uniformly
to infinity. A complete manifold Mis a uniform Visibility manifold if it has no conju-
gate points and if the simply connected covering H satisfies the uniform Visibility
axiom. We derive criteria for the existence of uniform Visibility manifolds. Let M be a
uniform Visibility manifold, SM the unit tangent bundle of M and Tt the geodesic
flow on SM. We prove that if every point of SM is nonwandering with respect to Tt
then Tt is topologically transitive on SM. We also prove that if M' is a normal covering
of Mthen Tt is topologically transitive on SM' if Tt is topologically transitive on SM.

Introduction. Much research, past and present, has been devoted to proving the
topological transitivity of the geodesic flow in manifolds with curvature K^O that
satisfy various conditions, usually including compactness. An essential part of all
the proofs is the fact that if Af is a complete manifold with K^O and simply
connected covering space H then any two distinct points of H are joined by a
unique geodesic. Manifolds Af without conjugate points are characterized by this
property in the simply connected covering space H and it is natural to ask what
further conditions on Af are sufficient to imply that the geodesic flow is topo-
logically transitive. Results have been obtained (mostly in the compact case) by
Green, Hedlund, Klingenberg, Morse and others under the assumption that the
manifold Af admits another (closely related) metric g* with curvature K= — 1 or
#gc<0.

In this paper we extend and unify many of these results by requiring that Af be a
uniform Visibility manifold (defined above and more precisely in §1). To comple-
ment the main results stated above we obtain the following criteria for the existence
of uniform Visibility manifolds.

Theorem. Let M be a compact manifold with curvature K^O. Then M is a uniform
Visibility manifold if and only if the simply connected covering H contains no totally
geodesic isometric imbedding of the plane R2.
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Theorem(2). Let M be a compact uniform Visibility manifold with respect to a
metric g. If g* is any other metric on M that admits no conjugate points, then M is a
uniform Visibility manifold with respect to the metric g*.

The theorems above imply that a uniform Visibility manifold may admit some
positive sectional curvature. For example, if (M, g) is compact with sectional
curvature A"<0, then (M,g) is a uniform Visibility manifold. If g* is any metric
without conjugate points.on M then (M, g*) is a uniform Visibility manifold and
may have some positive sectional curvature(3). To explicitly construct metrics g*
with some positive curvature one might alter the original metric g in a small
neighborhood on M, for example by conformally changing g by a C00 function
/: M -> R that is the identity outside a small neighborhood on M. Hopefully if the
neighborhood is sufficiently small and if the function/is chosen suitably, then g*
will have no conjugate points and M will have some positive curvature within the
neighborhood. The simplest candidates for this technique are the compact surfaces
of genus n ä 2. Each such surface M admits a metric g with curvature K= — 1.

Proofs of the theorems above may be found in §§4 and 5. The first and third
theorems extend results of Anosov in one direction. The first, third and fourth
theorems extend many of the classical results referred to above. The second theorem
provides examples of manifolds of infinite volume for which the geodesic flow is
topologically transitive.

The basic task of this paper is to extend the machinery of points at infinity
developed in [3] for manifolds with curvature KiO to uniform Visibility manifolds.
The proofs of [3] must be modified since we no longer have the convexity proper-
ties of negative curvature, but the uniform Visibility axiom is a sufficient replace-
ment. We represent M as a quotient manifold HjD where H is simply connected
and D is a properly discontinuous group of isometries of H. As in [3] we define
//(oo), the points at infinity for H. //=//u H(co) is topologically an «-cell. We
define the limit set of D, L(D), a closed Z)-invariant subset of //(oo). One may
show as in [3] that L(D) is precisely the set of points in H where D fails to act
properly discontinuously. After investigating other of its properties we relate
L(D) to the geodesic flow in the unit tangent bundle of M = H¡D.

1. Points at infinity. Let Af be a complete Riemannian manifold and let
CT:/-^A/beaC°° curve. A vector field F on a is a Jacobi vector field if

Y" + RXYX= 0

where X is the tangent vector field of a, R is the curvature tensor of M and ' denotes
covariant differentiation with respect to X. Points p and q on a are conjugate along
a if there exists a nonzero Jacobi vector field on a that vanishes at p and q.

(2) See Added in proof.
(3) See Added in proof.
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Af is a manifold without conjugate points if for any geodesic a of Af no two points
of <r are conjugate along a. It is well known that if M has no conjugate points then,
for each point p in Af, expp: Afp -*■ M is a covering map. If Af is simply connected
then expp is a diffeomorphism and any two distinct points of Af are joined by a
unique geodesic. In the sequel, H will denote a complete, simply connected mani-
fold without conjugate points, Af an arbitrary complete manifold without conjugate
points. All geodesies in Af or H are assumed to have unit speed.

If Af is not simply connected Af can be represented as a quotient manifold
H(D where D is a properly discontinuous group of isometries of H, iso-
morphic in a natural way to the fundamental group of Af. We shall study the
geodesies of Af by investigating the action of D on H. We now define some useful
concepts.

Definition 1.1. If p and q are distinct points of H then V(p,q) is the unique
unit vector v at p such that q = exp„(tv) where t = d(p,q). d is the Riemannian
distance function of Af.

Definition 1.2. If q, r are points of H distinct from a point p then 2lP (q, r) is
the angle subtended by V(p, q) and V(p, r), the value being taken between 0 and tt.

Definition 1.3. H satisfies the Visibility axiom if for each point p e H and £> 0
there exists a constant R = R(p, e)>0 such that if a: [a, b] -> H is a geodesic seg-
ment satisfying the condition d(p,o)7zR then 2ÍP (°a, ab)£e. H satisfies the
uniform Visibility axiom if the constant R may be chosen to be independent of p.
M is said to satisfy the (uniform) Visibility axiom if its simply connected Rieman-
nian cover H does. Such an Af is a (uniform) Visibility manifold.

An examination of the proof of Proposition 5.9 in [3] shows that the uniform
Visibility axiom is satisfied by complete manifolds with Á"ác<0, in particular by
hyperbolic space. The Visibility axiom alone appears to be a sufficient replacement
in manifolds with K^O for the curvature condition K^c<0 in many classical
results. It is also shown in [3] that if H has A"¿0 and satisfies the Visibility axiom
and if A^H is any compact subset then we can choose R depending only on A
and e; briefly the Visibility axiom is uniform on compact subsets. If <f> is an isometry
of H then we may choose R(<f>p, e) = R(p, e). Hence for compact manifolds with
K^O the Visibility and uniform Visibility axioms are equivalent. Very likely this
is true for compact manifolds without conjugate points but at present we cannot
prove this.

Henceforth we assume that H satisfies the uniform Visibility axiom.
By adding a boundary sphere //(oo) we compactify H as was done in [3] for

manifolds of curvature K¿0. The proofs, though similar to those of [3], must be
modified since the law of cosines is not true in general. The uniform Visibility
axiom is a sufficient replacement and the geometric conditions it imposes also yield
strong results about the geodesies of M=H/D.

Definition 1.4. Geodesies y, a in H are asymptotes if there exists a constant
c>0 such that d(yt, at)^c for t^0.
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Clearly the asymptote relation is an equivalence relation on the geodesies of H.
Let y(co) denote the equivalence class of the geodesic y. Let y( — oo) denote the
equivalence class of y~1:y~1(t) = y( — t). A point at infinity for H is an equivalence
class of geodesies of H and //(oo) is the set of all points at infinity. A geodesic y is
said to join points xand>> in //(oo) ify(co)=y and y( — oo) = x. Let H=H u //(oo).

Proposition 1.5. Let y be a geodesic in H and p any point of H. Then there
exists a unique geodesic a such that o(0)=p and o is asymptotic to y.

Proof. We show uniqueness first. If ax, a2 are geodesies that start at p and are
asymptotic to y then there exists c>0 such that d(oxt, o2t)ic for t^O. By the
uniform Visibility axiom 2ÍP(°xt, «V) -* 0 as t -> oo. Since V(p, oxt) and V(p, a2t)
are constant in /, ct1 = ct2. The existence of such asymptotes follows from

Lemma 1.6. Let pn,qn, rn be sequences in H such that qn->q, rn^r and pn is
divergent. Let y, a be geodesies with initial velocities v, w such that V(qn, pn) -*■ v and
V(rn, Pn) -*■ w- Then y and a are asymptotes.

Proof. Let A be a constant such that if a is a geodesic segment whose endpoints
subtend an angle %.wß at a point p then d(p, a) i A. Let yn be the geodesic with
initial velocity V(qn, pn)- Since d(qn, rn) is bounded the uniform Visibility axiom
implies that there exists a constant r>0 such that, for i^Fand every integer n,
2Íy„t (qn> rn)itT¡2. Fix t^T. For any integer n>0 and s> t let osn denote the geo-
desic with initial velocity V(rn, yns). Since 2Ív„t (y^, '■n) = 7T/2, d(ynt,osn)iA. As
s -*■ oo any geodesic an that is a limit point of the geodesies a* satisfies d(ynt, on) i A
by continuity. Since t^T was arbitrary it follows from the definition of <rn that
d(ynt, on)á A for every t^Tand every integer n. Since d(qn, rn) is bounded we may
choose C>0 such that for i^O and every integer n, d(ynt, on)iC Sincepn = yn(tn)
where /„ -> oo, uniform Visibility implies that the angle subtended by ct^(O) and
V(rn,Pn) -^0. Hence a'n(0) -> w = a'(0) and it follows that d(yt,o)iC for i^O.
The triangle inequality now shows that d(yt, at) is bounded above for tSO.

Proposition 1.7. If x, y are distinct points in //(oo) then there exists a geodesic
a:o( — co) = x and o(cc)=y.

Proof. Fix p e H and let y, p be the unique geodesies such that y(0) = p(0)=p,
y(co) = x and p(oo)= v. Let an be the unique geodesic segment from y(n) to p(n) for
every integer n>0. Let qn be a point on an closest to p and parametrize <xn so that
an(0)=c7n. By uniform Visibility d(p, qn) is bounded hence o4(0) ->■ v, passing to a
subsequence if necessary. If a is the geodesic with a'(Q) = v then <j( — oo) = x and
o(cc)=y by Lemma 1.6.

We now extend the domain of the vector field V of Definition 1.1 and define an
angular measure for points at infinity.

Definition 1.8. If p e H and x e //(oo) then V(p, x) is the initial velocity of the
unique geodesic o- such that a(0)=p and cj(co)=x.
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Definition 1.9. Let peH and let q, r be points of //=//u//(oo) that are
distinct from;?. Then 2lP (q, r) is the angle subtended by V(p, q) and V(p, r).

An easy consequence of Lemma 1.6 is the following:

Lemma 1.10. Let p e H, x e //(oo) be given. If a is a geodesic of H such that
a(oo) = x then V(p, at) -*■ V(p, x) as t-^> oo.

Corollary 1.11. Let pe H,x,y e H(<x>) be given. If a is a geodesic of H such
that a(oo) = x then 2ÍP (at, y) -> 2iP (x, y) as / -> oo.

We now define a natural topology on H. Let p e H, v a unit vector at p, 0 < e < -n
and R>0 be given. The truncated cone Twith vertex/?, axis v, angle e and radius
R is the set {q e H : d(p, q)>R and the angle subtended by v and V(p, q) is <e}.
The distance condition is vacuous for points in H(oo).

Proposition 1.12.
(1) 77ie open sets of H and the truncated cones form a basis for a topology of H.
(2) For any point p e H the truncated cones with vertex p form a local basis for

this topology at points of H (oo).

Proof. Since the intersection of two truncated cones with vertex p contains a
truncated cone with vertex p, it suffices to prove that for any point pe H, any
truncated cone T and any x eT n //(oo) there exists a truncated cone S with vertex
p such that x e S^T. Let Thave radius R and vertex r. For some 8>0, B = {q e H :
d(q, r)>R and ¿_r (q, x)á S} is contained in T. We show first that there exists a
truncated cone 5 with vertex p such that x e S and S n H^B. If this were false
then there would exist a sequence qn^ H such that 2ÍP (qn, x) -> 0, d(p, qn) -> oo
and qn$ B for any integer n. Passing to a subsequence V(r, qn)^v^= V(r, x). Since
V(P, <7n) -*■ V(p, x), Lemma 1.6 implies that the geodesies with initial velocities v
and V(p, x) are asymptotes, but this contradicts the definition of V(r, x). Hence for
some truncated cone 5 with vertex p and radius A, xeS and Sn f/cfi. Let
y e S Ci //(oo) and let a be the unique geodesic such that a(0)=p and o(oo)=y. For
t > A, a(t) e S n H^ B and &, (x, at) £ 8. By Corollary l.ll,2Xr(x, at) -*■ ̂ r (x, y)
^8 as t^co. Hence ye B and S^B^T.

In accordance with [3] we call this topology the cone topology for H.

Proposition 1.13. H is homeomorphic to the closed unit n-ball

B = {xeRn : \\x\\ ¿ 1}.

Proof. Fix p e H and let Bp be the set of tangent vectors at p of norm ?£ 1.
Define F:BP-+H by

F(»)-exPp(p/(l-||4))   ¡f M < 1,
F(v) = y„(oo) if || v I = 1,

where yv denotes the geodesic with initial velocity v. The continuity of F is imme-
diate since the truncated cones at p are a local basis at //(oo). It is easy to see that
F is a bijection. Since Bp is compact and H is Hausdorff, F is a homeomorphism.
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Proposition 1.14. Let A={(p,q)e HxH : p^q}. Then the function (p,q)
-> V(p, q) is continuous.

Proof. If (p, q) e Hx //continuity follows from the continuity of the exponential
map. Suppose that (p, q)e Hx //(oo). It suffices to show that if (pn, qn)S:A con-
verges to (p, q) then V(pn, qn) converges to V(p, q). Let q'n^H be chosen so that
d(pn, q'n) -*■ °° and V(pn, q'n) = V(pn, qn). Hence we may assume without loss of
generality that qn S H. Let v be a cluster point of V(pn, qn), the limit of a subsequence
V(pnk, qnJ. Passing to a further subsequence let V(p, qnic) converge to v*. By Lemma
1.6, v = v*. However V(p,qnk)^~ V(p,q) since qnk -> q. Hence V(p,q) is the only
cluster point of V(pn, qn).

Proposition 1.15. Let vn be a sequence of unit vectors in H that converge to a
vector v. Let <„-> -f-co. Then yVn(tn) -> y„(oo).

Proof. Let qn = yVn(tn), pn = the point of tangency of vn, p = the point of tangency
of v and x = y„(oo). Then V(pn, qn) = v„ -> v = V(p, x). It follows that qn -> x by the
continuity of V.

2. Limit sets. Let D denote a properly discontinuous group of isometries of H.
We extend the action of D to H and describe its behavior on //(oo).

If c/> is an isometry of H we extend <f> to act on H by requiring that c¿{y(oo)}
= (<£ ° y)(°°) for any geodesic y. </> is well defined since isometries preserve distance.
<f> is a homeomorphism since ci carries truncated cones into truncated cones. Since
H is an «-cell every isometry <f> of H without fixed points in H has a fixed point in
//(oo). If D is a properly discontinuous group of isometries of H then D extends
to a group of homeomorphisms of//. D is no longer properly discontinuous on H
and the points where proper discontinuity fails are especially interesting.

Definition 2.1. For a group D let L(D) be the set of accumulation points in
H of an orbit D(p) where p is a point of H. L(D) is called the limit set of D.

By the uniform Visibility axiom L(D) does not depend on the particular point/?.
L(D) is a closed set in //(oo) that is invariant under D. One may show as in [3]
that L(D) is precisely the set of points in H where proper discontinuity fails, but
this fact will not be needed. The following result is crucial to the investigation of
the action of D on //(oo). The proof may also be found in [3].

If p$ /Iç/7the angle 2ÍP(A) subtended by A at p = sup { ¿p (a, b) : a, be A}.

Proposition 2.2. Let x e //(oo) and let U be an open set of H containing x. If
Pn'—H is a sequence such that pn-> x then 2lPn (H— U) -> 0.

Proof. It suffices to prove that for any sequences an, bn in H— U, 2iPn (an, bn)
-»■0. Let peH-U. It suffices to show that /iP„(an, p)-* 0 f°r any sequence
an in H—U. By Proposition 1.12 we may assume that U is a truncated cone
with vertex p. Let an be the unique geodesic from pn to an. Since ane H—U there
exists e>0 such that, for sufficiently large n, &P (pn, a„)ae>0. By uniform Visi-
bility there exists R > 0 such that d(p, an) = R for every integer n. Let qn be a point
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on an such that d(p, qn) 5 R. For large n, qn ¿pn and zlP„ (qn, p) = 2Í P„ (an, p). But
by uniform Visibility 2ÍP„ (qn, p) -*■ 0 since d(p, qn) is bounded.

The following concept will be related to properties of the geodesic flow in the
unit tangent bundle of M=H\D.

Definition 2.3. Points x and y in //(oo), not necessarily distinct, are dual with
respect to D if for any open sets U, V containing x, y respectively there exists an
element <f> e D such that <f>(H- i/)s V.

Clearly </>(H-U)^V if and only if <f>-\H-V)çU. The following result is
obvious.

Proposition 2.4. Let x e //(oo). The set of points dual to x is closed in //(oo) and
invariant under D.

A consequence of the following proposition is that dual points lie in L(D) and
that any point in L(D) has a dual point.

Proposition 2.5. Points x, y in //(oo) are dual if and only if there exists a sequence
4>n=D such that, for any point p e H,<f>~x(p) -*■ x and <f>n(p) -*■ y.

Proof. Suppose that x and y are dual and let {Un}, {Vn} be local bases for the
cone topology at x and y respectively. For each integer n there exists <f>ne D such
thatJn(H-Un)^Vn and K\H-V¿ZU%. For any point peH, pe(H-Un)
n (H— Vn) for sufficiently large n and hence <f>n(p) e Vn and <f>ñ1(p) e Un. Thus
^n(p) -*■ y and <f>ñ1(p) -*■ x. Conversely suppose that such a sequence <£„ç D exists.
Let U, V be open sets containing x and y respectively. By Proposition 2.2,
¿i.p(f>n(H—U)=2i^-ip(H—U)~>0 for any point peH. We may assume that
peH-U. Since <f>n(p) -+y and d(fa xp, H-U)^oo it follows that <pn(H- U)Q V
for sufficiently large n. Thus x and y are dual since U, V were arbitrary.

Our goal is to prove that if L(D) has at least three points then any two points of
L(D) (not necessarily distinct) are dual. We first investigate the fixed point sets of
elements of D. If <f> e D and peH are given then any cluster point of the sequence
{<j>n(p) : n is an integer} is a fixed point of </>. To show this let <f>Uk(p) -> x. Then
<j>1 + nx(p)^4>x. Since d(<pn*p,<]>1 + n*p) = d(p,<f>p) it follows that 2ÍP(<pn«p,<f>1 + n*p)
->0 by uniform Visibility. Thus <f>x = x.

The following proposition shows that </> has at most two fixed points and these
are of the kind above. Hence all fixed points of elements of D lie in L(D).

Proposition 2.6. Let D be a properly discontinuous group of isometries of H. Let
</>, <f>* be elements of D.

(1) If (f> has fixed points x, y in //(oo) then (replacing <f> by <f>~1 if necessary)
<t>n(q) -*■ x and cf>~n(q) -*■ y for any point q e H.

(2) <p has at most two fixed points in //(oo).
(3) Suppose that (/>, (f>* have fixed point sets {x, y} and {x*, y*} respectively in

//(oo). Then either these sets are disjoint or they are identical.
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Proof. (1) By Proposition 1.7 there exists a geodesic y such that y( — co)=y and
y(oo) = x. For a point p on y and any integer n

zx<p»p (x, y) = Ar. (4>~nx, 4>'ny) = &P (x, y) = -n.

Hence there exists R>0 such that d(<f>np, y)iR for every integer n by uniform
Visibility. Choose sequences of numbers sn, tn such that d(<f>np, ysn) i R and
d(4>~np,ytn)?kR for all integers «^0. By proper discontinuity sn and /„ have no
finite accumulation points. Suppose that some subsequence sn.k -*■ oo. We show that
<¡>np -> x and <f>~np->y. For any t ^ 0 there is a smallest « > 0 such that t < sn hence
Unëo K, ^n+i] covers [0, oo) where s0 = 0.

For any n,

k»-i„+l|  = d(ysn,ysn+x) ú d(ySn,</>np) + d(</>np,c/>n + ip) + d(</>'' + 1p,ysn+x)

á 2R + d(p,</>p) = C.

By proper discontinuity we may choose N>0 such that n^N implies d(p,<f>np)
^2C+2R. Then for k ^ N and any n ̂  0, \tk-sn\^d(<f>-kp,<t>np)-2R^2C. Hence
tk < 0 for k 2: N and ffc -> — oo. Reversing the argument we show that sn -> + oo. By
uniform Visibility &P (<f>np, ysn) -*■ 0 and AP (</>'nP> ytn) -*■ 0- Hence </>np -> x and
4>~np^- y since y(t) ->-y(co) as i-> oo and y( — f) ->-y( — oo) as f-> oo. By uniform
Visibility </>aq -► x and ci ~ nc¡r -> _y for any ?e^-

(2) The proof follows directly from (1).
(3) Suppose that y=y*. Replacing </> or </>* by their inverses if necessary, it

follows from (1) that, for any peH, </>"p -*■ y and </>*np -*■ y. Let y, y* be geodesies
joining x to y and x* to y respectively. Fix a point p e H. As in the proof of (1) we
may choose C>0 and sequences in, tn diverging to +oo such that d(<j>np, ysn)iC,
d(<f>*np,y*tn)iC, \sn-sn+1\&C and Unso K, ^n + i] covers [0, oo).

For each integer k>0 there exists snk such that \snk — tk\ iC. Since y and y* are
asymptotes there exists R>0 such that, for i^0, d(yt, y*t)iR. For each k>0,

d(p,<f>-H*kp) = d(p*p,<f>*kp)
i d(p*p,ysnk) + d(ysnk,ytk) + d(ytk,y*tk) + d(y*tk,<l>*kp) á 3C+R.

By proper discontinuity only finitely many of the elements {ç£~n*ç4*'c} are distinct,
hence <f>r = <f>*s for suitable integers r and s. <f>r fixes x, v and x* which implies that
x = x* by (2) and the fact that x*^=y*=y.

Proposition 2.7. Let x, y be distinct dual points in //(oo). Let U, V be neigh-
borhoods of x, y respectively. Then there exists an element </> e D such that </> has
fixed points in U n //(oo) and V n //(oo).

Proof. We may assume that U, V are truncated cones with a common vertex p
and that U and Fare disjoint. Using the homeomorphism of Proposition 1.13 we
see that U r\ //(oo) and V C\ //(oo) are homeomorphic to convex neighborhoods
onS""1 and hence to closed (n— l)-disks. By duality there exists an element <f> of D
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such that <p(H- V)Z U. Hence <l>(U)ç U and <p(Ü n H(co))ç= U n //(oo). By the
Brouwer fixed point theorem <f> has a fixed point in U n //(oo). Similarly <£-1(K)
Ç K and <¿ "l (hence <f>) has a fixed point in K n //(oo).

We now reach the main result of this section. We note that L(D) is actually an
infinite set if it contains three points.

Proposition 2.8. If L(D) contains at least three points then any two points of
L(D) are dual.

Proof. We first show that there exists some point z* e L(D) such that z* is dual
to every point of L(D). Since L(D) has at least three points we can choose some
z e L(D) that is not a common fixed point of D. We show that D(z) is dense in
L(D). Let y e L(D) be given and let U be a neighborhood of y. By the remark
preceding Proposition 2.5, y has a dual point y*. Since D(z) contains at least two
points we may choose a neighborhood V of y* such that <p(z) e H— V for some
<f>e D. Choose i/i e D such that </>(//— V)S U. Then t¡i<p(z) e U and this proves that
D(z) is dense in L(D). If z* is dual to z then, by Proposition 2.4, z* is dual to every
point in L(D). Let x#z* be given in L(D). We show that z* is not a common fixed
point of D. It will then follow as above that D(z*) is dense in L(D) and that x is
dual to every point of L(D) since x is dual to z*. Choosey eL(D) such that a-, y, z*
are all distinct. Let U, V, W be disjoint neighborhoods of x, y and z* respectively.
By Proposition 2.7 we can find elements <f>, </< in D such that $ has fixed points in U
and W while i/r has fixed points in V and W. Since C/ and K are disjoint the fixed
point sets must be disjoint by Proposition 2.6. Hence either <j> or </i does not fix z*.

A modification of the preceding proof shows that, for any z 6 L(D), D(z) is
dense in L(D).

The following will be used to prove the theorem about normal coverings stated
in the abstract.

Proposition 2.9. Let N be a normal subgroup of D. If L(D) has at least three
points then L(N)=L(D).

Proof. Clearly L(N)^L(D). To prove the converse let xeL(D) be given and
fix <f> e N and peH. By Proposition 2.6 there exists a point z eL(D) that is not
fixed by <f>. There exists a neighborhood U of z such that <j>(U) n U= Q. If not, then
there would exist a sequence pn = H such that pn-*z and <f>pn-^z. This would
imply z = <pz, a contradiction. Let V be a neighborhood of x such that /? e H— V.
By Proposition 2.8 x is dual to z, hence we may choose </< in Z) such that </>(// — t/)
S K and ^~\B- V)çz U. Then peH-V, «/.-1/? e (/, ¿0-1/? e H- U and 0#_1/7
e V. Since ^(pi/i'1 e N and K is arbitrary, x e L(N).

3. Geodesic flows. In this section we translate our results about L(D) and
duality into properties of the geodesic flow on the unit tangent bundle of Af =////).
We begin with some general dynamical facts.
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Let Tt be a complete flow on a second countable, locally compact, Hausdorff
space X.

Definition 3.1. For any v e X, P+(v), the positive prolongational limit set [2]
is the set of elements w e X such that if O, U are any open sets containing v, w
respectively then Tt(0) meets U for arbitrarily large positive values of t.

P + (v) is closed in X and invariant under Tt. Equivalently w e P + (v) if and only
if there exist a sequence vn->v and a sequence of real numbers tn-> +00 such
that Ttn(vn) -> w.

Definition 3.2. v e X is nonwandering if v e P + (v).
Let Ü denote the set of nonwandering points in X. Q is closed in Xand invariant

under Tt.
Definition 3.3. Tt is topologically transitive on X if for some v e X the orbit

{Tt(v): t e R} is dense in X.

Proposition 3.4. Suppose that for any v e X, P*(v) = X. Then there exists ze X
such that for any A>0 the set {Tt(z): t^A} is dense in X. In particular Tt is topo-
logically transitive on X.

Proof. Our assumption says that for any two open sets O, U in X, Tt(0) meets U
for arbitrarily large positive values of t. Let {0¡} be a countable basis for the topol-
ogy of X. Fix an open set O in M and choose tx > 1 such that Th(0) n Ox is non-
empty. By continuity we can find an open set Ax such that Ax^O, Ax is compact
and Ttl(Ax)^Ox- Choose t2>2 such that Tt2(Ax) n 02 is nonempty and choose an
open set A2 such that A2^AX, A2 is compact and Tt2(A2)^02. We define induc-
tively a sequence of open sets An such that An is compact, An^An_x and a sequence
tn^R such that tn>n and Ttn(An)QOn. Since An is a sequence of nested compact
sets it has the finite intersection property and f)ñ=i An is nonempty. If z is in this
intersection then Ttn(z) e On for every n. Given an open set U and a number A > 0
choose n > A such that 0nç U. Since Ttn(z) e 0nç U and tn > n > A the result follows.

We now consider the case where X=SM, the unit tangent bundle of M= H\D,
and Tt is the geodesic flow on SM.

Lemma 3.5. Let M=H\D be a uniform Visibility manifold, it: //->- M the pro-
jection. Let unit vectors v, w e SM have lifts v*, w*, unit vectors e SH. Then
w e P + (v) if and only //yif(oo) and y*( — 00) are dual.

Proof. Suppose that w eP*(v). Then there exist sequences vn -*■ v and /„ -> + oo
such that Ttn(vn) -> w. Let v*, w* be unit vectors in H that are lifts of v and w.
Choose lifts v* of vn such that v* -> v*. If yn is the geodesic with initial velocity v*
then, for some sequence <pn^D, (ç4n ° yjïi,,)-^ vr*. By Proposition 1.15, yn(tn)
->- y?(oo). If w* is tangent to H at q then d(yntn, </>~1q)^ 0. Hence c4~ ̂cy) -> y*(cc).
We now show that <f>n(q) ^yî( — °°). By Proposition 2.5 this will show that
y*(oo) and y*( — 00) are dual. Define geodesies an : un(t) = (<f>n°yn)(tn — t). Then
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a'n(0)=-(<pnoyn)'(tn)^ -w* and an(tn) = <f>nyn(0). Let v* be tangent to H at p.
Since an(tn) -> y*( — oo) by Proposition 1.15 and yn(fy^P it follows that </>n(p)
-"yî(-°o). By uniform Visibility <f>n(q) ^yï(-oo).

Conversely let v*, w* in S// be lifts of v, w in SM and suppose that y*(oo) and
y*( —oo) are dual. Choose a sequence </>n=D such that, for any point peH,
<f>ñ1(p)^y*(co) and <¿n(/>)^yÍ(-oo). Let t>*, w* be tangent to // at p, q re-
spectively. Let tn = d(4>np, q) and let vn= V(<f>np, q). Then 7^0,,= - V(q, <f>np) and
since </>np -*■ y*( —oo) it follows that Tuvn -> w*. Since </>ñ 1q -> y?(oo), (<£^ 1)*t)n =
^(ArV *?)-»■»*• Then w^,, = irt(<p-%€n->n*v* = v. AlsoTtjr*Pn = ir*,TtJDn-»• tt* w*
= h>. Hence we/>+(y).

Proposition 3.6. Let M=H\D be a uniform Visibility manifold. Then the
following are equivalent :

(1) n = SM,
(2) L(D) = H(oo),
(3) P + (v) = SMfor every v e SM.

Proof. (1) => (2). Let x e //(oo) be given and let a be any geodesic such that
a(cc) = x. Then (tt ° a)'(0) = v e P + (v) by assumption, hence cr(oo) and <r( — oo) are
dual by Lemma 3.5. Since dual points must lie in L(D), x e L(D).

(2) => (3). Let v,we SM be given and choose lifts v*, w* in SH. Since y*(oo)
and y%( — oo) are in L(D) they are dual by Proposition 2.8. Hence by Lemma 3.5,
weP*(v).

(3) => (1). This follows immediately.
We may now prove the two main theorems of the abstract.

Theorem 3.7. Let M be a uniform Visibility manifold such that D. = SM. Then the
geodesic flow is topologically transitive on SM.

Proof. This is immediate from Propositions 3.6 and 3.4.

Theorem 3.8. Let M be a uniform Visibility manifold, M' a normal Riemannian
covering of M. If the geodesic flow on SM is topologically transitive then the geodesic
flow on SM' is topologically transitive.

Proof. We may write Af=////), M' = HjN where A is a subgroup of D. The
condition that Af ' be a normal covering of Af is the condition that A be a normal
subgroup of D. Since topological transitivity implies that Q = SM it follows from
Propositions 2.9 and 3.6 that L(N)=L(D) = H (oo). Q. = SM' by Proposition 3.6
and the geodesic flow is topologically transitive on SAf ' by Theorem 3.7.

Remarks. (1) If Af is any compact Riemannian manifold then Q. = SM. To show
this let p be a volume element in SAf that is invariant under the geodesic flow.
Suppose that for some open set O, Tt(0) n 0=D for t^A>0. Then the sets
{TnA(0) : «ä 1} are disjoint and the measure of their union is infinite, contradicting
the fact that ^(SAf ) is finite.
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(2) Theorem 3.8 allows us to construct manifolds of infinite volume for which
the geodesic flow is topologically transitive. For example if M is a compact, orient-
able surface of genus ^2 then it admits a metric with K= — 1. The commutator
subgroup of ttx(M) is a normal subgroup of infinite index hence the normal
covering M' corresponding to it has infinite volume.

4. Appendix I.

Theorem 4.1. Let M be a compact manifold of KiO. Let H be its simply con-
nected Riemannian covering manifold. Then the Visibility axiom fails in H if and
only if H contains a totally geodesic isometric imbedding of the Euclidean plane R2.

The proof will also show that this result is true for a homogeneous space //. In
this section we assume that H has curvature KiO.

Lemma 4.2. Suppose that, for each T>0, H contains a totally geodesic isometric
imbedding of a square in R2 of side > T. Suppose that for some compact set A in H
the translates of A by the isometries of H form a covering of H. Then H contains a
totally geodesic isometric imbedding of R2.

Proof. For each positive integer n let An be a flat totally geodesic square in H
of side /„>«. Let pn be the center of An and choose a sequence <f>n^ D such that
</n=<£n/?n is a bounded sequence. Let nn be the tangent plane to Bn=<f>n(An) at qn
and let vn, wn be orthonormal vectors in ttu. Passing to a subsequence if necessary
let qn->q,vn->v and wn-> w. Let n be the plane at q spanned by v and w and let
//0 = expQ (tt). Then H0 is the desired flat totally geodesic plane.

Let //n = exp,n (■*„). If an is any sequence such that aneHn and an^a then
a e H0 by continuity. Conversely any point in H0 is a limit of points in Hn. Let
p e H0 be given. We show that H0 is flat and totally geodesic at p. Let pn e Hn be
chosen so that/?n^*/?. Let xn, vn be orthonormal vectors in the tangent plane of
Hn at pn. For sufficiently large n,0i9<2Tr, — 1 i t S 1, the vectors cos 9xn + sin 6yn
are tangent to Bn and expPn (t cos 9xn + t sin 6yn) e Bn since Bn is totally geodesic.
Passing to a subsequence let xn -> x, yn -> y in Hp. By continuity

expp(?cos öx-f/sin 9y)eH0   for -1 iti 1, 0í6<2tt.

The vectors cos ox + sin 9y are therefore tangent to H0 at p. H0 is totally geodesic
at p since it contains an initial geodesic segment in every direction. It suffices to
prove that K(o) = 0 where <r is the tangent plane of H0 at/? and A'denotes sectional
curvature in the containing manifold //. If on is the plane spanned by xn and vn
then K(on) = 0 since Bn is flat. Thus K(o) = 0 by continuity.

Lemma 4.3. Suppose that the Visibility axiom fails in H. Then there exist distinct
points x, y in //(oo) such that 2ÍP (x, y)ÍTr\2 for every point p in H.

Proof. If the Visibility axiom fails then there exists an e>0, a point peH and
a sequence of geodesic segments an: [an, bn] -> H such that 2lP(°rnûn» <7n¿n)^E>0
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but d(p, an) -*■ oo. Let rn be the point on an closest to p. Passing to a subsequence if
necessary either 2ÍP (r„, anbn) g e/2 for all n or ¿LP (rn, ^a) ^ £/2 for all n. For
simplicity we assume that the first case occurs. By Hadamard trigonometry
spheres are convex and hence 2ir„ (p, °nbn) ä tt/2. Passing to a further subsequence
let rn -> x and anbn -*■ y. By the continuity of angle measurement 2ÍP (x, y) ä e/2 so
x+y. Let q e H and 8>0 be given. By the law of cosines 2ir„ (ç,p)-*-Q hence for
sufficiently large n, 2Í,„ (ft /?) á 8. The sum of the angles in a geodesic triangle of H
is £"•. This is true even if one of the vertices lies in //(oo), that is if two of the
bounding geodesies are asymptotes [3]. If 2Ír„ (ft p) = & then 2lr„ (ft CTrA) = W2 - S
and it follows that 2Í, (/„, anbn)íÍTr¡2 + 8. By continuity 2Í, (•*, y)^Tr/2 + 8. Since
8 > 0 was arbitrary 2l, (x, >0 ̂  W2-

We now prove Theorem 4.1. If H contains a flat totally geodesic plane then the
Visibility axiom clearly fails in H since it fails in any Euclidean space. Conversely
suppose that the Visibility axiom fails. We shall need the following fact from [3].
Let y, a be asymptotes such that d(at, y) = d(yt, a) = c>0 for all r^O. Then there
exists a totally geodesic isometric imbedding x : [0, 00) x [0, c] -> H such that
x(t, 0) = y(/) and x(t, c) = a(t). Briefly, y and a bound a flat half strip. By Lemma
4.3 we may choose distinct points x, y such that 2lP (x, y) S tt/2 for every point p.
Let 0 = sup {2lP (x, y): p e H} and let pn be a sequence in H such that 2iPn (x, y)
-*■ 6. Choose a sequence </>n in D such that qn = <pnPn is a bounded sequence. Passing
to a subsequence let qn -> ?, ¿„x -* x* and <£„>> -*■ y*. &Qn (<f>nx, <f>ny) = 2lP„ (x, y)
hence by continuity 2ÍQ (**, }>*) = 0>O. Furthermore 2lP (**, Jf*)á 6 for any point
pe H;\f there existed /> e // such that ¿¡.P (**, v*) > 0 then, for sufficiently large n,
2^-ip (x, j)= 2Íp (<£n*, ̂njO > Ö, which contradicts the definition of 6. Let aj be the
geodesic ray joining q to x*, a2 the geodesic ray joining q to _y*. We show essentially
that a, and a2 bound a flat triangular sector. Fix r>0. By the remark above,
Zxo,t (x*, y*) Ú 8- By the angle sum relation for infinite triangles [3], 2Íait (ft- y*)
S tt - d and hence ¿„l( (x*, y*) è ». Thus £„,< (x*, y*) = 6 and *,lt (9, y*) -*- ».
Let <7¡ be the foot of a,t on the maximal geodesic extension of a2. Since 9-¿tt¡2, qt
= a2s for s S 0.

We show that ¿^ (ft,y*)=W2. If s=0 then ^=9, 0=77/2 and ¿i„lt(q,y*)
= tt-6 = tt/2. Suppose j>0. By the angle sum relation, 2ult (q,qt)úir/2—d.
Hence

rr-e =   2iait(q,y*)  Í   Aa,t (ft ft) + 2Í„lt (ft, ?*)  ^ V2-0+2Í„l( (ft, J*).

Hence 2Í ffli (ft, J*) 1 "72. Since 2Í„ (°it, y*) = w/2 the angle sum relation implies that
Acs (ft, y*)£*ß- Therefore ¿.Blt (qt, y*) = -n/2 and the geodesic from qt to axt is
perpendicular to both a2 and the geodesic /> from a^ to y*. Let Ct = d(a1t,qt).
Since the transversal realizes the distance from p to ct2 it follows that d(ps, <72) = Q
for 5^0. Since p and <j2 are asymptotes, s -*■ d(ps, a2) is a bounded convex function
for j^O and hence is monotone decreasing [3]. Therefore d(ps, a2) = Ct for i^0
and, by the fact mentioned previously, p and a2 bound a flat half strip of width Ct.
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Since / > O was arbitrary, Ct -*■ oo as t -> oo and we may find a flat totally geodesic
square of arbitrarily large side in H. By Lemma 4.2, H contains a totally geodesic
isometric imbedding of the plane.

Corollary 4.4. Let M be a compact manifold with curvature K<0. Then M is
a uniform Visibility manifold.

Proof. M is a Visibility manifold by Theorem 4.1. Since M is compact M is also
uniform by the remarks in §1.

5. Appendix II. In the present section we derive a sufficient condition for
manifolds without conjugate points to satisfy the uniform Visibility axiom. Our
main result is the following:

Theorem 5.1(4). Let M be a compact uniform Visibility manifold with metric g.
Let g* be any metric on M that admits no conjugate points. Then M with the metric
g* is also a uniform Visibility manifold. In particular the g*'-geodesic flow is topo-
logically transitive on the g* unit tangent bundle.

Corollary 5.2(5). Let M be a compact Visibility manifold with metric g and KiO.
Let g* be any metric on M without conjugate points. Then the g*-geodesic flow is
topologically transitive on the g* unit tangent bundle.

Corollary 5.2 is proved in [8] for the case A^<0.
The method of this section is based on an idea of Morse [9] that was later ex-

tended by Klingenberg [8]. One shows that if y, y* are geodesies with the same
endpoints in the metrics g, g* in the simply connected covering H, then y and y*
cannot spread apart farther than a certain universal constant R. This statement is
made precise in Proposition 5.5.

Definition 5.3. Metrics g, g* on a Riemannian manifold M are equivalent if
there exist constants 0<aib such that for any vector v tangent to M

«HI = HI* = %ll
where ||  ||, ||  ||* denote norms with respect to g, g*.

Clearly if M is compact then any two metrics on M are equivalent.

Proposition 5.4. Let g, g* be equivalent metrics on a Riemannian manifold M.
Ifa\\v\\ i \\v\\*ib\\v\\ for all tangent vectors v then

(1) aL(a)£L*(a)ibL(o) for any C<° curve a in H.
(2) ad(P, Q)id*(P, Q)ibd(P, Q) for any points P, Q in H.
(3) g is complete if and only if g* is complete.

Proof. L, d and L*, d* denote length and distance with respect to g and g*. (1)
and (2) are straightforward and (3) follows from (2) using the theorem of Hopf and
Rinow.

(4) See Added in proof.
(5) See Added in proof.
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Proposition 5.5. Let H be a simply connected uniform Visibility manifold with
metric g. Let g* be an equivalent metric on H (which may admit conjugate points).
Then there exists a constant R>0 with the following property: if y, y* are geodesic
segments in the metrics g, g* with the same endpoints and if y* is (g*-distance)
minimizing then for any point xey, d(x, y*)áR, where d is the distance with
respect to the metric g.

The existence of this universal constant was proved in [9] for the case where H
is the hyperbolic plane with the Poincaré metric and in [8] for the case where H has
arbitrary dimension and A^c<0. We break up the proof into a series of lemmas,
assuming in all of them that H is a simply connected uniform Visibility manifold.

Lemma 5.6. There exists a constant A>0 such that ifTis a geodesic right triangle
in H with a leg of length ^ A then the base angle corresponding to this leg is ¿ 7r/4.

Proof. Let B > 0 be chosen so that for any point p and geodesic y, d(p, y) ¿ B if
2¡.p (y)^7r/2. By uniform Visibility we may choose A >0 so that if p, q, a are points
satisfying d(q,p)^A and d(p,a)^B then 7iq(p,a)<Tr/A. Let T be a geodesic
right triangle with vertices/?, q, r, hypotenuse y opposite p and leg/79 of length ¡zA.
There exists aey such that d(p, a)^B and hence ¿U (p, r) = 2Í, (p, a) £¡ ir/4.

Lemma 5.7. For any constant C > 0 there exists a constant R = R(C) > 0 such that
the following is true: if p is any point in H and if a: [a, ¿] -»- H is any C°° curve
satisfying d(p, a)lzR and 2lP (aa, ab)^TT¡2 then L(a)Z CR.

Proof. Given C>0 choose an integer «>0 such that C<2n. Choose R so large
that if a is a geodesic segment subtending an angle ^ nßn at p then d(p, a)
<R(l —(Cj2n)). R can be chosen independent of the point p since H is uniform.
Let a point p in H be given and let a : [a, b] -» H be a C °° curve such that d (p, a)^R
and 2ÍP (aa, ab) = 8^-^/2. By the continuity of angle measurement we may find a
sequence a=t0<t1< ■ ■ ■ <tn = b such that

2tp (aa, att) = i8/n   for l^i^n.

Then

ÁP («rfi-l, °U) ^  2lp (oa, atx)-2iP (<*ft <^¡-i) = 8/« ^ W2".

If a¡ is the geodesic segment joining ati_1 to atx then d(p, ax)<R(l —(C¡2n))<R
since a¡ subtends an angle ^tt/2« at p. A point on at closest top must be an interior
point since d(p,ax)<R. It follows that L(ax)^2(R-d(p,ax))^CR¡n. Hence
L(a)^2UiL(ax)^CR.

Lemma 5.8. For any constant C>0 there exists a constant R = R(C)>0 such that
the following is true : Let y be a maximal geodesic of H and let a: [a, b]~> H—y be a
Cx curve. Let Paa, Pab denote the feet on y of perpendiculars to y from aa and ab
respectively. Then if d(a,y)^R and d(Paa,Pab)^2A then L(a)^CRd(Paa,Pab).
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Proof. A is the constant of Lemma 5.6. Let R = R(10AC) in the notation of
Lemma 5.7. Let o: [a, ô] -> H and y satisfy the hypotheses above. We first consider
the case where 2A i d(Paa, Pob) á 4A. Let q be the midpoint of the segment from
Poa to Pob. By Lemma 5.6, 2ÍQ (P<*a, oa)ÍTr/4, 2ÍQ(Pab,ob)ÍTr/4 and hence
2l, (era, ab)^tt/2. Since d(q, o)^ /?, by Lemma5.7,L(a)^lOACR^ CRd(Paa, Pob).
Suppose now that d(Poa, Pob)^4A and let k^2 be the integer such that

k i d(Poa,Pob)¡2A i k+\.

Let Poa = x0, Xi- ■ • xk_i be a linearly ordered sequence of points on the segment of
y between Poa and Pob such that d(x¡, x¡ _ j) = 2A for every i = 0, 1,..., k— 1.
Inductively we shall construct a sequence a = t0<tx< • • ■ <tk-x<b such that the
geodesic from o(t¡) to x¡ is perpendicular to y for /= 1,..., A:— 1. Since d(xx, x0)
= 2A and c/(x1; Pob)^2A, Lemma 5.6 implies that 2ÍXl (xo, oo)ítt/4 and
2lxi (^o, cr¿>)^371-/4. By continuity there exists tx: a<tx<b and the geodesic from
o(tx) to Xi is perpendicular to y. Suppose that t¡-x has been constructed. Then
d(x¡, xi_1) = 2/l and c/(x¡, Pob)^2A hence 2Í*, (x(_i, ctí¡ _ x) !g 7r/4 and 2Í*, (*>-i, CT¿>)
ä 37r/4. As before we may construct t¡ with the required properties. Let o¡ denote
the restriction of o to [tt-u tt] for /'= 1,..., k— 1. By the argument above L(ctj)
^10/1C/? for every i hence L(«t)^2*-i £(*»)£(£- l)WACR^CRd(Poa,Pob)
since k 2:2.

Let y, a: [a, ¿] ^- //-y be defined as above. However we now assume that Poa,
Pob are points on y closest to oa, ob respectively. Hence d(oa, y) = d(oa, Pod) and
d(ob, y) = d(ob,Pob).

Lemma 5.9. For any constant B>0 there exists a constant R = R(B)>0 such that

if
(1) d(o,y)^R,
(2) d(oa,y) = d(ob,y) = R,
(3) d(Poa, Pob)^2A,

then
L(o) ^ Bd(oa, ob).

Proof. Given B>0 choose C>0 so that

l/CA + l/C < \¡B.

Choose R = R(C)^ 1 as in Lemma 5.8. Then if D = d(Poa, Pob),

d(oa, ob)/L(o) á (2R+D)/CRD = 2¡DC+\¡CR Ú l/CA + l/C < l/B.

Hence
L(o) > Bd(oa, ob).

Lemma 5.10. Let H be a uniform Visibility manifold with metric g. Let g* be an
equivalent metric and let 0<aib be constants such that a\\v\\ i ||f ||*áb\\v\\ for all
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tangent vectors v. Let y be a maximal g-geodesic, y* : [c,d]-> H a minimizing
g*-geodesic. Choose B > b/a and let R = R(B) be the constant of Lemma 5.9. Suppose
that d(y*, y) ä R and d(y*c, y) = d(y*d, y) = R. Then d(Py*c, Py*d) < 2A.

Proof. Suppose that d(Py*c, Py*d)^2A. By Lemma 5.9 and Proposition 5.4

L*(y*) ä aL(y*) ä aBd(y*c, y*d) ^ (a/b)Bd*(y*c, y*d) > d*(y*c, y*d).

This contradicts the assumption that y* is minimizing in the metric g*.

Lemma 5.11. Let g,g*,a,b and R be as in Lemma 5.10. Let R* = R(l+(2b/a))
+ 2bA/a. Let y be a maximal g-geodesic, y*: [c, d]^~ H a minimizing g*-geodesic
whose endpoints lie on y. Then d(x, y) á R* for any point x on y*.

Proof. Suppose that there exists xey* such that d(x, y)> R; we show that
d(x, y) ̂  R*. Let y, z be the first points on y* on either side of x such that d (y, y)
= d(z, y) = R. If Py, Pz denote points on y that are closest to y, z then, by Lemma
5.10, d(Py, Pz)<2A since y* is minimizing. Thus d(y, z)^2R + 2A. Now d(x,y)
^g-length of y* between y and z<,(lja)d*(y, z)^(b¡a)d(y, z)S(b¡a)(2R + 2A).
Hence d(x, y)^R + d(x, y)èR+(b/a)(2R + 2Ä) = R*.

We now complete the proof of Proposition 5.5. Let R* be the constant of Lemma
5.11, A the constant of Lemma 5.6. Then R = R* + A is the desired universal con-
stant. Let y, y* be geodesies with the same endpoints as in the statement of Propo-
sition 5.5. Suppose that there is a point x on y such that d(x, y*)>R. Let y: [a, b]
-+ H be a unit speed parametrization of y with x=yt0, a<t0<b, and extend y to be
maximal. Let 0 = {yey*: for some — oo</</<,, yt is a closest point for y}. Let
U={y ey*: for some t0<t<oo, yt is a closest point for j>}. We show that O and U
are a separation for y*, contradicting the connectedness of y*.

If yt, yt' are two closest points in y for a point y in y* then, by Lemma 5.6,
d(yt,yt')^A. Since d(x,y)>R and d(y, yt) = d(y, yt')g,R* we see that d(x,yt)
> A and d(x, yt')>A. It follows that O and U are nonempty, disjoint sets whose
union is y*. If O were not open there would exist y e O and a sequence yn^U such
that vn -> y. Ifyt, ytn are closest points for y, yn respectively then \t — tn\}î2A for
every n since t<t0<tn, \t — t0\^A and \t0-tn\^A. The points yn,ytn and yt de-
termine a g-geodesic triangle with a right angle at ytn. Since yn -> y the angle at
yt -* 7r/2, contradicting Lemma 5.6. Hence O is open. Similarly U is open, proving
that O and U are a separation for y*. This contradiction completes the proof of
Proposition 5.5.

We now prove Theorem 5.1. Let g,g* also denote the metrics induced in the
simply connected covering //. Let D be the deckgroup of Af such that M=H\D.
Suppose g* is a metric without conjugate points that does not satisfy the uniform
Visibility axiom. Then for some e>0 there exist a sequence pnQH and a sequence
<>$'■ [fti, bn] -*• H of g*-geodesic segments such that 2itn (^fl„, a*bn)^e>0 for all
n but d*(pn, a*) -> go. Choose a sequence </>„£/) such that qn=<pnPn is bounded
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and, passing to a subsequence if necessary, let qn-+q. If y* = cin o a* then

At (y*nan, ytbn) ^ e > 0

and d*(qn, y*) -> oo since the elements of D are also isometries in the metric g*.
Let a*, ß* be the g*-geodesics from qn to y*an and from c7n to y*bn respectively. Let
an, ßn be the corresponding g-geodesics with the same endpoints and let yn be the
g-geodesic from y*an to y*èn. By Proposition 5.5 and the equivalence of g and g*,
d(qn, Yn) -> °°- Measuring with respect to g, &qn (y*an> ytbn) -*■ 0 since H with the
metric g is a uniform Visibility manifold. With initial point q there exist a g-geo-
desic ray a and g*-geodesic rays a*, ß* such that, passing to a subsequence if
necessary, a'n(0)^ a'(0), ß'n(0)^«'(0), «r(0)^«*'(0) and j8*'(0) ̂ ß*'(0). By
hypothesis and continuity a* #|S*. If x is any point on a then we can find xn on an
such that xn^x. Since d(xn, a*) = B by Proposition 5.5 and a*'(0) ->a*'(0) it
follows that d(x, a*) g R. Similarly d(x, ß*) ̂  R. Let a* : [0, oo) -» H and
ß* : [0, oo) -> H be g* unit speed parametrizations of a* and ß*. For each integer
n > 0 let numbers in and tn be chosen so that d(a*sn, a(n)) ^ /? and d(ß*tn, a(n)) ^ /?.
Then sn -> oo and c/*(a*5,n, ß*) ^ bd(a*sn, ß*) ^ 2¿/?. A result of Green [4], however,
states that if a*, ß* are distinct geodesic rays with the same initial point in a simply
connected manifold H without conjugate points and with curvature A"3: — A2 then
d*(a*t, ß*) -+ oo as t -> oo. This contradiction proves that the uniform Visibility
axiom holds forg*. The topological transitivity assertion follows from Theorem 3.7.

Corollary 5.2 follows immediately from Theorem 5.1 since by the remarks in §1
Visibility and uniform Visibility are equivalent in a compact manifold with Ä^O.

Added in proof. The divergence condition for geodesies in H, due to L. Green
and stated above, is crucial for the argument of Theorem 5.1. For surfaces there is
a simpler proof of the divergence condition that does not generalize to higher
dimensions [5, p. 534]. The proof for higher dimensions is a consequence of
Lemma 2 in [4], but the proof seems to us incomplete. If M has dimension «S3
it may therefore be necessary in Theorem 5.1 and Corollary 5.2 to consider only
those auxiliary metrics without conjugate points that satisfy the divergence con-
dition for geodesies in the simply connected covering H. In particular the manifolds
without focal points and curvature K^—A2 satisfy this condition, and we now
sketch a proof.

Lemma 2 in [4] is essentially equivalent to the following uniform divergence
condition for Jacobi fields: Let M be a complete manifold of dimension n^2
without conjugate points and with curvature K^ —A2. For each number R>0 and
each point p e M we can find a number to = to(p)>0 such that || y(r) || =/? for
t^t0, where Y(t) is a Jacobi field on a unit speed geodesic y such that y(0)=p,
y(0) = 0, || y'(0)11 = ! and <.Y(t), y'(/)>=0 for all t^O. The divergence condition
for geodesies in H is an easy consequence of this condition on the Jacobi fields of
M (and //). A complete manifold M is said to have no focal points if no maximal
geodesic of M has focal points. It is not difficult to show that the no focal point
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property is equivalent to the following: Let Z(t) be a not necessarily perpendicular
Jacobi field on a unit speed geodesic y such that Z(0) = 0 and Z'(0)/0. Then
{||Z||2}'(0>0 for every r>0. A manifold without focal points clearly has no
conjugate points, and the uniform divergence condition for Jacobi fields will
follow if we can show that || Y(t)\\ ->• oo as t -> oo for any Jacobi field Y of the
type considered in the statement of the condition. To establish this we mimic the
proof of Theorem 2.1 of [5] while using the following matrix method described in
detail in [6].

Let Af be a complete manifold of dimension n^2 without conjugate points and
with curvature K^—A2. Fix a geodesic y and a Fermi coordinate system along y.
The Jacobi equations for vector fields perpendicular to y may be transformed into
the following (n-1) x («- 1) matrix equation in one real variable:

(J) Y"(s) + K(s)Y(s) = 0.

Derivatives are taken componentwise and K(s) is a symmetric matrix correspond-
ing to the curvature transformation R(s): Afy(s) -> AfKs), R(s)v = Rr(s)vy'(s). If A(s)
is the solution of (J) such that ,4(0) = 0, A'(0) = identity, then the Jacobi fields of
the type considered in the statement of the uniform divergence condition correspond,
relative to the Fermi coordinate system, to the curves s -> A(s)x, where x is a unit
vector in R71'1. Let D(s) be the limit solution of (/) defined in Lemma 1 of [6].
Then for i>0, D(s) = A(s)M(s), where Af(j) = j"" A~\ù)[A~\u)\* du is a positive
definite symmetric matrix. * denotes the transpose operation. D(s) and A(s) are
both nonsingular for s>0, and we consider the symmetric matrices U(s) =
D'(s)D~1(s) and W(s) = A'(s)A~1(s), which satisfy a matrix Riccati equation
obtained from (/). Combining the proofs of Lemma 2.1 of [5] and Lemma 3 of [6]
we can choose a number s0>0 so that ||í/ís)||„ and ¡^(j)^ are uniformly
bounded for s^s0, where || ■ ||00 = sup {|| -(x)\\ : ||x|| = l}. A Wronskian argument
shows that U(s)- W(s) = [A~1(s)]*M-^A'^s), and hence |<Af '^M-1^)*,
A~1(s)x}\ is uniformly bounded for s^s0 and every unit vector xeRn~x. Since
M(s) -> 0 as s -> oo and M _1(s) is positive definite and symmetric it follows that
M_1(J)ll=o -*■ 0 as s -> oo. Hence for any unit vector x e Rn~1\\A(s)x\\ 2:
1/||^4 -1(^)]| oo -> oo as s ->■ oo, which completes the proof.
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