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Abstract

In real-world applications of visual recognition, many

factors—such as pose, illumination, or image quality—can

cause a significant mismatch between the source domain

on which classifiers are trained and the target domain to

which those classifiers are applied. As such, the classifiers

often perform poorly on the target domain. Domain adap-

tation techniques aim to correct the mismatch. Existing ap-

proaches have concentrated on learning feature represen-

tations that are invariant across domains, and they often do

not directly exploit low-dimensional structures that are in-

trinsic to many vision datasets. In this paper, we propose

a new kernel-based method that takes advantage of such

structures. Our geodesic flow kernel models domain shift

by integrating an infinite number of subspaces that charac-

terize changes in geometric and statistical properties from

the source to the target domain. Our approach is compu-

tationally advantageous, automatically inferring important

algorithmic parameters without requiring extensive cross-

validation or labeled data from either domain. We also

introduce a metric that reliably measures the adaptability

between a pair of source and target domains. For a given

target domain and several source domains, the metric can

be used to automatically select the optimal source domain

to adapt and avoid less desirable ones. Empirical studies

on standard datasets demonstrate the advantages of our ap-

proach over competing methods.

1. Introduction

Imagine that we are to deploy an Android application

to recognize objects in images captured with mobile phone

cameras. Can we train classifiers with Flickr photos, as they

have already been collected and annotated, and hope the

classifiers still work well on mobile camera images?

Our intuition says no. We suspect that the strong dis-

tinction between Flickr and mobile phone images will crip-

ple those classifiers. Indeed, a stream of studies have

shown that when image classifiers are evaluated outside

of their training datasets, the performance degrades signifi-

cantly [27, 9, 24]. Beyond image recognition, mismatched

training and testing conditions are also abundant: in other

computer vision tasks [10, 28, 19, 11], speech and language

processing [21, 4, 5], and others.

All these pattern recognition tasks involve two distinct

types of datasets, one from a source domain and the other

from a target domain. The source domain contains a large

amount of labeled data such that a classifier can be reliably

built. The target domain refers broadly to a dataset that

is assumed to have different characteristics from the source

domain. The main objective is to adapt classifiers trained

on the source domain to the target domain to attain good

performance there. Note that we assume the set of possible

labels are the same across domains.

Techniques for addressing this challenge have been in-

vestigated under the names of domain adaptation, covariate

shift, and transfer learning. There are two settings: un-

supervised domain adaptation where the target domain is

completely unlabeled, and semi-supervised domain adap-

tation where the target domain contains a small amount of

labeled data. Often the labeled target data alone is insuffi-

cient to construct a good classifier. Thus, how to effectively

leverage unlabeled target data is key to domain adaptation.

A very fruitful line of work has been focusing on deriv-

ing new feature representations to facilitate domain adap-

tation, where labeled target data is not needed [7, 2, 5, 4,

22, 14]. The objective is to identify a new feature space

such that the source domain and the target domain mani-

fest shared characteristics. Intuitively, if they were indis-

tinguishable, a classifier constructed for the source domain

would work also for the target domain.

Defining and quantifying shared characteristics entails

careful examination of our intuition on what type of repre-

sentations facilitate adaptation. For example, in the part-of-

speech (POS) task of tagging words into different syntactic

categories [5], the idea is to extract shared patterns from

auxiliary classification tasks that predict “pivot features”,

frequent words that are themselves indicative of those cate-

gories. While sensible for language processing tasks, typi-

1

To appear, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012.



Φ(t), 0 ≤ t ≤ 1Source 

subspace

Target

subspace

+

+

+ +

×

×

× ×
x

Φ(0)
Φ(1)

Figure 1. Main idea of our geodesic flow kernel-based approach

for domain adaptation (Best viewed in color). We embed source

and target datasets in a Grassmann manifold. We then construct

a geodesic flow between the two points and integrate an infi-

nite number of subspaces along the flow Φ(t). Concretely, raw

features are projected into these subspaces to form an infinite-

dimensional feature vector z∞ ∈ H∞. Inner products between

these feature vectors define a kernel function that can be com-

puted over the original feature space in closed-form. The kernel

encapsulates incremental changes between subspaces that underly

the difference and commonness between the two domains. The

learning algorithms thus use this kernel to derive low-dimensional

representations that are invariant to the domains.

cal histogram based features of low-level visual descriptors

do not enjoy having pivot “visual words” — in general, no

single feature dimension from a particular histogram bin is

discriminative enough to differentiate visual categories.

On the other hand, many visual data are assumed to lie in

low-dimensional subspaces. Given data from two domains,

how can we exploit the subspaces in these datasets, which

can be telltale in revealing the underlying difference and

commonness between the domains?

Moreover, given multiple source domains and a target

domain, how can we select which source domain to pair

with the target domain? This is an especially important

problem to address in order to apply domain adaptation to

real-world problems. For instance, in the context of ob-

ject recognition, we can choose from multiple datasets as

our source domain: ImageNet, Caltech-101/256, PASCAL

VOC, etc. It is much more cost-effective to be able to select

one (or a limited few) that are likely to adapt well to the

target domain, instead of trying each one of them.

To address the first challenge, we propose a kernel-based

method for domain adaptation. The proposed geodesic flow

kernel is computed over the subspaces of the source and the

target domains. It integrates an infinite number of subspaces

that lie on the geodesic flow from the source subspace to

the target one. The flow represents incremental changes

in geometric and statistical properties between the two do-

mains. Being mindful of all these changes, our learning

algorithm extracts those subspace directions that are truly

domain-invariant. Fig. 1 sketches the main idea.

To address the second challenge, we introduce a metric

called Rank of Domain (ROD) that can be used to rank a list

of source domains based on how suitable they are to domain

adaptation. The metric integrates two pieces of information:

how much the subspaces of the source and the target do-

mains overlap, and how similarly the target and source data

are distributed in the subspaces. In our experiments, ROD

correlates well with adaptation performance.

We demonstrate the effectiveness of the proposed ap-

proaches on benchmark tasks of object recognition. The

proposed methods outperform significantly state-of-the-art

methods for domain adaptation. Additionally, as a novel ap-

plication of these methods, we investigate the dataset bias

problem, recently studied in [27]. Through their analysis,

the authors identified a few datasets of high “market value”,

suggesting that they are less biased, and more representative

of real-world objects. We re-examine these datasets with a

new perspective: are such high-valued datasets indeed use-

ful in improving a target domain’s performance? Our anal-

ysis suggests it would be beneficial to also consider “ease

of adaptability” in assessing the value of datasets.

Contributions. To summarize, our main contributions are:

i) a kernel-based domain adaptation method that exploits

intrinsic low-dimensional structures in the datasets (sec-

tion 3.3); the method is easy to implement, with no parame-

ters to cross-validate (sections 3.4 and 4.4); ii) a metric that

can predict which source domain is better suited for adap-

tation to a target domain, without using labeled target data

(sections 3.5 and 4.5); iii) empirical studies validating the

advantages of our approaches over existing approaches on

benchmark datasets (section 4.2 and 4.3); iv) a new perspec-

tive from re-examining cross-dataset generalization using

domain adaptation (section 4.6).

2. Related Work

Domain adaptation has been extensively studied in many

areas, including in statistics and machine learning [26, 18,

2, 23], speech and language processing [7, 5, 21], and more

recently computer vision [3, 14, 25, 20].

Of particular relevance to our work is the idea of learning

new feature representations that are domain-invariant, thus

enabling transferring classifiers from the source domain to

the target domain [2, 5, 4, 7, 22]. Those approaches are

especially appealing to unsupervised domain adaptation as

they do not require labeled target data. Other methods for

unsupervised domain adaptation have been explored, for ex-

ample, with transductive SVMs [3] or iteratively relabeling

(the target domain) [6]. Note that the latter approach de-

pends very much on tuning several parameters, which re-

quires extensive computation of training many SVMs.

Gopalan et al’s work is the closest to ours in spirit [14].

They have also explored the idea of using geodesic flows to

derive intermediate subspaces that interpolate between the

source and target domains. A crucial difference of that work

from ours is that they sample a finite number of subspaces

and stack these subspaces into a very high-dimensional pro-

jection matrix. Our kernel method is both conceptually and

computationally simpler and eliminates the need to tune

many parameters needed in Gopalan et al’s approach. We



will return to the comparison after we describe both ap-

proaches in section 3.

3. Proposed Approach

The main idea behind our approach is to explicitly con-

struct an infinite-dimensional feature space H∞ that assem-

bles information on the source domain DS , on the target

domain DT , and on “phantom” domains interpolating be-

tween those two — the nature of the interpolation will be

made more precise later. Inner products in H∞ give rise to

a kernel function that can be computed efficiently in closed-

form. Thus, this geodesic flow kernel (GFK) can be readily

used to construct any kernelized classifiers.

We start by reviewing basic notions of Grassmann man-

ifolds; the subspaces of the data from the source and target

domains are represented as two points on one such mani-

fold. We then discuss a previous approach where multiple

subspaces are sampled from the manifold to derive new fea-

ture representations. Then in section 3.3, we describe our

approach in detail and contrast to the previous one.

The dimensionality of the subspaces is an important pa-

rameter. In section 3.4, we present a subspace disagree-

ment measure (SDM) for selecting this parameter automat-

ically without cross-validation. Finally, in section 3.5, we

describe a Rank of Domain (ROD) metric that computes

compatibility between two domains for adaptation.

3.1. Background

In statistical modeling, we often assume data can be em-

bedded in a low-dimensional linear subspace. For example,

principal component analysis (PCA) identifies the subspace

where the variances of the embedded data are maximized.

Most of the time, it is both sufficient and convenient to refer

to a subspace with its basis P ∈ R
D×d, where D is the di-

mensionality of the data and d is the dimensionality of the

subspace. For PCA, the basis is then the top d eigenvec-

tors of the data’s covariance matrix. The collection of all

d-dimensional subspaces form the Grassmannian G(d,D),
a smooth Riemannian manifold on which we can define ge-

ometric, differential, and probabilistic structures.

As an intuitive example of how Grassmannians can help

us to attack the problem of domain adaptation, imagine that

we compute the subspaces of the datasets for the DS and

DT domains and map them to two points on a Grassman-

nian. Intuitively, if these two points are close by, then the

two domains could be similar to each other, for example,

their features may be similarly distributed. Thus, a DS -

trained classifier is likely to work well on DT .

However, what if these two domains are far apart on the

manifold? We briefly describe an earlier work by Gopalan

et al [14]. Our method extends and improves upon it.

3.2. Subspaces by sampling geodesic flow (SGF)

Consider two datasets of “Cars” with large differences

in poses are placed far apart on the manifold. The key idea

is to use intermediate subspaces to learn domain-invariant

features to adapt [14]. Specifically, the intermediate sub-

spaces would capture statistics of car images under poses

interpolated between the source and the target domain. Be-

ing informed of all these different subspaces from the same

category, the learning algorithms might be able to extract

features that are less sensitive to variations in pose.

Concretely, the approach of sampling geodesic flow

(SGF) [14] consists of the following steps: i) construct a

geodesic flow curve connecting the source and target do-

mains on the Grassmannian; ii) sample a fixed number of

subspaces from this curve; iii) project original feature vec-

tors into these subspaces and concatenate them into fea-

ture super-vectors; iv) reduce dimensionality of the super-

vectors; v) use the resulting representations as new feature

vectors to construct classifiers.

Despite its encouraging results, the SGF approach has

several limitations. It is not clear how to choose the best

sampling strategy. A few important parameters need to

be tuned: the number of subspaces to sample, the dimen-

sionality of the subspaces, and how to cope with the high-

dimensionality of the new representations. Critically, cross-

validating all these “tweaking knobs” is impractical in typ-

ical settings for domain adaptation, where there is little or

no labeled target data.

In the following, we show how these limitations can be

addressed in a simple kernel-based framework.

3.3. Our approach: geodesic flow kernel (GFK)

Our approach consists of the following steps: i) deter-

mine the optimal dimensionality of the subspaces to embed

domains; ii) construct the geodesic curve; iii) compute the

geodesic flow kernel; iv) use the kernel to construct a clas-

sifier with labeled data. We defer describing step i) to the

next section and focus on steps ii) and iii).

For step ii), we state only the main computational steps.

The detailed derivation can be found in [14] and its refer-

ences. We also omit step iv) for brevity, as it is the same as

constructing any other kernel-based classifier.

Construct geodesic flow Let PS ,PT ∈ R
D×d denote the

two sets of basis of the subspaces for the source and target

domains. Let RS ∈ R
D×(D−d) denote the orthogonal com-

plement to PS , namely R
T
S
PS = 0. Using the canonical

Euclidean metric for the Riemannian manifold, the geodesic

flow is parameterized as Φ : t ∈ [0, 1] → Φ(t) ∈ G(d,D)
under the constraints Φ(0) = PS and Φ(1) = PT . For

other t,
Φ(t) = PSU1Γ(t)−RSU2Σ(t), (1)

where U1 ∈ R
d×d and U2 ∈ R

(D−d)×d are orthonormal



matrices. They are given by the following pair of SVDs,

P
T
SPT = U1ΓV

T, R
T
SPT = −U2ΣV

T . (2)

Γ and Σ are d×d diagonal matrices. The diagonal elements

are cos θi and sin θi for i = 1, 2, . . . , d. Particularly, θi are

called the principal angles between PS and PT :

0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θd ≤ π/2 (3)

They measure the degree that subspaces “overlap”. More-

over, Γ(t) and Σ(t) are diagonal matrices whose elements

are cos(tθi) and sin(tθi) respectively.

Compute geodesic flow kernel (GFK) The geodesic flow

parameterizes how the source domain smoothly changes

to the target domain. Consider the subspace Φ(t) for a

t ∈ (0, 1) and compute Φ(t)T
x, ie, the projection of a fea-

ture vector x into this subspace. If x is from the source

domain and t is close to 1, then the projection will appear

more likely coming from the target domain and conversely

for t close to 0. Thus, using the projection to build a classi-

fier would result in a model using a set of features that are

characteristic of both domains. Hence, this classifier would

likely perform well on the target domain.

Which (or which set of) t should we use then? Our an-

swer is surprising at the first glance: all of them! Intuitively,

by expanding the original features with projections into all

subspaces, we force a measurement of similarity (as we will

be using inner products to construct classifiers) that is ro-

bust to any variation that leans either toward the source or

towards the target or in between. In other words, the net

effect is a representation that is insensitive to idiosyncrasies

in either domain. Computationally, however, we cannot use

this representation explicitly. Nevertheless, we next show

that there is no need to actually compute, store and manip-

ulate infinitely many projections.

For two original D-dimensional feature vectors xi and

xj , we compute their projections into Φ(t) for a continu-

ous t from 0 to 1 and concatenate all the projections into

infinite-dimensional feature vectors z∞
i and z

∞
j . The inner

product between them defines our geodesic-flow kernel,

〈z∞
i , z∞

j 〉 =

∫ 1

0

(Φ(t)T
xi)

T(Φ(t)T
xj) dt = x

T
iGxj (4)

where G ∈ R
D×D is a positive semidefinite matrix. This is

precisely the “kernel trick”, where a kernel function induces

inner products between infinite-dimensional features.

The matrix G can be computed in a closed-form from

previously defined matrices:

G = [PSU1 RSU2]

[

Λ1 Λ2

Λ2 Λ3

][

U
T
1P

T
S

U
T
2R

T
S

]

(5)

where Λ1 to Λ3 are diagonal matrices, whose diagonal ele-

ments are

λ1i = 1+
sin(2θi)

2θi
, λ2i =

cos(2θi)− 1

2θi
, λ3i = 1−

sin(2θi)

2θi
.

(6)

Detailed derivations are given in the Supplementary.

Our approach is both conceptually and computationally

simpler when compared to the previous SGF approach. In

particular, we do not need to tune any parameters — the

only free parameter is the dimensionality of the subspaces

d, which we show below how to automatically infer.

3.4. Subspace disagreement measure (SDM)

For unsupervised domain adaptation, we must be able

to select the optimal d automatically, with unlabeled data

only. We address this challenge by proposing a subspace

disagreement measure (SDM).

To compute SDM, we first compute the PCA subspaces

of the two datasets, PCAS and PCAT . We also com-

bine the datasets into one dataset and compute its subspace

PCAS+T . Intuitively, if the two datasets are similar, then

all three subspaces should not be too far away from each

other on the Grassmannian. The SDM captures this notion

and is defined in terms of the principal angles (cf. eq. (3)),

D(d) = 0.5 [sinαd + sinβd] (7)

where αd denotes the d-th principal angle between the

PCAS and PCAS+T and βd between PCAT and PCAS+T .

sinαd or sinβd is called the minimum correlation dis-

tance [16].

Note that D(d) is at most 1. A small value indicates

that both αd and βd are small, thus PCAS and PCAT are

aligned (at the d-th dimension). At its maximum value of

1, the two subspaces have orthogonal directions (i.e., αd =
βd = π/2). In this case, domain adaptation will become

difficult as variances captured in one subspace would not be

able to transfer to the other subspace.

To identify the optimal d, we adopt a greedy strategy:

d
∗ = min{d|D(d) = 1}. (8)

Intuitively, the optimal d∗ should be as high as possible (to

preserve variances in the source domain for the purpose of

building good classifiers) but should not be so high that the

two subspaces start to have orthogonal directions.

3.5. Rank of domain (ROD)

Imagine we need to build a classifier for a target domain

for object recognition. We have several datasets, Caltech-

101, PASCAL VOC, and ImageNet to choose from as the

source domain. Without actually running our domain adap-

tation algorithms and building classifiers, is it possible to



determine which dataset(s) would give us the best perfor-

mance on the target domain?

To answer this question, we introduce a Rank of Domain

(ROD) metric that integrates two sets of information: ge-

ometrically, the alignment between subspaces, and statisti-

cally, KL divergences between data distributions once they

are projected into the subspaces.

We sketch the main idea in the following; the detailed

derivation is described in the Supplementary. Given a pair

of domains, computing ROD involves 3 steps: i) determine

the optimal dimensionality d
∗ for the subspaces (as in sec-

tion 3.4); ii) at each dimension i ≤ d
∗, approximate the data

distributions of the two domains with two one-dimensional

Gaussians and then compute the symmetrized KL diver-

gences between them; iii) compute the KL-divergence

weighted average of principal angles, namely,

R(S, T ) =
1

d∗

d
∗

∑

i

θi [KL(Si‖Ti) +KL(Ti‖Si)] . (9)

Si and Ti are the two above-mentioned Gaussian distribu-

tions; they are estimated from data projected onto the prin-

cipal vectors (associated with the i-th principal angle).

A pair of domains with smaller values of R(S, T ) are

more likely to adapt well: the two domains are both geomet-

rically well-aligned (small principal angles) and similarly

distributed (small KL divergences). Empirically, when we

use the metric to rank various datasets as source domains,

we find the ranking correlates well with their relative per-

formance improvements on the target domain.

4. Experiments

We evaluate our methods in the context of object recog-

nition. We first compare our geodesic-flow kernel method

to baselines and other domain adaptation methods [25, 14].

We then report results that validate our automatic procedure

of selecting the optimal dimensionality of subspaces (sec-

tion 3.4). Next we report results to demonstrate our Rank of

Domain (ROD) metric predicts well which source domain is

more suitable for domain adaptation. At last, we re-examine

the dataset bias problem, recently studied in [27], from the

perspective of “ease of adaptability”.

4.1. Setup

Our experiments use the three datasets which were stud-

ied in [25]: Amazon (images downloaded from online mer-

chants), Webcam (low-resolution images by a web camera),

and DSLR (high-resolution images by a digital SLR cam-

era). Additionally, to validate the proposed methods on

a wide range of datasets, we added Caltech-256 [15] as a

fourth dataset. We regard each dataset as a domain.

We extracted 10 classes common to all four datasets:

BACKPACK, TOURING-BIKE, CALCULATOR, HEAD-

Caltech-256                                                Amazon

   DSLR                                                     Webcam

Figure 2. Example images from the MONITOR category in Caltech-

256, Amazon, DSLR, and Webcam. Caltech and Amazon images

are mostly from online merchants, while DSLR and Webcam im-

ages are from offices. (Best viewed in color.)

PHONES, COMPUTER-KEYBOARD, LAPTOP-101,

COMPUTER-MONITOR, COMPUTER-MOUSE, COFFEE-

MUG, AND VIDEO-PROJECTOR. There are 8 to 151

samples per category per domain, and 2533 images in total.

Fig. 2 highlights the differences among these domains with

example images from the category of MONITOR.

We report in the main text our results on the 10 common

classes. Moreover, we report in the Supplementary our re-

sults on 31 categories common to Amazon, Webcam and

DSLR, to compare directly to published results [25, 20, 14].

Our results on either the 10 or 31 common classes demon-

strate the same trend that the proposed methods signifi-

cantly outperform existing approaches.

We follow similar feature extraction and experiment pro-

tocols used in previous work. Briefly, we use SURF features

[1] and encode the images with 800-bin histograms with the

codebook trained from a subset of Amazon images. The

histograms are normalized first and then z-scored to have

zero mean and unit standard deviation in each dimension.

For each pair of source and target domains, we conduct ex-

periments in 20 random trials. In each trial, we randomly

sample labeled data in the source domain as training ex-

amples, and unlabeled data in the target domain as testing

examples. In semi-supervised domain adaptation, we also

sample a small number of images from the target domain

to augment the training set. More details on how data are

split are given in the Supplementary. We report averaged

accuracies on target domains as well as standard errors.

1-nearest neighbor is used as our classifier as it does not

require cross-validating parameters. For our algorithms, the

dimensionality of subspaces are selected according to the

criterion in section 3.4. For methods we compare to, we use

what is recommended in the published work.

4.2. Results on unsupervised adaptation

Our baseline is OrigFeat, where we use original fea-

tures, ie., without learning a new representation for adap-

tation. Other types of baselines are reported in the Suppl.

For our methods, we use two types of subspaces for the



Table 1. Recognition accuracies on target domains with unsupervised adaptation (C: Caltech, A: Amazon, W: Webcam, and D: DSLR)
Method C → A C → D A → C A → W W → C W → A D → A D → W

OrigFeat 20.8±0.4 22.0±0.6 22.6±0.3 23.5±0.6 16.1±0.4 20.7±0.6 27.7±0.4 53.1±0.6

SGF[14] 36.8±0.5 32.6±0.7 35.3±0.5 31.0±0.7 21.7±0.4 27.5±0.5 32.0±0.4 66.0±0.5

GFK(PCA, PCA) 36.9±0.4 35.2±1.0 35.6±0.4 34.4±0.9 27.2±0.5 31.1±0.7 32.5±0.5 74.9±0.6

GFK(PLS, PCA) 40.4±0.7 41.1±1.3 37.9±0.4 35.7±0.9 29.3±0.4 35.5±0.7 36.1±0.4 79.1±0.7

Table 2. Recognition accuracies on target domains with semi-supervised adaptation (C: Caltech, A: Amazon, W: Webcam, and D: DSLR)
Method C → A C → D A → C A → W W → C W → A D → A D → W

OrigFeat 23.1±0.4 26.5±0.7 24.0±0.3 31.6±0.6 20.8±0.5 30.8±0.6 31.3±0.7 55.5±0.7

Metric[25] 33.7±0.8 35.0±1.1 27.3±0.7 36.0±1.0 21.7±0.5 32.3±0.8 30.3±0.8 55.6±0.7

SGF[14] 40.2±0.7 36.6±0.8 37.7±0.5 37.9±0.7 29.2±0.7 38.2±0.6 39.2±0.7 69.5±0.9

GFK(PCA, PCA) 42.0±0.5 49.5±0.8 37.8±0.4 53.7±0.8 32.8±0.7 42.8±0.7 45.0±0.7 78.7±0.5

GFK(PLS, PCA) 46.1±0.6 55.0±0.9 39.6±0.4 56.9±1.0 32.1±0.7 46.2±0.7 46.2±0.6 80.2±0.4

GFK(PLS, PLS) 38.7±0.6 38.6±1.4 36.6±0.4 36.3±0.9 28.6±0.6 36.3±0.5 35.0±0.4 74.6±0.5

source data: PCA which is the PCA subspace and PLS

which is the Partial Least Squares (PLS) subspace. PLS

is similar to PCA except it takes label information into con-

sideration, and thus can be seen as a form of supervised

dimension reduction [17]. For the target domains, we use

only PCA as there is no label. Thus, there are two vari-

ants of our kernel-based method: GFK(PCA, PCA) and

GFK(PLS, PCA).

We also implement the method described in sec-

tion 3.2 [14]. We refer to it as SGF. As the authors of this

method suggest, we use the PCA subspaces for both do-

mains. We also use the parameter settings reported in [14].

Table 1 summarizes the classification accuracies as well

as standard errors of all the above methods for different pair-

ings of the source and target domains. We report 8 pairings;

the rest are reported in the Supplementary. The best group

(differences up to one standard error) in each column are in

bold font and the second best group (differences up to one

standard error) are in italics and underlined.

All domain adaptation methods improve accuracy over

the baseline OrigFeat. Further, our GFK based methods

in general outperform SGF. Moreover, GFK(PLS, PCA)

performs the best. Two key factors may contribute to the

superiority of our method: i) the kernel integrates all the

subspaces along the flow, and is hence able to model bet-

ter the domain shift between the source and the target; ii)

this method uses a discriminative subspace (by PLS) in the

source domain to incorporate the label information. This

has the benefit of avoiding projection directions that con-

tain noise and very little useful discriminative information,

albeit making source and target domains look similar. PCA,

on the other hand, does not always yield subspaces that con-

tain discriminative information. Consequently all the im-

provements by our GFK(PLS, PCA) over SGF are statisti-

cally significant, with margins more than one standard error.

For a given target domain, there is a preferred source

domain which leads to the best performance, either using

OrigFeat or any of the domain adaptation methods. For

example, for the domain Webcam, the source domain DSLR
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Figure 3. Selecting the optimal dimensionality d
∗ with SDM (sec.

3.4); selected d
∗ (where the arrows point to) leads to the best adap-

tation performance. (Best viewed in color)

is better than the domain Amazon. This might be attributed

to the similarity in DSLR and Webcam, illustrated in Fig. 2.

We analyze this in detail in section 4.5.

4.3. Results on semi­supervised adaptation

In semi-supervised adaptation, our algorithms have ac-

cess to a small labeled set of target data. Therefore, we

also compare to GFK(PLS, PLS), and the metric learning

based method Metric [25] which uses the correspondence

between source and target labeled data to learn a Maha-

lanobis metric to map data into a new feature space.

Table 2 shows the results of all methods. Our GFK(PLS,

PCA) is still the best, followed by GFK(PCA, PCA). Note

that though GFK(PLS, PLS) incorporates discriminative

information from both domains, it does not perform as well

as GFK(PLS, PCA). This is probably due to the lack of

enough labeled data in the target domains to give a reliable

estimate of PLS subspaces. The Metric method does not

perform well either, probably due to the same reason.

As in Table 1, for a given target domain, there is a “pal”

source domain that improves the performance the most.

Moreover, this pal is the same as the one in the setting of

unsupervised domain adaptation. Thus, we believe that this

“pal” relationship is intrinsic to datasets; in section 4.5, we

will analyze them with our ROD metric.

4.4. Selecting the optimal dimensionality

Being able to choose the optimal dimensionality for the

subspaces is an important property of our methods. Fig. 3



Table 3. Cross-dataset generalization with and without domain adaptation among domains with high and low “market values” [27]
% No domain adaptation Using domain adaptation

→ P I C101 Mean Targets Drop1 P I C101 Mean Targets Drop2 Improvement

PASCAL 37.9 38.5 34.3 36.4 4% – 43.6 39.8 41.7 -10% 14%

ImageNet 38.0 47.9 40.0 39.0 19% 42.9 – 49.1 46.0 4% 18%

Caltech101 31.9 38.6 66.6 35.3 47% 34.1 37.4 – 35.8 46% 1%

Table 4. ROD values between 4 domains. Lower values signify

stronger adaptability of the corresponding source domain.
→ Caltech Amazon DSLR Webcam

Caltech 0 0.003 0.21 0.09

Amazon 0.003 0 0.26 0.05

DSLR 0.21 0.26 0 0.03

Webcam 0.09 0.05 0.03 0

shows that the subspace disagreement measure (SDM) de-

scribed in section 3.4 correlates well with recognition ac-

curacies on the target domains. In the plots, the horizontal

axis is the proposed dimensionality (in log scale) and the

right vertical axis reports accuracies on both unsupervised

domain adaptation and semi-supervised domain adaptation.

The left vertical axis reports the values of SDM.

The plots reveal two conflicting forces at play. As the di-

mensionality increases, SDM—as a proxy to difference in

geometric structures—quickly rises and eventually reaches

its maximum value of 1. Beyond that point, adaptation be-

comes difficult as the subspaces have orthogonal directions.

However, before the maximum value is reached, the ge-

ometric difference is countered by the increase in variances

— a small dimensionality would capture very little vari-

ances in the source domain data and would result in poor

accuracies on both domains. The tradeoff occurs at where

the geometric difference is just being maximized, justifying

our dimensionality selection criterion in eq. (8).

4.5. Characterizing datasets with ROD

Given a target domain and several choices of datasets

as source domains, identifying which one is the best to be

adapted not only has practical utility but also provides new

insights about how datasets are related to each other: ease

of adaptation functions as a barometer, indicating whether

two datasets are similar both geometrically and statistically,

and piercing through each dataset’s own idiosyncrasies.

To this end, we examine whether the Rank of Domain

(ROD) metric described in section 3.5 correlates with our

empirical findings in Table 1 and 2. We compute ROD using

PCA subspaces and report the values among the 4 domains

in Table 4. In general, ROD correlates well with recogni-

tion accuracies on the target domains and can reliably iden-

tify the best source domains to adapt. For example, when

Caltech is the target domain (the first column), Amazon has

the smallest value and Amazon indeed leads to better clas-

sification accuracies on Caltech than DSLR or Webcam.

If we group Caltech and Amazon into a meta-category

“Online” and DSLR and Webcam into another meta-

category “Office”, the distributions of ROD values with re-

spect to the categories suggest that the domains with the

same meta-category have stronger similarity than domain

pairs crossing categories (such as Caltech and DSLR). Thus

ROD can also be used as a measure to partition datasets

into clusters, where datasets in the same cluster share la-

tent properties that might be of surprise to their users — the

presence of such properties is probably not by design.

4.6. Easy to adapt: a new perspective on datasets?

Torralba and Efros study the sources of dataset bias in

several popular ones for object recognition [27]. To quan-

tify the quality of each dataset, they devise a “market value”

metric. Datasets with higher values are more diverse, and

therefore are likely to reflect better the richness of real-

world objects. In particular, they point out that PASCAL

VOC 2007 and ImageNet have high values.

Building on their findings, we turn the table around and

investigate: how valuable are these datasets in improving a

target domain’s performance?

Table 3 summarizes our preliminary results on a subset

of datasets used in [27]; PASCAL VOC 2007 [12], Ima-

geNet [8], and Caltech-101 [13]. The recognition tasks are

to recognize the category PERSON and CAR. The cross-

dataset generalization results are shown on the left side of

the table, without using adaptation techniques (as in [27]);

and the adaptation results using our kernel-based method

are on the right side of the table.

The rows are the source domain datasets and the columns

are the target domains. The “Drop” columns report the

percentages of drop in recognition accuracies between the

source and the averaged accuracy on target domains, ie, the

“Mean Targets” columns. The rightmost “Improvement”

column is the percentage of improvement on target domains

due to the use of domain adaptation. Clearly, domain adap-

tation noticeably improves recognition accuracies on the

target domains. Caltech-101 is the exception where the im-

provement is marginal (47% vs. 46%). This corroborates

the low “market value” assigned to this dataset in [27].

PASCAL VOC 2007 has the smallest drop without do-

main adaptation so it would appear to be a better dataset

than the other two. Once we have applied domain adapta-

tion, we observe a negative drop — ie, the performance on

the target domains is better than on the source domain itself!

However, its improvement is not as high as ImageNet’s.

Our conjecture is that the data in PASCAL VOC 2007

can be partitioned into two parts: one part is especially

“hard” to be adapted to other domains and the other part



is relatively “easy”. The reverse of the performance drop

suggests that the “easy” portion can be harvested by do-

main adaptation techniques. However, the benefit is limited

due to the “hard” part. On the other end, for ImageNet, a

larger portion of its data is perhaps amenable to adaptation.

Hence, it attains a bigger improvement after adaptation.

In short, while PASCAL VOC 2007 and ImageNet are

assigned the same “market value” in [27], their usefulness

to building object recognition systems that can be applied

to other domains needs to be carefully examined in the con-

text of adaptation. It might be beneficial to incorporate the

notion of “ease of adaptability” in the process of evaluating

datasets — a concept worth further exploring and refining.

5. Conclusion

We propose a kernel-based technique for domain adap-

tation. The techniquesembed datasets into Grassmann man-

ifolds and constructing geodesic flows between them to

model domain shift. The propose methods integrate an in-

finite number of subspaces to learn new feature represen-

tations that are robust to change in domains. On standard

benchmark tasks of object recognition, our methods consis-

tently outperform other competing algorithms.

For future work, we plan to exploit latent structures be-

yond linear subspaces for domain adaptation.
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