
Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 193-204
www.stacs-conf.org

GEODESIC FRÉCHET DISTANCE INSIDE A SIMPLE POLYGON

ATLAS F. COOK IV AND CAROLA WENK

Department of Computer Science, University of Texas at San Antonio
One UTSA Circle, San Antonio, TX 78249-0667
E-mail address: {acook,carola}@cs.utsa.edu

Abstract. We unveil an alluring alternative to parametric search that applies to both
the non-geodesic and geodesic Fréchet optimization problems. This randomized approach
is based on a variant of red-blue intersections and is appealing due to its elegance and
practical efficiency when compared to parametric search.

We present the first algorithm for the geodesic Fréchet distance between two polygonal
curves A and B inside a simple bounding polygon P . The geodesic Fréchet decision
problem is solved almost as fast as its non-geodesic sibling and requires O(N 2 log k) time
and O(k + N) space after O(k) preprocessing, where N is the larger of the complexities
of A and B and k is the complexity of P . The geodesic Fréchet optimization problem is
solved by a randomized approach in O(k +N

2 log kN log N) expected time and O(k +N
2)

space. This runtime is only a logarithmic factor larger than the standard non-geodesic
Fréchet algorithm [4]. Results are also presented for the geodesic Fréchet distance in a
polygonal domain with obstacles and the geodesic Hausdorff distance for sets of points or
sets of line segments inside a simple polygon P .

1. Introduction

The comparison of geometric shapes is essential in various applications including com-
puter vision, computer aided design, robotics, medical imaging, and drug design. The
Fréchet distance is a similarity metric for continuous shapes such as curves or surfaces
which is defined using reparametrizations of the shapes. Since it takes the continuity of the
shapes into account, it is generally a more appropriate distance measure than the often used
Hausdorff distance. The Fréchet distance for curves is commonly illustrated by a person
walking a dog on a leash [4]. The person walks forward on one curve, and the dog walks
forward on the other curve. As the person and dog move along their respective curves, a
leash is maintained to keep track of the separation between them. The Fréchet distance is
the length of the shortest leash that makes it possible for the person and dog to walk from
beginning to end on their respective curves without breaking the leash. See section 2 for a
formal definition of the Fréchet distance.

1998 ACM Subject Classification: Computational Geometry.
Key words and phrases: Fréchet Distance, Geodesic, Parametric Search, Simple Polygon.
The full version of this paper is available as a technical report [10].
This work has been supported by the National Science Foundation grant NSF CAREER CCF-0643597.

c© A.F. Cook and C. Wenk
CC© Creative Commons Attribution-NoDerivs License

STACS 2008
Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 193-204
http://drops.dagstuhl.de/opus/volltexte/2008/1330

194 A.F. COOK AND C. WENK

Most previous work assumes an obstacle-free environment where the leash connecting
the person to the dog has its length defined by an Lp metric. In [4] the Fréchet distance
between polygonal curves A and B is computed in arbitrary dimensions for obstacle-free
environments in O(N 2 log N) time, where N is the larger of the complexities of A and B.
Rote [23] computes the Fréchet distance between piecewise smooth curves. Buchin et al. [7]
show how to compute the Fréchet distance between two simple polygons. Fréchet distance
has also been used successfully in the practical realm of map matching [26]. All these works
assume a leash length that is defined by an Lp metric.

This paper’s contribution is to measure the leash length by its geodesic distance inside
a simple polygon P (instead of by its Lp distance). To our knowledge, there are only two
other works that employ such a leash. One is a workshop article [18] that computes the
Fréchet distance for polygonal curves A and B on the surface of a convex polyhedron in
O(N3k4 log(kN)) time. The other paper [12] applies the Fréchet distance to morphing by
considering the polygonal curves A and B to be obstacles that the leash must go around.
Their method works in O(N 2 log2 N) time but only applies when A and B both lie on the
boundary of a simple polygon. Our work can handle both this case and more general cases.
We consider a simple polygon P to be the only obstacle and the curves, which may intersect
each other or self-intersect, both lie inside P .

A core insight of this paper is that the free space in a geodesic cell (see section 2) is
x-monotone, y-monotone, and connected. We show how to quickly compute a cell boundary
and how to propagate reachability through a cell in constant time. This is sufficient to
solve the geodesic Fréchet decision problem. To solve the geodesic Fréchet optimization
problem, we replace the standard parametric search approach by a novel and asymptotically
faster (in the expected case) randomized algorithm that is based on red-blue intersection
counting. We show that the geodesic Fréchet distance between two polygonal curves inside
a simple bounding polygon can be computed in O(k + N 2 log kN log N) expected time and
O(k + N3 log kN) worst-case time, where N is the larger of the complexities of A and B

and k is the complexity of the simple polygon. The expected runtime is almost a quadratic
factor in k faster than the straightforward approach, similar to [12], of partitioning each
cell into O(k2) subcells. Briefly, these subcells are simple combinatorial regions based on
pairs of hourglass intervals. It is notable that the randomized algorithm also applies to
the non-geodesic Fréchet distance in arbitrary dimensions. We also present algorithms to
compute the geodesic Fréchet distance in a polygonal domain with obstacles and the geodesic
Hausdorff distance for sets of points or sets of line segments inside a simple polygon.

2. Preliminaries

Let k be the complexity of a simple polygon P that contains polygonal curves A and
B in its interior. In general, a geodesic is a path that avoids all obstacles and cannot be
shortened by slight perturbations [20]. However, a geodesic inside a simple polygon is simply
a unique shortest path between two points. Let π(a, b) denote the geodesic inside P between
points a and b. The geodesic distance d(a, b) is the length of a shortest path between a and
b that avoids all obstacles, where length is measured by L2 distance.

Let ↓, ↑, and ↓↑ denote decreasing, increasing, and decreasing then increasing functions,
respectively. For example, “H is ↓↑-bitonic” means that H is a function that decreases
monotonically then increases monotonically. A bitonic function has at most one change in
monotonicity.

GEODESIC FRÉCHET DISTANCE INSIDE A SIMPLE POLYGON 195

Ma aM
Mbp

aM

b

p

b b d

cacaa c

p
d d

Figure 1: Shortest paths in the hourglass Hab,cd define Hab, cd.

The Fréchet distance for two curves A,B : [0, 1] → R
l is defined as

δF (A,B) = inf
f,g:[0,1]→[0,1]

sup
t∈[0,1]

d′(A(f(t)), B(g(t)))

where f and g range over continuous non-decreasing reparametrizations and d ′ is a distance
metric for points, usually the L2 distance, and in our setting the geodesic distance. For a
given ε > 0 the free space is defined as FSε(A,B) = {(s, t) | d′(A(s), B(t)) ≤ ε} ⊆ [0, 1]2. A
free space cell C ⊆ [0, 1]2 is the parameter space defined by two line segments ab ∈ A and
cd ∈ B, and the free space inside the cell is FSε(ab, cd) = FSε(A,B) ∩ C.

The decision problem to check whether the Fréchet distance is at most a given ε > 0 is
solved by Alt and Godau [4] using a free space diagram which consists of all free space cells
for all pairs of line segments of A and B. Their dynamic programming algorithm checks
for the existence of a monotone path in the free space from (0, 0) to (1, 1) by propagating
reachability information cell by cell through the free space.

2.1. Funnels and Hourglasses

Geodesics in a free space cell C can be described by either the funnel or hourglass
structure of [14]. A funnel describes all shortest paths between a point and a line segment,
so it represents a horizontal (or vertical) line segment in C. An hourglass describes all
shortest paths between two line segments and represents all distances in C.

The funnel Fp,cd describes all shortest paths between an apex point p and a line segment

cd. The boundary of Fp,cd is the union of the line segment cd and the shortest path chains

π(p, c) and π(p, d). The hourglass Hab,cd describes all shortest paths between two line

segments ab and cd. The boundary of Hab,cd is composed of the two line segments ab,

cd and at most four shortest path chains involving a, b, c, and d. See Figure 1. Funnel and
hourglass boundaries have O(k) complexity because shortest paths inside a simple polygon
P are acyclic, polygonal, and only have corners at vertices of P [15].

Any horizontal or vertical line segment in a geodesic free space cell is associated with
a funnel’s distance function Fp, cd : [c, d] → R with Fp, cd(q) = d(p, q). The below three

results are generalizations of Euclidean properties and are omitted. See [10] for details.

Lemma 2.1. Fp, cd is ↓↑-bitonic.

Corollary 2.2. Any horizontal (or vertical) line segment in a free space cell has at most
one connected set of free space values.

Consider the hourglass Hab, cd in Figure 1. Let the shortest distance from a to any point

on cd occur at Ma ∈ cd. Define Mb similarly. As p varies from a to b, the minimum distance
from p to cd traces out a function Hab, cd : [a, b] → R with Hab, cd(p) = minq∈[c,d] d(p, q).

196 A.F. COOK AND C. WENK

Lemma 2.3. Hab, cd is ↓↑-bitonic.

3. Geodesic Cell Properties

Consider a geodesic free space cell C for polygonal curves A and B inside a simple
polygon. Let ab ∈ A and cd ∈ B be the two line segments defining C.

Lemma 3.1. For any ε, cell C contains at most one free space region R, and R is x-
monotone, y-monotone, and connected.

Proof. The monotonicity of R follows from Corollary 2.2. For connectedness, choose any two
free space points (p1, q1), (p2, q2), and construct a path connecting them in the free space
as follows: move vertically from (p1, q1) to the minimum point on its vertical. Do the same
for (p2, q2). By Lemma 2.1, this movement causes the distance to decrease monotonically.
By Lemma 2.3, any two minimum points are connected by a ↓↑-bitonic distance function
Hab, cd (cf. section 2.1), but as the starting points are in the free space – and therefore have

distance at most ε – all points on this constructed path lie in the free space.

Given C’s boundaries, it is possible to propagate reachability information (see section
2) through C in constant time. This follows from the monotonicity and connectedness of
the free space in C and is useful for solving the geodesic decision problem.

4. Red-Blue Intersections

This section shows how to efficiently count and report a certain type of red-blue inter-
sections in the plane. This problem is interesting both from theoretical and applied stances
and will prove useful in section 5.3 for the Fréchet optimization problem.

Let R be a set of m “red” curves in the plane such that every red curve is continuous,
x-monotone, and monotone decreasing. Let B be a set of n “blue” curves in the plane where
each blue curve is continuous, x-monotone, and monotone increasing. Assume that the
curves are defined in the slab [α, β] × R, and let I(k) be the time to find the at most one
intersection of any red and blue curve.1

Theorem 4.1. The number of red-blue intersections between R and B in the slab [α, β]×R

can be counted in O(N log N) total time, where N = max(m,n). These intersections can be
reported in O(N log N + K · I(k)) total time, where K is the total number of intersections
reported. After O(N log N) preprocessing time, a random red-blue intersection in [α, β]×R

can be returned in O(log N + I(k)) time, and the red curve involved in the most red-blue
intersections can be returned in O(1) time. All operations require O(N) space.2

Proof Sketch. Figure 2 illustrates the key idea. Suppose a red curve r3(x) lies above a blue
curve b2(x) at x = α. If it is also true that r3(x) lies below b2(x) at x = β, then these
monotone curves must intersect in [α, β] × R. Two sorted lists Lα, Lβ of curve values store
how many blue curves lie below each red curve at x = α and x = β. Subtracting the values
in Lα and Lβ yields the number of actual intersections for each red curve in [α, β]×R (and

1There is at most one intersection due to the monotonicities of the red and blue curves.
2Palazzi and Snoeyink [21] also count and report red-blue intersections using a slab-based approach.

However, their work is for line segments instead of curves, and they require that all red segments are disjoint
and all blue segments are disjoint. We have no such disjointness requirement.

GEODESIC FRÉCHET DISTANCE INSIDE A SIMPLE POLYGON 197

max

ymin
b1

r2

b2

r3

r1

r3
b2

r1 r3

r1r2

b1 b1

r2

b2

Lα Lβ

β
x

α
(x)

(x)
(x)
(x)

(x)

y

5
4

2
1

3

Index

(α)
2

1
(α) 1 (β)

(β)
1
1
1

(α)

(α)

(α) (β)

(β)

y

(β)

Figure 2: r3(x) lies above two blue curves at x = α but only lies above one blue curve at
x = β. Subtraction reveals that r3(x) has one intersection in the slab [α, β] × R.

also reveals the red curve that is involved in the most intersections). Intersection counting
simply sums up these values. Intersection reporting builds a balanced tree from Lα and Lβ.

To find a random red-blue intersection in [α, β] × R, precompute the number κ of red-
blue intersections in [α, β]×R. Pick a random integer between 1 and κ and use the number
of intersections stored for each red curve to locate the particular red curve ri(x) that is
involved in the randomly selected intersection. By searching a persistent version of the
reporting structure [24], ri(x)’s jth red-blue intersection can be returned in O(log N + I(k))
query time after O(N log N) preprocessing time.

5. Geodesic Fréchet Algorithm

5.1. Computing One Cell’s Boundaries in O(log k) Time

A boundary of a free space cell is a horizontal (or vertical) line segment. This boundary
can be associated with a funnel Fp,cd that has a ↓↑-bitonic distance function Fp, cd (cf.

Lemma 2.1). Given ε ≥ 0, computing the free space on a cell boundary requires finding the
(at most two) values t1, t2 such that Fp, cd(t1) = Fp, cd(t2) = ε (see Figure 3).

ε

c)

cd

α1 αv α4

α5

α2
}

I5
I4

Iv
I2

I1

t 2

I2
I1

I4

Iv

I5

a)

p

c

1
2

v 4 5

d

t 1

Fp, cd

Free Spacey=

b)

Figure 3: a & b) A funnel Fp, cd is associated with a cell boundary and has a bitonic dis-

tance function Fp, cd. c) The (at most two) values t1, t2 such that Fp, cd(t1) =

Fp, cd(t2) = ε define the free space on a cell boundary.

Lemma 5.1. Both the minimum value of Fp, cd and the (at most two) values t1, t2 such that

Fp, cd(t1) = Fp, cd(t2) = ε can be found for any ε ≥ 0 in O(log k) time (after preprocessing).

Proof Sketch. After O(k) shortest path preprocessing [13, 16], a binary search is performed
on the O(k) arcs of Fp, cd in O(log k) time. See our full paper [10] for details.

198 A.F. COOK AND C. WENK

bkj

ε

aij(ε) bij(ε)

ε

aij(ε) bkj(ε)Ckj

c) Distance function with a
type (c) critical valuetype (b) critical value

b) Distance function with aa) Free Space Diagram

Critical value
Critical value

Cij

1.00.0 0.0 1.0
Position on cell boundary

b

Position on cell boundary

ij

aij

akj

Figure 4: Critical values of the Fréchet distance

Corollary 5.2. The free space on all four boundaries of a free space cell can be found in
O(log k) time by computing t1 and t2 for each boundary.

5.2. Geodesic Fréchet Decision Problem

Theorem 5.3. After preprocessing a simple polygon P for shortest path queries in O(k)
time [13], the geodesic Fréchet decision problem for polygonal curves A and B inside P can
be solved for any ε ≥ 0 in O(N 2 log k) time and O(k + N) space.

Proof. Following the standard dynamic programming approach of [4], compute all cell bound-
aries in O(N 2 log k) time (cf. Corollary 5.2), and propagate reachability information through
all cells in O(N 2) time. O(k) space is needed for the preprocessing structures of [13], and
only O(N) space is needed for dynamic programming if two rows of the free space diagram
are stored at a time.

5.3. Geodesic Fréchet Optimization Problem

Let ε∗ be the minimum value of ε such that the Fréchet decision problem returns true.
That is, ε∗ equals the Fréchet distance δF (A,B). Parametric search is a technique commonly
used to find ε∗ (see [3, 4, 9, 25]).3 The typical approach to find ε∗ is to sort all the cell
boundary functions based on the unknown parameter ε∗. The comparisons performed during
the sort guarantee that the result of the decision problem is known for all “critical values”
[4] that could potentially define ε∗. Traditionally, such a sort operates on cell boundaries
of constant complexity. The geodesic case is different because each cell boundary has O(k)
complexity. As a result, a straightforward parametric search based on sorting these values
would require O(kN 2 log kN) time even when using Cole’s [9] optimization.4

We present a randomized algorithm with expected runtime O(k +N 2 log kN log N) and
worst-case runtime O(k + N 3 log kN). This algorithm is an order of magnitude faster than
parametric search in the expected case.

Each cell boundary has at most one free space interval (cf. Lemma 2.1). The upper
boundary of this interval is a function bij(ε), and the lower boundary of this interval is a
function aij(ε). See Figure 4a. The seminal work of Alt and Godau [4] defines three types

3An easier to implement alternative to parametric search is to run the decision problem once for every
bit of accuracy that is desired. This approach runs in O(BN

2 log k) time and O(k + N) space, where B is
the desired number of bits of accuracy [25].

4A variation of the general sorting problem called the “nuts and bolts” problem (see [17]) is tantalizingly
close to an acceptable O(N2 log N) sort but does not apply to our setting.

GEODESIC FRÉCHET DISTANCE INSIDE A SIMPLE POLYGON 199

of critical values that are useful for computing the exact geodesic Fréchet distance. There
are exactly two type (a) critical values associated with distances between the starting points
of A and B and the ending points of A and B. Type (b) critical values occur O(N 2) times
when aij(ε) = bij(ε). See Figure 4b. Type (a) and (b) critical values occur O(N 2) times
and are easily handled in O(N 2 log k log N) time. This process involves computing values in
O(N2 log k) time, sorting in O(N 2 log N) time, and running the decision problem in binary
search fashion O(log N) times. Resolving the type (a) and (b) critical values as a first step
will simplify the randomized algorithm for the type (c) critical values.

Alt and Godau [4] show that type (c) critical values occur when the position of aij(ε)
in cell Cij equals the position of bkj(ε) in cell Ckj in the free space diagram. See Figure
4a. As ε increases, by Lemma 2.1, aij(ε) is ↓-monotone on the cell boundary and bij(ε) is
↑-monotone (see Figure 4b). As illustrated in Figure 4c, aij(ε) and bkj(ε) intersect at most
once. This follows from the monotonicities of aij(ε) and bkj(ε). Hence, there are O(N 2)
intersections of aij(ε) and bkj(ε) in row j and a total of O(N 3) type (c) critical values over
all rows. There are also O(N 2) intersections of aij(ε) and bik(ε) in column i and a total of
O(N3) additional type (c) critical values over all columns.

Lemma 5.4. The intersection of aij(ε) and bkl(ε) can be found for any ε ≥ 0 in O(log k)
time after preprocessing.

Proof Sketch. Build binary search trees for aij(ε) and bkl(ε) and perform a binary search.
See our full paper [10] for details.

Theorem 4.1 requires that all aij(ε) and bkl(ε) are defined in the slab [α, β] × R that
contains ε∗. Precomputing the type (a) and type (b) critical values of [4] shrinks the slab
such that no left endpoint of any relevant aij(ε), bkl(ε) appears in [α, β]×R when processing
the type (c) critical values. In addition, aij(ε), bkl(ε) can be extended horizontally so that no
right endpoint appears in [α, β]×R. These changes do not affect the asymptotic number of
intersections and allow Theorem 4.1 to count and report type (c) critical values in [α, β]×R.

The below randomized algorithm solves the geodesic Fréchet optimization problem in
O(k + N2 log kN log N) expected time. This is faster than the standard parametric search
approach which requires O(kN 2 log kN) time.

Randomized Optimization Algorithm

(1) Precompute and sort all type (a) and type (b) critical values in O(N 2 log kN) time
(cf. Lemma 5.1). Run the decision problem O(log N) times to resolve these values
and shrink the potential slab for ε∗ down to [α, β] × R in O(N 2 log k log N) time.

(2) Count the number κj of type (c) critical values for each row j in the slab [α, β] ×R

using Theorem 4.1. Let Cj be the resulting counting data structure for row j.
(3) To achieve a fast expected runtime, pick a random intersection ϑj for each row using

Cj.
5 See Theorem 4.1.

(4) To achieve a fast worst-case runtime, use Cj to find the aMj(ε) curve in each row that
has the most intersections (see Theorem 4.1). Add all intersections in [α, β]×R that
involve aMj(ε) to a global pool P of unresolved critical values6 and delete aMj(ε)
from any future consideration.

5Picking a critical value at random is related to the distance selection problem [6] and is mentioned in [2],
but to our knowledge, this alternative to parametric search has never been applied to the Fréchet distance.

6The idea of a global pool is similar to Cole’s optimization for parametric search [9].

200 A.F. COOK AND C. WENK

(5) Find the median Ξ of the values in P in O(N 2) time using the standard median
algorithm mentioned in [17]. Also find the median Ψ of the O(N) randomly selected
ϑj in O(N) time using a weighted median algorithm based on the number of critical
values κj for each row j.

(6) Run the decision problem twice: once on Ξ and once on Ψ. This shrinks the search
slab [α, β] × R and at least halves the size of P. Repeat steps 2 through 6 until all
row -based type (c) critical values have been resolved.

(7) Resolve all column-based type (c) critical values in the same spirit as steps 2 through
6 and return the smallest critical value that satisfied the decision problem as the value
of the geodesic Fréchet distance.

Theorem 5.5. The exact geodesic Fréchet distance between two polygonal curves A and B

inside a simple bounding polygon P can be computed in O(k + N 2 log kN log N) expected
time and O(k + N 3 log kN) worst-case time, where N is the larger of the complexities of A

and B and k is the complexity of P . O(k + N 2) space is required.

Proof. Preprocess P once for shortest path queries in O(k) time [13]. In the expected case,
each execution of the decision problem will eliminate a constant fraction of the remaining
type (c) critical values due to the proof of Quicksort’s expected runtime and the median of
medians approach for Ψ. Consequently, the expected number of iterations of the algorithm
is O(log N 3) = O(log N).

In the worst-case, each of the O(N) aij(ε) in a row will be picked as aMj(ε). Therefore,
each row can require at most O(N) iterations. Since all rows are processed each iteration,
the entire algorithm requires at most O(N) iterations for row -based critical values. By a
similar argument, column-based critical values also require at most O(N) iterations.

The size of the pool P is expressed by the inequality S(x) ≤ S(x−1)+O(N2)
2 , where x

is the current step number, and S(0) = 0. Intuitively, each step adds O(N 2) values to P
and then at least half of the values in P are always resolved using the median Ξ. It is not
difficult to show that S(x) ∈ O(N 2) for any step number x.

Each iteration of the algorithm requires intersection counting and intersection calcula-
tions for O(N) rows (or columns) at a cost of O(N 2 log kN) time. In addition, the global
pool P has its median calculated in O(N 2) time, and the decision problem is executed in
O(N2 log k) time. Consequently, the expected runtime is O(k + N 2 log kN log N) and the
worst-case runtime is O(k+N 3 log kN) including O(k) preprocessing time [13] for geodesics.
The preprocessing structures use O(k) space that must remain allocated throughout the al-
gorithm, and the pool P uses O(N 2) additional space.

Although the exact non-geodesic Fréchet distance is normally found in O(N 2 log N) time
using parametric search (see [4]), parametric search is often regarded as impractical because
it is difficult to implement7 and involves enormous constant factors [9]. To the best of our
knowledge, the randomized algorithm in section 5.3 provides the first practical alternative
to parametric search for solving the exact non-geodesic Fréchet optimization problem in R

l.

Theorem 5.6. The exact non-geodesic Fréchet distance between two polygonal curves A

and B in R
l can be computed in O(N 2 log2 N) expected time, where N is the larger of the

complexities of A and B. O(N 2) space is required.

7Quicksort-based parametric search has been implemented by van Oostrum and Veltkamp [25] using a
complex framework.

GEODESIC FRÉCHET DISTANCE INSIDE A SIMPLE POLYGON 201

b)

B

I2
I1

I4

Iv

I5

B
p

c

1
2

4 5

d

v

a)

o

c)

Funnel

Figure 5: a) A funnel for a δC -cell can be found by extending a cell’s initial leash along one
segment to create a path sketch and then b) snapping this sketch into a homotopic
shortest path. c) A funnel Fo, cd has O(kN) complexity, but the distance function

Fo, cd has only O(k) complexity because d(o, p) is a constant.

Proof. The argument is very similar to the proof of Theorem 5.5. The main difference is
that non-geodesic distances can be computed in O(1) time (instead of O(log k) time).

6. Geodesic Fréchet Distance in a Polygonal Domain with Obstacles

Consider the real-life situation of a person walking a dog in a park. If the person and
dog walk on opposite sides of a group of trees, then the leash must go around the trees. More
formally, suppose the two polygonal curves A and B lie in a planar polygonal domain D [19]
of complexity k. The leash is required to change continuously, i.e., it must stay inside D and
may not pass through or jump over an obstacle. It may, however, cross itself. Let δC be the
geodesic Fréchet distance for this scenario when the leash length is measured geodesically.8

Due to the continuity of the leash’s motion, the free space inside a geodesic cell is
represented by an hourglass – just as it was for the geodesic Fréchet distance inside a simple
polygon. Hence, free space in a cell is x-monotone, y-monotone, and connected (cf. Lemma
3.1), and reachability information can be propagated through a cell in constant time.

The main task in computing δC is to construct all cell boundaries. Once the cell bound-
aries are known, the decision and optimization problems can be solved by the algorithms
for the geodesic Fréchet distance inside a simple polygon (cf. Theorems 5.3 and 5.5). We
use Hershberger and Snoeyink’s homotopic shortest paths algorithm [16] to incrementally
construct all cell boundary funnels needed to compute δC . To use the homotopic algorithm,
the polygonal domain D should be triangulated in O(k log k) time [19], and all obstacles
should be replaced by their vertices. A shortest path map [19] can find an initial geodesic
leash LI between the start points of the polygonal curves A and B in O(k log k) time.

Lemma 6.1. Given the initial leash for the bottom-left corner of a δC -cell C, all four funnel
boundaries of C and the initial leashes for cells adjacent to C can be computed in O(k) time.

Proof. The funnels representing cell boundaries are constructed incrementally. The idea is
to extend the initial leash into a homotopic “sketch” that describes how the shortest path
should wind through the obstacles and then to “snap” this sketch into a shortest path (see
Figures 5a and 5b).

8We recently learned that this topic has been independently explored in [8].

202 A.F. COOK AND C. WENK

Homotopic shortest paths have increased complexity over normal shortest paths because
they can loop around obstacles. For example, if the person walks in a triangular path
around all the obstacles, then the leash follows a homotopic shortest path that can have
O(k) complexity in a single cycle around the obstacles. By repeatedly winding around the
obstacles O(N) times, a path achieves O(kN) complexity.

To avoid spending O(kN) time per cell, we extend a previous homotopic shortest path
into a sketch by appending a single line segment to the previous path (see Figure 5a). Adding
this single segment can unwind at most one loop over a subset of obstacles, so only the most
recent O(k) vertices of the sketch will need to be updated when the sketch is snapped into
the true homotopic shortest path. A turning angle is used to identify these O(k) vertices by
backtracking on the sketch until the angle is at least 2π different from the final angle.

Putting all this together, a boundary for a free space cell can be computed in O(k)
time by starting with an initial leash LI of O(kN) complexity, constructing a homotopic
sketch by appending a single segment to LI , backtracking with a turning angle to find O(k)
vertices that are eligible to be changed, and finally “snapping” these O(k) vertices to the
true homotopic shortest path using Hershberger and Snoeyink’s algorithm [16]. The result
is a funnel that describes one cell boundary.

By extending LI in four combinatorially distinct ways, all four cell boundaries can be
defined. Specifically, we can extend LI along the current ab ∈ A segment to form the first
funnel or along the cd ∈ B segment to form the second funnel. The third funnel is created
by extending LI along ab ∈ A and then cd ∈ B. The fourth funnel is created by extending
LI along cd ∈ B and then ab ∈ A. These cell boundaries conveniently define the initial leash
for cells that are adjacent to C.

Theorem 6.2. The δC decision problem can be solved in O(kN 2) time and O(k+N) space.

Proof. Each cell boundary is a funnel Fo, cd with O(kN) complexity [11]. However, this high
complexity is a result of looping over obstacles, and most of these points do not affect the
funnel’s distance function Fo, cd. As illustrated in Figure 5c, Fo, cd has only O(k) complexity

because only vertices π(p, c) ∪ π(p, d) contribute arcs to Fo, cd.

Construct all cell boundary funnels in O(kN 2) time (cf. Lemma 6.1), intersect each
funnel’s distance function with y = ε in O(N 2 log k) time, and propagate reachability in-
formation in O(N 2) time. Only O(k + N) space is needed for dynamic programming when
storing only two rows at a time.

Theorem 6.3. The δC optimization problem can be solved in O(kN 2 + N2 log kN log N)
expected time and O(kN 2) space.9

Proof. The δC optimization problem can be solved using red-blue intersections. O(log N)
steps are performed in the expected case by Theorem 5.5. Each step has to perform in-
tersection counting in O(N 2 log kN) time and solve the decision problem. If the funnels
are precomputed in O(kN 2) time and space, then the decision problem can be solved in
O(N2 log k) time. Hence, after O(kN 2) time and space preprocessing, δC can be found in
O(log N) expected steps where each step takes O(N 2 log kN) time.

9If space is at a premium, the algorithm can also run with O(k + N
2) space and O(kN

2 log N +
N

2 log kN log N) expected time by recomputing the funnels each time the decision problem is computed.
Note that O(N2) storage is required for the red-blue intersections algorithm (cf. Theorem 5.5).

GEODESIC FRÉCHET DISTANCE INSIDE A SIMPLE POLYGON 203

7. Geodesic Hausdorff Distance

Hausdorff distance is a similarity metric commonly used to compare sets of points or
sets of line segments. The directed geodesic Hausdorff distance can be formally defined
as δ̃H(A,B) = supa∈A infb∈B d(a, b), where A and B are sets and d(a, b) is the geodesic
distance between a and b (see [4, 5]). The undirected geodesic Hausdorff distance is the

larger of the two directed distances: δH(A,B) = max(δ̃H(A,B), δ̃H(B,A)).

Theorem 7.1. δH(A,B) for point sets A,B inside a simple polygon P can be computed in
O((k + N) log(k + N)) time and O(k + N) space, where N is the larger of the complexities
of A and B and k is the complexity of P . If A and B are sets of line segments, δH(A,B)
can be computed in O(kN 2α(kN) log kN) time and O(kNα(kN) log kN) space.

Proof Sketch. A geodesic Voronoi diagram [22] finds nearest neighbors when A and B are
point sets. When A and B are sets of line segments, all nearest neighbors for a line segment
can be found by computing a lower envelope [1] of O(N) hourglass distance functions. The
largest nearest neighbor distance over all line segments is δH(A,B).

8. Conclusion

To compute the geodesic Fréchet distance between two polygonal curves inside a simple
polygon, we have proven that the free space inside a geodesic cell is x-monotone, y-monotone,
and connected. By extending the shortest path algorithms of [13, 16], the boundaries of a
single free space cell can be computed in logarithmic time, and this leads to an efficient
algorithm for the geodesic Fréchet decision problem.

A randomized algorithm based on red-blue intersections solves the geodesic Fréchet
optimization problem in lieu of the standard parametric search approach. The randomized
algorithm is also a practical alternative to parametric search for the non-geodesic Fréchet
distance in arbitrary dimensions.

We can compute the geodesic Fréchet distance between two polygonal curves A and B

inside a simple bounding polygon P in O(k+N 2 log kN log N) expected time, where N is the
larger of the complexities of A and B and k is the complexity of P . In the expected case, the
randomized optimization algorithm is an order of magnitude faster than a straightforward
parametric search that uses Cole’s [9] optimization to sort O(kN 2) values.

The geodesic Fréchet distance in a polygonal domain with obstacles enforces a homotopy
on the leash. It can be computed in the same manner as the geodesic Fréchet distance inside
a simple polygon after computing cell boundary funnels using Hershberger and Snoeyink’s
homotopic shortest paths algorithm [16]. Future work could attempt to compute these
funnels in O(log k) time instead of O(k) time. The geodesic Hausdorff distance for point
sets inside a simple polygon can be computed using geodesic Voronoi diagrams. The geodesic
Hausdorff distance for line segments can be computed using lower envelopes; future work
could speed up this algorithm by developing a geodesic Voronoi diagram for line segments.

References

[1] P. K. Agarwal and M. Sharir. Davenport–Schinzel sequences and their geometric applications. Technical
Report Technical report DUKE–TR–1995–21, 1995.

204 A.F. COOK AND C. WENK

[2] P. K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM Comput. Surv.,
30(4):412–458, 1998.

[3] P. K. Agarwal, M. Sharir, and S. Toledo. Applications of parametric searching in geometric optimization.
volume 17, pages 292–318, Duluth, MN, USA, 1994. Academic Press, Inc.

[4] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. International
Journal of Computational Geometry and Applications, 5:75–91, 1995.

[5] H. Alt, C. Knauer, and C. Wenk. Comparison of distance measures for planar curves. Algorithmica,
38(1):45–58, 2003.

[6] S. Bespamyatnikh and M. Segal. Selecting distances in arrangements of hyperplanes spanned by points.
volume 2, pages 333–345, September 2004.

[7] K. Buchin, M. Buchin, and C. Wenk. Computing the Fréchet distance between simple polygons in
polynomial time. SoCG: 22nd Symposium on Computational Geometry, pages 80–87, 2006.

[8] E. W. Chambers, É. C. de Verdière, J. Erickson, S. Lazard, F. Lazarus, and S. Thite. Walking your dog
in the woods in polynomial time. 17th Fall Workshop on Computational Geometry, 2007.

[9] R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM, 34(1):200–208,
1987.

[10] A. F. Cook IV and C. Wenk. Geodesic Fréchet and Hausdorff distance inside a simple polygon. Technical
Report CS-TR-2007-004, University of Texas at San Antonio, August 2007.

[11] C. A. Duncan, A. Efrat, S. G. Kobourov, and C. Wenk. Drawing with fat edges. Int. J. Found. Comput.
Sci., 17(5):1143–1164, 2006.

[12] A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali. New similarity measures
between polylines with applications to morphing and polygon sweeping. Discrete & Computational
Geometry, 28(4):535–569, 2002.

[13] L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. J. Comput. Syst.
Sci., 39(2):126–152, 1989.

[14] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear time algorithms for visibility
and shortest path problems inside simple polygons. pages 1–13, 1986.

[15] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms for visibility
and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209–233, 1987.

[16] J. Hershberger. A new data structure for shortest path queries in a simple polygon. Inf. Process. Lett.,
38(5):231–235, 1991.

[17] J. Komlós, Y. Ma, and E. Szemerédi. Matching nuts and bolts in O(n log n) time. SODA: 7th ACM-
SIAM Symposium on Discrete Algorithms, pages 232–241, 1996.

[18] A. Maheshwari and J. Yi. On computing Fréchet distance of two paths on a convex polyhedron. EWCG
2005, pages 41–4, 2005.

[19] J. S. B. Mitchell. Geometric shortest paths and network optimization. Handbook of Computational
Geometry, 1998.

[20] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete geodesic problem. SIAM J.
Comput., 16(4):647–668, 1987.

[21] L. Palazzi and J. Snoeyink. Counting and reporting red/blue segment intersections. CVGIP: Graph.
Models Image Process., 56(4):304–310, 1994.

[22] E. Papadopoulou and D. T. Lee. A new approach for the geodesic Voronoi diagram of points in a simple
polygon and other restricted polygonal domains. Algorithmica, 20(4):319–352, 1998.

[23] G. Rote. Computing the Fréchet distance between piecewise smooth curves. Technical Report ECG-
TR-241108-01, May 2005.

[24] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Commun. ACM,
29(7):669–679, 1986.

[25] R. van Oostrum and R. C. Veltkamp. Parametric search made practical. SoCG: 18th Symposium on
Computational Geometry, pages 1–9, 2002.

[26] C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-matching speed: Localizing global
curve-matching algorithms. 18th Int’l Conf. on Sci. and Statistical Database Mgmt (SSDBM), pages
379–388, 2006.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

