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Abstract

Interactive segmentation is useful for selecting objects of

interest in images and continues to be a topic of much study.

Methods that grow regions from foreground/background

seeds, such as the recent geodesic segmentation approach,

avoid the boundary-length bias of graph-cut methods but

have their own bias towards minimizing paths to the seeds,

resulting in increased sensitivity to seed placement. The

lack of edge modeling in geodesic or similar approaches

limits their ability to precisely localize object boundaries,

something at which graph-cut methods generally excel.

This paper presents a method for combining geodesic-

distance information with edge information in a graph-

cut optimization framework, leveraging the complementary

strengths of each. Rather than a fixed combination we

use the distinctiveness of the foreground/background color

models to predict the effectiveness of the geodesic distance

term and adjust the weighting accordingly. We also intro-

duce a spatially varying weighting that decreases the po-

tential for shortcutting in object interiors while transferring

greater control to the edge term for better localization near

object boundaries. Results show our method is less prone to

shortcutting than typical graph cut methods while being less

sensitive to seed placement and better at edge localization

than geodesic methods. This leads to increased segmenta-

tion accuracy and reduced effort on the part of the user.

1. Introduction

Segmentation is one of the most fundamental and well-

studied problems in computer vision. Because of the in-

herent difficulty and ambiguity, many methods use inter-

active segmentation, which allows a user to supply infor-

mation regarding the object of interest. Many forms of

interaction have been used, ranging from loosely tracing

the desired boundary (e.g., [3, 10, 13, 21, 30]) to loosely

marking parts of the desired object and/or background

(e.g., [2,5,6,11,18,22,23,27]) to loosely placing a bounding

box around the desired object (e.g., [16, 24]). In all forms,

the goal is to allow the user to accurately select objects of

interest with minimal effort.

We focus here on approaches where the user marks or

a) Geodesic Segmentation b) Standard Graph Cut

c) Geodesic Graph Cut d) Geodesic Confidence

Figure 1. Geodesic graph cut. Without edge information,

geodesic segmentation alone can fail in areas where the fore-

ground/background colors are not distinct (a). Graph cut segmen-

tation does a better job of aligning with edges but is susceptible

to short-cutting (b). Graph-cut optimization with an automatically

tuned geodesic-distance region term leverages the strengths of the

approaches and more accurately selects the object (c). In addi-

tional to global tuning, spatially adaptive weighting (d) is used to

prevent boundary placement in clearly foreground (red) or back-

ground (blue) regions, shifting greater control to the edge-finding

component when uncertain (black).

“scribbles” on parts of the desired foreground and back-

ground regions to seed the segmentation (Figure 1). Such

approaches are popular because they generally require less

precise input from the user, allowing them to loosely mark

broader interior regions instead of more finely tracing near

object boundaries, though each approach can sometimes

be advantageous. Allowing the user to draw a bounding

box [24] is simpler in many cases, though may not provide

sufficient control in all cases, in which scribble-based cor-

rections are often employed to refine the results.

Many methods for seeded segmentation expand outward

from the seeds to selectively fill the desired region, either

explicitly [2,22,23,33] or conceptually [11]. Because these

approaches work from the interior of the selected object

outwards and do not explicitly consider the object bound-

ary, they are particularly useful for selecting objects with
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complex boundaries such as those with long, thin parts.

However, because these expansions are monotonic, these

approaches suffer from a bias that favors shorter paths back

to the seeds. As a result, they can be sensitive to seed place-

ment, as illustrated for geodesic segmentation in Figure 2.

Because they lack an explicit edge component, these meth-

ods may also fail to accurately localize object boundaries.

The stronger the image edges are, the more likely these

methods are to make these transitions here, but this is not

guaranteed, as illustrated for geodesic segmentation in Fig-

ure 3.

The most popular approach to seeded segmentation is

currently the graph-cut approach of [5], with numerous pro-

posed variations (e.g., [18]). This method combines explicit

edge-finding and region-modeling components, formulated

as a weighted combination and optimized by framing the

problem as a minimum cut in a weighted graph that parti-

tions foreground seeds from background seeds. (See Sec-

tion 3 for a more detailed description.) In its original form

(and most subsequent forms) the region term uses fore-

ground/background color models inferred from the respec-

tive seed pixels. This region/edge combination can be an

effective method in many cases, frequently improving on

edge- or region-based segmentation methods alone.

However, because the boundary term in graph-cut meth-

ods consists of a summation over the boundary of the seg-

mented regions, there is an inherent and well-known bias

towards shorter paths, sometimes known as the length or

shrinking bias. (This length bias predates graph-cut meth-

ods and is present in earlier least-cost path approaches [21].)

This can be especially noticeable when these methods short-

cut across the interior of an object to avoid segmenting an

appendage as illustrated in Figure 4. This is offset some-

what by the region term, which tries to penalize shortcuts

through areas where the labeling is clear from the coloring.

However, this is not without tradeoffs—overweighting the

region term to compensate for the boundary term’s shrink-

ing bias can result in discontiguous objects with coloring

similar to the user’s respective scribbles being incorrectly

selected (as also illustrated in Figure 4). This leads to a del-

icate balance between the weighting of the two terms and

the resulting strengths and limitations of each.

Most approaches for otherwise avoiding the shrinking

bias in graph-cut and similar approaches involve variations

on normalizing the cost of the cut by the size of the result-

ing object(s). This may be done for grey-level images for

which flux may be defined along the boundary of the re-

gion [14], but as noted in [29], this does not readily ex-

tend to color images. Optimizing general normalized cost

functions directly is NP-hard but may be approximated [26,

among others]. Alternatively, a subspace of solutions may

be explored by varying the relative weighting of the bound-

ary and region terms [15]. (The authors of [15] note, how-

ever, that this method is not fast enough for interactive

color image segmentation.) More recent work in [25] uses

a curvature-minimizing rather than length-minimizing reg-

ularization term to smooth the resulting boundaries while

avoiding shortcutting, but this does not use an edge compo-

nent to localize edges, nor does it run in interactive time.

Because of the complementary strengths and weaknesses

of seed-expansion and graph-cut approaches, some have

suggested combining them. Work in [28] showed that

graph-cuts and random-walkers [11] (a form of seed ex-

pansion), along with a new method similar in principle to

geodesic segmentation [2], could be placed in a common

framework in which the three methods differ by only the

(integer) selection of a single parameter, an idea further ex-

panded in [7] by varying a second parameter. They also

showed empirically that of these three approaches the new

method (analagous to geodesic segmentation) is most sen-

sitive to seed placement while “because of the ’small cut’

phenomenon, the Graph Cuts segmentation is the least ro-

bust to the quantity of seeds.” They went on to suggest a

way that the two “could be combined” but did not explore

this idea further in that work. More recent work [27] has

explored a way to blend the respective strengths of these

methods using non-integer selections for the free parameter

in [28], determining a suitable parameter selection empiri-

cally over a set of sample images with known ground truth.

This paper introduces a new method for interactive seg-

mentation that makes the following three contributions.

First, it combines geodesic-distance region information

with explicit edge information in a graph-cut optimization

framework. This combines the ability of seed-expansion

approaches to fill contiguous, coherent regions without re-

gard to boundary length with the ability of edge-based seg-

mentation to accurately localize boundaries. Second, it uses

pre-segmentation evaluation of the color models inferred

from the user’s seeds to assess the likely effectiveness of

the geodesic distance component and weights the terms ac-

cordingly. This avoids the tendency for geodesic segmenta-

tion to degenerate to simple distance maps when the fore-

ground/background color models are indistinct. Third, it

introduces a spatially-varying weighting based on the local

confidence of the geodesic component and uses this to fur-

ther adjust the relative weighting of the terms. This makes

cuts even more expensive in object interiors (or exteriors)

while transferring more control to the edge-localizing com-

ponent when near the object’s boundary. The result is a

method that adapts both globally and locally to the rela-

tive strengths of each approach, providing better bound-

ary placement than geodesic segmentation and stronger re-

gion connectivity and less short-cutting than typical graph-

cut methods (Figure 1). This leads to less user interaction

needed to produce a desired segmentation.

2. Geodesic Segmentation Revisited

Geodesic segmentation [2], like other seed-expansion

approaches, can robustly segment long, thin structures with-
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out regard to boundary length. By incorporating mixture-

based color models inferred from the user’s seeds into an

inter-pixel distance metric, it can select even multicolored

or textured objects. Although we point out here key limita-

tions of this approach in order to address and improve upon

it, we refer the reader to the original paper for examples of

its successful application.

Geodesic segmentation labels pixels by computing their

geodesic distance Dl(x) from the nearest foreground (F)

and background (B) strokes using

Dl(x) = min
s∈Ωl

dl(s, x) (1)

where Ωl is the set of seeds with label l ∈ {F ,B}. The pixel

is labeled according to the smaller of the two distances.

The geodesic distance from any point to any other ac-

cording to the color model for the label l is given by

dl(x0, x1) = min
Lx0,x1

∫ 1

0

|Wl(Lx0,x1
(p)) · L̇x0,x1

(p)| dp

(2)

where Lx0,x1
is a path parameterized by p = [0, 1] con-

necting x0 to x1 respectively, and Wl(x) gives the geodesic

weight according to the model l. [2] defines Wl(x) =
∇Pl(C(x)), where

Pl(c) =
Pr(c|l)

Pr(c|F) + Pr(c|B)
, (3)

C(xi) is the color at xi, and Pr(c|l) is the probability of the

color c given by the color model generated from pixels Ωl.

Geodesic segmentation performs best when the geodesic

distance between neighboring pixels inside of (or outside

of) the desired object is small relative to the geodesic dis-

tance between neighboring pixels across the object bound-

ary. This requires an accurate foreground/background color

model that is consistent in assigning probabilities to the pix-

els. However, even small errors or variations in the proba-

bilities can accumulate over the geodesic paths and lead to

incorrect results in two keys ways:

1. If the color models are not distinct, the probabilities

Pl(c) may be highly unstable from one pixel to the

next due to unavoidable image noise. This neutral-

izes the color-based distance metric and in the limit

causes geodesic segmentation to degenerate to simple

(and noisy) distance maps. This causes the segmenta-

tion to be highly sensitive to seed placement, as illus-

trated in Figure 2.

2. Even for more distinct color models, the lack of an ex-

plicit edge-finding component can cause geodesic seg-

mentation to come close to but not precisely localize

object boundaries (as in Figure 3 for a simple 1-D ex-

ample). As the transition in the geodesic distances in-

creases the method is more likely to place the bound-

ary correctly, but with softer edges or with even modest

noise it can sometimes fail to do so.

Figure 2. Sensitivity of geodesic segmentation to seed placement.

As the background stroke (blue) is translated, the object boundary

computed by geodesic segmentation shifts also (top row), while

geodesic graph cut (and other graph cut approaches) give a more

consistent result (bottom row).

Figure 3. Why geodesic segmentation can miss edges. Because

of noise in the probability along the geodesic paths (top), the

geodesic boundary (green) between the user’s foreground stroke

and background stroke misses the true image edge (magenta).

The methods in this paper address these two limitations

respectively by 1) globally weighting geodesic-distance

component by assessing the relative distinctiveness of the

foreground/background color models, and 2) transferring

relative control from the geodesic-segmentation component

to more explicit edge-finding near object boundaries.

We note here one related approach of interest [8], in

which a number of geodesic distance transforms are gener-

ated by varying the parameters to generate multiple candi-

date solutions. The candidate minimizing a cost function

that includes an edge-finding component (similar to that

used in graph-cut approaches) is then selected as the final

result. This method differs from that proposed here in that

the region and edge information that graph cut uses are not

used while generating geodesic candidates. Because of this,

the space of candidate solutions may only approximate the

optimal solution.
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3. Graph Cut Segmentation Revisited

Graph cut segmentation [5] seeks to minimize a cost

function of the form

E(L) =
∑

xi∈P

RLi
(xi) + λ

∑

(xi,xj)∈N

B(xi, xj) |Li − Lj | (4)

where L = (Li) is a binary vector of labels and Li is the

label F or B for pixel xi, Rl(xi) is a region cost term based

on the label l, B(xi, xj) is a boundary cost-term, λ is a rel-

ative weighting of R and B, P is the set of pixels in the

image, and N is the set of pairs of neighboring pixels. The

terms R and B have been defined in various ways by differ-

ent researchers. Generally B corresponds to a measure of

the similarity between the colors of adjacent pixels and R is

based on color models of the foreground and background.

Graph cut methods minimize Eq. 4 by casting the prob-

lem as a graph-partitioning one and using the mincut/max-

flow graph algorithm, where boundary costs are assigned to

graph edges between pixels and region costs are assigned

to edges that connect pixel nodes to the source and sink

nodes [5].

Graph-cut methods perform well over a variety of im-

ages. Because both region and boundary information are

explicitly captured in the algorithm, they are capable of

both selecting objects consistent with region information

and placing object boundaries on image edges. Many vari-

ations have sought to improve on this approach, including

using watershed regions as primitives in order to reduce the

size of the graph and accelerate the computation [18], using

tensor-based region terms to model texture [20], and itera-

tively alternating segmentation and model updating to con-

verge to the solution [24]. Because it can easily operate on

multi-dimensional images, the graph-cut approach has also

been applied to videos [17,31] and image volumes [1,4,19].

It is important to note that the term “graph cut segmenta-

tion” has grown to encompass a wide variety of approaches

that minimize cost functions of the form in Eq. 4 by fram-

ing the problem as a graph-based min-cut/max-flow one.

(See [4] for an excellent discussion of the variety of ap-

proaches for which graph-cut optimization has been used.)

As noted in Section 1, a key weakness of graph-cut ap-

proaches is that the boundary term in Eq. 4 causes an inher-

ent shrinking bias toward shorter segmentation boundaries.

This can be especially noticeable when the algorithm short-

cuts across the interior of an object to avoid segmenting an

appendage as illustrated in Figure 4. The ideal boundary of

the object contains the segment B2, but since the segment

B1 is so much shorter, the cost of cutting all the links along

B1 may be less than the cost of cutting the links along B2,

even if no individual link in B1 is cheaper than in B2. This

leaves the region A12 out of the selection.

Using this intuition, short-cutting may be prevented by

increasing the cost of B1 relative to B2. However, increas-

ing the edge sensitivity may cause even weak gradients to

B
2

B
1

A
12

A
0

Shortcut B
1

Desired Boundary B
2

Foreground Stroke

Background Stroke

Figure 4. Shortcuts. Graph-cut methods may short-cut across the

desired object along B1 instead of following the true edge B2 be-

cause less cost is accrued transversing the shorter path.

become attractive options. A better strategy is to increase

the incurred region cost of the shortcut by increasing the

sensitivity of the color model or by increasing its weight rel-

ative to the boundary terms by decreasing λ. However, this

can have an ill effect when using a global color-similarity

model as is common with graph-cut methods. Other back-

ground objects with properties (region A0 in Figure 4) sim-

ilar to the foreground user stroke are more likely to be in-

correctly segmented as foreground in such cases. Problems

with short-cutting and selection of disconnected unseeded

regions can be reduced by allowing users to explicitly spec-

ify that certain regions should stay connected or discon-

nected [29], but this requires either prior knowledge or fur-

ther user interaction.

4. Geodesic Graph Cut

As discussed in Section 2, in cases where the color mod-

els inferred from the user’s strokes are indistinct, geodesic

segmentation can be improved by the inclusion of ex-

plicit edge information to encourage placement of selection

boundaries on edges in the image and allow the user more

freedom in placing strokes. In cases where the color models

are more distinct, though, the edge information (with its in-

herent shrinking bias) is not as necessary. The region term

alone can often carry the segmentation in such cases, but as

discussed in Section 3 global color models without spatial

locality information can often select disjoint regions. The

use of geodesic distance rather than simple color-similarity

alone can avoid this. This section presents how geodesic

distances and edge information can be combined in a graph-

cut optimization framework, and then presents a way to

use the predicted classification accuracy from the inferred

color models to automatically tune the tradeoff between the

strengths and weaknesses of the two.

4.1. Using Geodesic Distance as a Unary Term

We formulate our algorithm in simplest form as a graph-

cut problem using a normalized form of geodesic distance

as one of the unary region terms. Using Eq. 4 and minimiz-

ing it using graph cut, we compute the unary region term as
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follows:

Rl(xi) = sl(xi) + Ml(xi) + Gl(xi) (5)

where Ml(xi) is based on a global color model as is of-

ten used for graph-cut segmentation, Gl(xi) is based on

geodesic distance, and

sl(xi) =

{

∞ if xi ∈ Ωl̄

0 otherwise
(6)

indicates the presence of a user stroke where l̄ is the label

opposite l (i.e. if l = F , then l̄ = B).

We use the Fast Gauss Transform [32] to compute the

foreground/background color models Pl(c) (see Eq. 3) for

both global similarity and geodesic distances. Ml(xi) is

computed by

Ml(xi) = Pl̄(C(xi)). (7)

Gl(xi) is computed by normalizing the relative fore-

ground/background geodesic distances (see Equation 1):

Gl(xi) =
Dl(xi)

DF (xi) + DB(xi)
. (8)

and using the efficient method in [2] to compute the dis-

tances Dl(xi).
For the boundary term we use [18]:

B(xi, xj) =
1

1 + ||C(xi) − C(xj)||2
(9)

where C(x) ∈ [0, 255].

4.2. Global Weighting Based on Color Model Error

The simple form (Eq. 4) in Section 4.1 can give good

results in many cases, generally performing better than ei-

ther geodesic or graph-cut segmentation alone. However,

we would like to allow it to provide greater weight to

the geodesic-based unary term in cases where this method

is known to perform well, specifically when the fore-

ground/background color distributions are well-separated.

This increased reliance on geodesic distance for the region

term serves to reduce the potential for short-cutting due to

the boundary term. But caution must be exercised with this,

because over-reliance on the geodesic component can cause

increased sensitivity to seed placement when the color mod-

els are not distinct.

To allow for global weighting of the relative importance

of the region and boundary components, we modify Eq. 4

as follows:

E(L) = λR

∑

xi∈P

RLi
(xi) + λB

∑

(xi,xj)∈N

B(xi, xj) |Li − Lj |

(10)

Although we could fold the separate region (λR) and bound-

ary (λB) weights into a single weight, we choose to keep

them separate to make their respective purposes clearer. The

boundary weight λB serves the role of the traditional fixed

region/boundary weighting in graph cut methods, and we

adjust it to individual images by considering only the size of

the image (due to the disproportionate scaling of an object’s

area (unary term) and perimeter (boundary term)). The re-

gion weight λR is the relative weighting of the geodesic-

distance and other region components. While the user could

tune λR manually, this would require excessive tweaking

and is undesireable; instead, we want to automatically tune

this parameter on a per-image basis by predicting the seg-

mentation performance of the geodesic distance term.

To do this, we consider that Eq. 3 is the posterior prob-

ability of a pixel with color c belonging to foreground (F)

or background (B) respectively, assuming equal priors. As

such, it is essentially functioning as a simple Bayesian clas-

sifier, the error in which can be estimated by (using the no-

tation of Eq. 7)

ε =
1

2

[
∑

x∈F
PB(C(x))

|ΩF |
+

∑

x∈B
PF (C(x))

|ΩB|

]

(11)

When there is no error (ε = 0), we would like to give the

color-based terms (M and G) full weight, and when the

color models become indistinct (ε ≥ 0.5), we want to give

them no weight:

λR =

{

1 − 2ε if ε < 0.5
0 otherwise.

(12)

4.3. Local Weighting Based on Geodesic Confidence

Globally adjusting the relative weighting of the region

and boundary terms on a per-image basis can help automat-

ically tune the method to different image types, but it does

not account for the properties of different local areas. We

further weight the geodesic and boundary terms based on

the local confidence u(x) of the geodesic components:

u(xi) =

∣

∣

∣

∣

DF (xi) − DB(xi)

DF (xi) + DB(xi)

∣

∣

∣

∣

γ

(13)

where empirically we have found γ = 2 to 2.5 to work well.

(For the results in Section 5, we use a value of γ = 2.5.)

We redefine the region terms to weight the geodesic com-

ponent by u(xi):

Rl(xi) = sl(xi) + Ml(xi) + u(xi)Gl(xi) (14)

This maintains the weight of the geodesic distance term

when relatively certain that the pixel xi is clearly in the ob-

ject’s interior or exterior (u(xi) close to 1) and decreases it

near where geodesic segmentation would place boundaries

(u(xi) close to 0).

We also correspondingly spatially adapt the weighting of

the boundary costs based on u(x) as follows:

B(xi, xj) =
1 + (u(xi) + u(xj))/2

1 + ||C(xi) − C(xj)||2
(15)
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Note that when the average geodesic certainty of the two

pixels is high, this suggests an object interior/exterior, and

the cost of placing a cut here is further increased. When

this geodesic confidence is low, this suggests that geodesic

segmentation alone would consider this to be near a bound-

ary, and we reduce the effect of the geodesic component,

shifting control to the more accurate edge-finding term.

The net effect of this spatially adaptive weighting is to

both increase the relative weighting of the unary geodesic

distance term and increase the cost of a boundary cut in

what are clearly interior/exterior regions, while both de-

creasing the relative weighting of the unary geodesic term

and decreasing the cost of a boundary cut in areas where we

want to more accurately localize the object boundary.

5. Results

Geodesic graph cut with automatic tuning and spatial

adaptation works well both in cases suitable for geodesic

segmentation and in cases suitable for standard graph cut

methods, in many cases outperforming both. While ac-

curacy is an essential element of interactive segmentation,

so too is the minimization of user interaction required to

achieve that level of accuracy. This section demonstrates

the accuracy of geodesic graph cut, and the interaction re-

quired for these examples is shown in recorded videos1. The

time for our algorithm on these images ranged from 0.2–

2.6 seconds for image sizes from 256 × 256 to 720 × 480,

with most computations requiring approximately 1 second

or less. In all cases the unary term weighting (λR) and the

spatially adaptive weights (u(x)) are set automatically by

the method, with no per-image manual tuning.

In Figure 1, geodesic segmentation fails to segment

along the dolphin’s back due to the specular reflection on

the table. Graph cut, because of its explicit edge term, can

better segment along the back but shortcuts across the tail.

Geodesic graph cut leverages the strengths of each approach

and correctly segments both areas. While additional strokes

could of course correct either the graph-cut or geodesic seg-

mentation, this increases the required user interaction.

Figure 5 shows examples where geodesic graph cut seg-

mentation automatically adjusts to the distinct color models,

exploiting the geodesic distance term to avoid shortcutting.

For these images, geodesic segmentation performs compa-

rably to the results shown here for our method.

Figure 6 shows similar examples for images whose color

models are less distinct. In these cases, our method rec-

ognizes the error in the color models and automatically

adjusts to rely less heavily on geodesic distances. In the

pyramid (top) and candy (middle) examples, the foreground

and background color models overlap considerably. With-

out distinct color models, geodesic segmentation alone fails

noticeably. In particular, the candy (middle) result demon-

strates the way geodesic distance can degenerate to noisy

1http://vision.cs.byu.edu/papers/ggc

Graph Cut Geodesic Graph Cut

Figure 5. Examples with distinct color models. For these im-

ages geodesic graph cut segmentation automatically relies more

on geodesic distances (λR = 0.97, 0.99 respectively), avoiding

short-cutting common to non-adaptive graph-cut methods.

Geodesic Segmentation Geodesic Graph Cut

Figure 6. Examples with less-distinct color models. In these cases

geodesic graph cut cannot rely on the geodesic distances and auto-

matically adjusts to rely more on explicit edges or a combination

of color models and edges (λR = 0.40, 0.22, 0.65 respectively).

distance maps when the colors are not distinct. In the ram

(lower) example, the color models are more distinct but are

still mixed enough to cause geodesic segmentation mistak-

enly select the part of the background away from the user-

placed background seeds. The results of graph cut segmen-

tation for these examples are comparable to our method.

Figure 7 show examples where our method outperforms

both geodesic and graph-cut segmentation. For the rolling-

pin example (top), because of the similarity between the

foreground and background colors, geodesic segmentation

again mistakenly selects part of the background away from
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the seeds. Graph cut segmentation avoids this problem but

again exhibits shortcutting. Our method places only a mod-

erate geodesic distance weight for this image (λR = 0.72),

avoiding the problems exhibited by geodesic segmentation

alone while using sufficient weighting of this term to avoid

region shortcutting. For the elephant example (bottom),

geodesic segmentation fails to segment along the top of the

elephant’s back due to the similar background even though

there is still an edge there, while graph cut segmentation

shortcuts the trunk and part of the back. Geodesic graph cut

corrects both of these problems for this image.

To quantitatively evaluate the accuracy of the segmenta-

tions produced by geodesic graph cut, we applied it to the

Microsoft GrabCut dataset [3]. As noted in [9], this dataset

is not well suited to evaluating interactive scribble-based

segmentation because it assumes the user loosely traces the

contour of the desired object. As such, it provides far more

seeds than are typically provided with interactive scribbles,

and the seeds are more uniformly placed on either side of

the boundary. We believe that interactive scribble-based

methods cannot be evaluated with static seeds—once the

user places the first scribble the resulting scribbles are de-

pendent on the segmentation result from that and each suc-

cessive one. But, as also noted in [9], this is the only evalu-

ation database to provide seeds, and we compute our results

on this dataset for comparison (Table 1).

Over all 50 images in the database, geodesic graph cut

averaged 4.8% error, better than either geodesic segmenta-

tion (6.8%) or standard graph-cut segmentation (6.7%) in-

dividually. This error was also lower than that of any of

the other compared-to methods that do not have a spatial

position bias, either explicitly [16] or implicitly [12].2 To

our knowledge, this is the lowest error rate reported for this

dataset by a scribble-based selection method.

For 48 of the 50 images, geodesic graph cut outper-

formed either graph cut (43 of 50) or geodesic segmenta-

tion (39 of 50) alone, typically performing at a level near

the better of the two methods for each image. For 34 of the

50 images, it outperformed both.

We also used this dataset with the skeleton-based initial-

ization suggested in [27] as provided by its authors. This

provides fewer seeds overall but tends to place more seeds

in object protrusions. Graph cut segmentation had an error

rate of 6.3% with this form of initialization, while geodesic

segmentation had an error rate of 10% and geodesic graph

cut had an error rate of 3.6%.

From our observations, geodesic graph cut usually does

as well or better than the better of the two individual meth-

2As noted in [9], the adaptive thresholding method of [12] has a strong

bias towards placing an object boundary in the middle of the uncertainty

band of the trimap. This is because it uses an adaptive window that grows

to “include at least one α = 0 pixel and one α = 1 pixel.” Due to the

nature of the GrabCut database, which uses an uncertainty band centered

close to the actual boundary, this causes this method to have artificially low

error. Although [9] use and report this method for their method and [11],

they add this specific disclaimer on the reported error rates.

Segmentation Model Error Rate

GMMRF [3] 7.9%

Geodesic Segmentation [2] 6.8%

Graph Cut (as reported by [16]) 6.7%

Random Walker (s=2) [11] 5.4%

Segmentation by Transduction [9] 5.4%

Geodesic Graph Cut (proposed method) 4.8%

Guan and Qiu [12] with AT∗ 4.6%

Random Walker (s=2) [11] with AT [12]∗ 3.3%

Segmentation by Transduction [9] with AT [12]∗ 3.3%

GrabCut-GC (as reported by [16]) 5.9%

Bounding Box Prior (LP-Pinpoint) [16] 5.0%

Bounding Box Prior (GrabCut-Pinpoint) [16] 3.7%

Table 1. Quantitative comparison using the Microsoft GrabCut

database [3]. Error rates reported here are either computed by

us (our method, [2]), reported by the method’s authors ( [3, 12]),

or were previously reported by [9] or [16]. The first nine were

initialized using the “Lasso” form of the trimap provided by the

database. The adaptive thresholding (AT) method of [12] is biased

towards the middle of the trimap’s uncertainty band and is artifi-

cially favored by this form of initialization. The lower three used

the corresponding bounding box initializations, with the last two

using this box as a prior on the spatial extent of the object.

ods. It struggles on inputs for which both individual meth-

ods have difficulties. This typically happens when the

foreground and background color models are overlapping

and either there are weak edges or highly textured regions

around the object boundary. Another less severe problem

we have observed is that some long thin structures are some-

times still short-cutted near the tip, although our adaptive

weighting usually decreases the size of the short-cutted area

and thus requires less additional effort from the user to cor-

rect than typical graph cut. This problem is most likely to

occur when there are strong edges across or texture within

the long thin structure and when the color models overlap

enough that our algorithm cannot rely on the geodesic in-

formation to entirely prevent a shortcut.

6. Conclusion

This paper has presented a way to incorporate both

geodesic-distance region information and explicit edge in-

formation together in the popular graph-cut optimization

framework in a way that leverages the strengths of each.

Rather than a simple fixed combination, the method tries

to best leverage the respective strengths of the two ap-

proaches by adaptively tuning their combination based on

pre-segmentation assessment of the classification perfor-

mance of the color models inferred from the user’s input.

When the image’s foreground/background color models as

inferred from the user’s marked seeds are distinct, greater

weight is given to the geodesic-distance component in or-

der to provide greater region coherence and avoid bound-

ary short-cutting. As the color models become less distinct,

the geodesic-distance approach becomes increasingly unre-

liable and is weighted less accordingly. In addition, a spa-
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Figure 7. Examples for which geodesic graph cut segmentation outperforms both geodesics segmentation and standard graph cut.

tially adaptive weighting is introduced that makes boundary

short-cutting more expensive in object interiors or exteriors

while transferring greater control to the edge-finding com-

ponent to better localize edges near object boundaries. Re-

sults demonstrate that geodesic graph cut is able to segment

objects in a variety of images, generally performing as well

as the better of these two methods for each image, and often

outperforming both methods.
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