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ABSTRACT

Let P be a simple polygon with m vertices, k of which are
reflex, and which contains r red points and b blue points in
its interior. Let n = m+r+b. A ham-sandwich geodesic is a
shortest path in P between any two points on the boundary
of P that simultaneously bisects the red points and the blue
points. We present an O(nlog k)-time algorithm for finding
a ham-sandwich geodesic. We also show that this algorithm
is optimal in the algebraic computation tree model when
parameterizing the running time with respect to n and k.

Categories and Subject Descriptors: F.2.2 [Nonnu-
merical Algorithms and Problems]:

General Terms: Ham-sandwich theorem

Keywords: Ham-sandwich, shortest paths, geodesics, sim-
ple polygons

1. INTRODUCTION

Let R,B C R? be two finite point sets of sizes 7 and b,
respectively. We call the elements of R the red points and
the elements of B the blue points. The (2-dimensional) ham-
sandwich theorem (for point sets) states that there always
exists a line L such that each of the two open halfplanes
defined by L contains at most /2 red points and at most
b/2 blue points.” We call such a line a ham-sandwich cut.

*Partially supported by NSERC, NSF, DURSI 2001SGR00224,
Acci Integrada UPC-McGill (DURSI2004) and MCYT BFM2003-
0368.

TChargé de recherches du FNRS

IThe full ham-sandwich theorem is much more geneneral: Let
S1,...,54 be bounded measurable subsets of RY. The ham-
sandwich theorem states that there exists a hyperplane h that
divides each S; into two subsets of equal measure [18].
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Megiddo [15] showed that, if the sets R and B are lin-
early separable (there exists a line that separates R from B)
then a ham-sandwich cut can be found in O(n) time. Edels-
brunner and Waupotitisch [6] modified Meggido’s method
and obtained an O(nlogn) time algorithm for the general
case. Lo and Steiger [13] gave a randomized algorithm with
O(n) expected running time. Since this algorithm is easily
derandomized using e-nets [12] this result finally settled the
problem of finding planar ham-sandwich cuts.

The problem of computing ham-sandwich cuts in d dimen-
sions, d > 3 has been considered by Lo et al [12]. Several
generalizations of planar ham-sandwich cuts have also been
proposed [1, 2, 8, 9]. Particularly relevant to the current
paper is the algorithm of Diaz and O’Rourke for computing
a ham-sandwich cut of two simple polygons [5].

In this paper we generalize the notion of ham-sandwich
cuts to polygonal domains. In particular, we consider the
problem of computing ham-sandwich cuts in (rather than
of) a polygonal domain. Let P be a simple polygon with m
vertices and that contains the sets R and B in its interior. A
geodesic is a shortest path in P that joins two points on the
boundary of P. We show that there always exists a geodesic
that has at most /2 red points to its right and left sides
and at most b/2 blue points to its right and left sides. (See
Figure 1.) We call such a geodesic a ham-sandwich geodesic.
We give an O(nlogk) expected-time randomized algorithm
for finding a ham-sandwich geodesic and prove that this is
optimal in the algebraic computation tree model. Here, and
throughout the remainder of the paper, n = m + r + b and
k is the number of reflex vertices of P.

Note that our algorithm is a strict generalization of the
algorithm of Lo and Steiger since, in the case of a convex
polygon, the polygon plays no role and we are simply looking
for a ham-sandwich cut of R and B. The main tools used in
our algorithm are randomized prune and search [14] and a
new duality for points in polygons. We expect that our new
duality will find other algorithmic applications. In particu-
lar, we believe that it will allow many results on points and
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The remainder of this paper is organized as follows: In
(nlog k) time algorithm for com-
puting a ham-sandwich geodesic. In Section 3 we prove that
this algorithm is optimal in the algebraic computation tree



Figure 1. A ham-sandwich geodesic with r = 8 and b = 10.

model by giving an Q(nlog k) lower bound.

2. THE ALGORITHM

We say that a geodesic bisects a set of n points if it has at
most n/2 points on each side. A ham-sandwich geodesic is a
geodesic that has at most r/2 red points on its left or right
and at most b/2 blue points on its left or right. That is, a
ham-sandwich geodesic simultaneously bisects both the red
set R and the blue set B. In this section we show how to
compute a ham-sandwich geodesic in O(nlog k) time.

Throughout this section, we use the following notations:
For two points p and ¢ on the boundary of P, pq denotes the
geodesic joining p to ¢ and [pq] denotes the polygonal chain
traversed by walking counterclockwise on the boundary of
P beginning at p and ending at q. We will also make the fol-
lowing general position assumption: No three input points
(red points, blue points and vertices of P) are collinear. Fi-
nally, to save wear and tear on floors and ceilings we will
assume that r and b are both even.

Our algorithm for computing a ham-sandwich geodesic is
quite complex and requires several applications of the prune-
and-search paradigm [14]. Some of these applications oper-
ate on the reflex vertices of P while others operate on the
point sets R and B. The outline of our algorithm is as fol-
lows:

1. We preprocess P, R and B so that, for any geodesic pq,
we can report, in O(n) time, the points in R and/or B
to the right of pg. This preprocessing takes O(nlog k)
time.

2. We find two geodesics wy and zz such that

(a) w, z, y and z appear in that order as we traverse
the boundary of P counterclockwise,

(b) wy and zz both bisect the blue set B,
(¢) wy has at least r/2 red points on its right, and
(d) xz has at most r/2 red points on its right.

(Refer to Figure 2.) Lemma 1 (below) shows that there
must exist a ham-sandwich geodesic pg with p € [wx]
and ¢ € [yz].

3. We perform O(log k) rounds of pruning during which
we reduce the number of reflex vertices in the two
chains [wz] and [yz]. During each round, we reduce

Figure 2. The set of points {w, z,y, z} on the boundary of P.

the number of reflex vertices in these two chains by
a constant factor. This process terminates when [wz]
and [yz] are both convex chains. Each round runs in
O(n) time and there are O(log k) rounds, so this step
runs in O(nlogk) time.

4. We now have a problem of computing a ham-sandwich
geodesic pg where p and ¢ are constrained to lie on
two convex chains. Using a further prune-and-search
step, we reduce this problem, in O(nlogk) time, to
the problem of computing a ham-sandwich geodesic in
a 6-sided polygon with two vertical sides and 2 reflex
vertices. The points p and ¢ are constrained to lie on
the two vertical sides.

5. We define a point-geodesic duality that allows us to
apply the linear-time planar ham-sandwich algorithm
of Lo and Steiger [13] to find a ham-sandwich geodesic
of this 6-gon in O(n) time.

The correctness of this algorithm depends on the following
result:

LEMMA 1. Let P be a simple polygon containing a set R
of r red points and a set B of b blue points and let w, x,
y, and z be four points on the boundary of P that satisfy
Conditions 2a-2d above. Then there exists a ham-sandwich
geodesic pq with p € [wz] and ¢ € [yz].

ProOF. The proof is by a continuity argument. Begin by
setting p = w and ¢ = y. We can move p and ¢ continuously
and counterclockwise on the boundary of P while maintain-
ing the invariant that pg bisects B. This movement can
be accomplished in such a way that we reach a state where
p = and ¢ = z. Thus, during this motion the geodesic pq
goes from having at least r/2 red points to its right (when
p = w and ¢ = y) to having at most r/2 red points to its
right (when p =z and ¢ = z). Since the motion is continu-
ous there must therefore be some point at which the geodesic
pq has at most r/2 red points to its right and at most r/2 red
points to its left. This geodesic is a ham-sandwich geodesic
with w € [wz] and y € [yz], as required. UJ

In the next 5 subsections we explain these 5 steps in
greater detail.
2.1 Preprocessing

Given a polygon P and a finite point set S C P we would
like to preprocess P and S so that, for any geodesic pq, we



can report, in O(n) time, the subset of S to the right of
pq. To do this, we partition P into convex pieces Pi, ..., P,
¢ = O(n), to obtain a convex partition. With each piece
P; we store a list L; of the points in S contained in P;.
The geodesic pq defines three types of pieces: (1) The pieces
completely to the left of pg, (2) the pieces completely to the
right of pg and (3) the pieces that intersect pgq. Note that
each type 3 piece intersects pq only in a single line segment
(otherwise pg would not be a shortest path). Therefore, by
walking in the convex subdivision along the path pq, we can
classify each P; as type 1, 2, or 3. Furthermore, for each
type 3 piece P; we can compute which points of L; are to
the right of pq simply by testing them, one at a time, against
the segment pgNP;. Thus we can count the number of points
to the right of pg in O(n) time.

What remains is to show how we partition P into the
convex pieces and to determine which piece each element of
S falls into. First we observe that if k > \/n then nlogk =
Q(nlogn). In this case, we can triangulate P in O(n) time
and use planar point location to determine which triangle
contains each point of S in O(nlogn) = O(nlogk) time.
Therefore, we may assume that k < y/n.

To partition P we shoot upwards and/or downwards ver-
tical rays from each reflex vertex into the interior of P.
These rays partition P in to £ = O(k) convex polygons and
this convex partition can be computed in O(n) time using
Chazelle’s trapezoidal decomposition algorithm [4]. Next
we must determine, for each point in S, which of the pieces
contains it. This presents some difficulty since Pi,..., P
form a planar subdivision that may consist of Q(n) edges
so using straightforward data structures for point location
would require Q(nlogn) time in the worst case. Instead, we
compute a planar subdivision of size O(k?) such that locat-
ing a point of S in this subdivision is sufficient to determine
which piece P; contains that point.

For each piece P;, we compute the perpendicular bisector
of P; with every other piece Pj, i.e., the perpendicular bi-
sector of the segment joining the two closest points on P;
and P;. Each such bisector can be computed in O(logn)
time using the binary search procedure of Overmars and
van Leeuwen [17]. Clearly a point p € P is contained in
P; if and only if p is on the same side of each of these O(k)
lines as P;. Thus, determining if p is contained in P; involves
determining if P is in a convex polygon with O(k) vertices.

By doing this for each P;, we obtain O(k) disjoint convex
polygons each of size O(k). We can, in O(k*logk) time
preprocess this set of polygons for point location so that we
can answer point location queries in O(log k) time per query.
Thus the total preprocessing time is

O(n + k*logk + nlogk) = O(nlogk)

for k < +/n.

To summarize, we partition P into O(k) convex pieces.
From these pieces we derive a planar subdivision of size
O(k?) such that, locating a point in this subdivision is suf-
ficient to determine which P; the point lies in. We then
locate each point of S in this arrangement in O(log k) time
per point, for a total running time of O(nlogk). Once this
is done, we can determine the subset of S on the right side of
a query geodesic in O(n) time by walking in the subdivision
consisting of the O(k) convex pieces.

2.2 Finding a Blue Bisector

To initialize the iterative phase of our algorithm, we need to
partition the boundary of P into two chains [wz] and [yz]
such that there exists a ham-sandwich cut with one point
on [wz] and one point on [yz]. One way to do this is to find
a geodesic pg that bisects B, i.e., that has exactly b/2 blue
points to its right. Suppose pq has r’ > r/2 red points on
its right side. Then the reverse geodesic gp has r —r' < r/2
red points on its right side. Thus, setting w = z = p and
x = y = q is sufficient to initialize the algorithm. Therefore,
to initialize the algorithm all we need is to show how to
compute a geodesic that bisects B.

We will present an algorithm that, given any point p on
the boundary of P, finds a point ¢ such that the geodesic pq
bisects B. This algorithm will be an oft-used subroutine in
subsequent phases of our algorithm, so we require that it has
a running time of O(n). The algorithm we present is based
on the randomized linear-time median finding algorithm of
Floyd and Rivest [7] with the simplification presented by
Motwani and Raghavan [16, Section 3.3].

Observe that, for each point ¢ € B we can obtain a
geodesic by extending the last edge of the shortest path
from p to ¢’ until it hits the boundary of P. These kinds of
geodesics are totally ordered by the “to the right of” rela-
tionship and the bisector pq that we are looking for is defined
by the median ¢’ in this total order. Thus, we are concerned
with finding the point ¢’.

To find this median point ¢’ we begin by computing the
shortest path tree from p to every vertex of P in O(n)
time using the funnel algorithm of Chazelle [3] and Lee and
Preparata [11]. We then augment this tree by extending
each edge that joins a parent vertex to a child vertex in
the direction of the child until it hits the boundary of P
(see Figure 3). The result is a partition of P into triangles
that we call the augmented shortest path partition. We then
preprocess the augmented shortest-path partition in O(n)
time using Kirkpatrick’s algorithm [10] so that point loca-
tion queries can be answered in O(logn) time.

Figure 3. The augmented shortest path tree rooted at p. Edges
added during the augmenting step are dotted.

Next, we choose a random sample B’, with replacement,
of size b%/* from B. We then locate, in O(n’/*logn) time,
each point of B’ in the augmented shortest path partition.
Observe that each triangle ¢ in the augmented shortest path
partition has one vertex that is either a reflex vertex of P or
is the point p. We call this vertex the parent vertex of t and
of all points contained in t. For each point of our sample B’,
we find its parent vertex and draw a line segment from the



parent vertex through the sample point and intersecting the
opposite edge of t. (See Figure 4.) In this way, we obtain a
tree that contains, for each point y in B’, a geodesic from p
that passes through y. Note that these b%/* geodesics (and
their defining points) are totally ordered by the “to the right
of” relationship and they are easily sorted according to this
order in O(n + b**logb) time by traversing the shortest
path tree and sorting the blue points joined to each parent
vertex.

Figure 4. Computing a tree that contains a geodesic from p through
every point of B’.

From the set B’ we can select the two points a and b
that define geodesics g, and g, with ranks b3/4/2 — b2 and
b3/4/2 + b'/2, respectively. That is, g, has b4 )2 — b/?
points of B’ to its right and g, has b*/* /24 b'/2 points of B’
to its right. Let B” be the subset of B that is between g, and
gp i.e., the points of B that are simultaneously the left of g,
and to the right of g,. With exceedingly high probability, the
following two statements are true [16]: (1) |B”| < 4b*/* 4+ 2
and (2) B” contains the median point ¢’ we are searching
for. Furthermore, both these conditions can be checked in
O(n) time by counting the number of points in B to the
right of g, and of g, and the algorithm can be restarted if
either of the conditions is not met.

Thus, we need only search for the point ¢’ in the set B”.
In O(n) time, we can compute the number, b’, of points in
B to the right of g,. The element ¢’ that we are looking
for is the element whose rank in B” is b/2 — b’. But, since
|B"| = O(n®*) we can easily find the element ¢’ in O(n +
b*>/*logb) = O(n) time by sorting the elements of B”.

To summarize, we take a random sample B’ of B of size
b3/* and sort this sample by the “to the right of relation-
ship.” From this sample we select two points a and b that
define geodesics g, and g, such that the set B C B con-
tained between g, and g, has size O(n3/4) and one of the
points in B” is the point ¢’ that defines our bisector. We
then sort B” by the “to the right of relationship” to find the
point ¢’. Each step takes O(n) expected time, so the entire
cost of finding a bisector of the blue set with one endpoint
on p is O(n). Finally, we observe that this algorithm gener-
alizes in a straightforward way to an algorithm for finding
a bisector with one endpoint on p, that has exactly ¢ points
of S to its right, for any 1 <7 < |S].

2.3 Pruning Reflex Vertices

To reduce the number of reflex vertices on the chains [wz]
and [yz], we simply determine which of these two chains con-
tains more reflex vertices by counting them. We then take

p to be the middle reflex vertex on this chain and compute
a bisector pq of B with one endpoint on p (¢ will be on the
other chain). Depending on the number of red points to the
right of pg (which can be counted in O(n) time) we then
either set w = p and z = g or x = p and z = ¢, as ap-
propriate. This takes O(n) time using the algorithm of the
previous section and reduces the number of reflex vertices in
the two chains [wz] and [yz] by a constant factor. Therefore,
in O(nlogk) time we arrive at a state when [wz] and [yz]
are convex chains, i.e., they contain no reflex vertices of P.

2.4 Fat and Skinny Funnels

At this point, we have reduced the problem of computing
a ham-sandwich geodesic to that of finding a ham-sandwich
geodesic where the endpoints of the geodesic are constrained
to lie on the two convex chains [wz] and [yz]. This means
that the ham-sandwich geodesic is constrained to lie in the
funnel to the left of the geodesic xy and to the right of
the geodesic wz. There are two types of funnels: A fat
funnel has, as its boundary, two convex chains and two reflex
chains (Figure 5.a). A skinny funnel consists of a polygonal
chain joining two polygons. The boundaries of each of these
polygons consist of two reflex chains and one convex chain
(Figure 5.b).

First we observe that, in both the skinny and fat cases, the
convex vertices of the two chains [wz] and [yz] become ir-
relevant. This is because we are only interested in geodesics
with one endpoint on each convex chain and such geodesics
can be described simply by listing their interior edges and
the slopes of their first and last edges. Using this represen-
tation, we can preprocess a funnel using a slight variation
on the algorithm of Section 2.1 so that, after O(k + r + b)
preprocessing we can count the number of red and/or blue
points on the right side of a query geodesic in O(k + r + b)
time. (Recall that a funnel has at most k reflex vertices.)

For both skinny and fat funnels we will also be able to
ignore any points of R U B that are not contained in the
funnel. Note that these points are either to the left of ev-
ery geodesic contained in the funnel or to the right of every
geodesic contained in the funnel, and we can count the num-
ber of points of each type in O(n) time. This leaves us with
a generalized ham-sandwich problem of finding a geodesic
pq having exactly r’ points of R on its right and exactly o’
points of B on its right. We know such a geodesic exists
because wy has at least v’ red points to its right and zz has
at most r’ red points to its right and both wy and xz have
exactly b’ blue points to their right.

2.4.1 Skinny Funnels

To treat the case of a skinny funnel, we apply prune and
search to the sets R and B. Note that a skinny funnel con-
sists of two ends F1 and FE2 each of which is a polygon
whose boundary is made up of two reflex chains and one
convex chain. These ends each have heads hi1 and ha, re-
spectively, that are the common vertices in the two reflex
chains. (See Figure 5.b.) All the geodesics we are interested
in must pass through the heads of both ends.

Suppose, without loss of generality, that |B| > |R|. To
execute a pruning step we first choose a random point p’
from B. Suppose, again without loss of generality, that p’
is contained in E;. Note that all geodesics that contain P’



(a)

Figure 5. Two funnels: (a) a fat funnel and (b) a skinny funnel.

take the same path through F;. Thus, the number of points
in E1 N B to the right of any such geodesic is fixed. Call
this number b;. We would like to find a geodesic through
p’ that has exactly b’ blue points to its right, but such a
geodesic is not guaranteed to exist. In particular, such a
geodesic will not exist if and only if by > b or |F2 N B| <
b’ — b;. However, in these cases we can discard the points
of E1 N B to the left, respectively right, of the geodesic that
contains h; and p’. It is an easy exercise to show that,
because p’ is chosen at random from B, either case results
in a positive constant fraction of B being discarded with a
positive constant probability.

If a geodesic does exist that contains p’ and has exactly b’
blue points to its right then we compute this geodesic (call
it pg) and count the number of red points on its right. As in
Section 2.3 this count will tell us that we can either remove
from consideration the part of E; to the left of pg and the
part of F> to the right of pq or vice-versa. In either case,
we can discard the elements of B that lie in these regions.
As before, it is an easy exercise to show that either case
results in a positive constant fraction of B being removed
with positive constant probability.

The above pruning step runs in O(k 4+ r + b) time and
reduces r + b by a positive constant fraction with positive
constant probability. It follows that the expected time to
reduce r+b to a small constant is O(klogn+n) = O(nlogk),
at which point the ham-sandwich cut can be computed in
O(k) time using a brute force method.

2.4.2 Fat Funnels

Next we show how to treat the case of a fat funnel. Note that
this case is still far from trivial since it generalizes the linear-
time algorithm for computing ham-sandwich cuts with lines
in the plane (i.e., the case k = 0). This problem was open
for many years before it was finally solved by Lo and Steiger
[13]. Our strategy, therefore, is to further reduce the number
of vertices of P until we reach a point where we can (almost)
apply the algorithm of Lo and Steiger directly. So that we
can meaningfully use terms like left, right, above, and below
we will assume, without loss of generality, that our fat funnel
contains a horizontal line segment with its left endpoint on
[wx] and its right endpoint on [yz].

Suppose we have some finite sequence (w = p1),p2, ..., (pa
z) of points on the chain [wz]. Then we can perform binary
search to find two points p; and p;4+1 such that the geodesic
p:ig; having exactly b’ blue points to its right has at least 7’
red points to its right and the geodesic p;t1g:+1 having b’

blue points to its right has at most 7’ red points to its right.
In other words, we can reduce our search for the left end-
point of the ham-sandwich geodesic to the subchain [p;pi41].
Each step of this binary search can be implemented in O(n)
time using the algorithm of Section 2.2 so the total cost of
this binary search is O(nlogd).

Our goal is to reduce the complexity of the upper and
lower reflex chains that make up our fat funnel. In particu-
lar, we would like to reach a state where each of these chains
has at most two edges. We show how to handle the upper
chain. The lower chain is handled symmetrically. Refer to
Figure 6.a for what follows. For each edge on the upper
chain, we extend it to the left until it hits the chain [wx]
in some point p;. If it hits some other part of the funnel
first then we ignore it. We also compute the intersection of
the cross tangent C having the upper reflex chain on its left
and the lower reflex chain on its right with [wz]. Call the
resulting set of points p1, ..., pxr, where p1 = w and ppr = z.
We then apply binary search to locate the pair p;, p;+1 de-
scribed in the previous paragraph. There are two distinct
cases to consider:

1. i = k' — 1, In this case we know there exists a ham-

sandwich geodesic in the skinny funnel that joins [pr/_1px/]

to [yz] and we can find this geodesic in O(nlog k) time
using our algorithm for skinny funnels.

2. i < k' — 1. Refer to Figure 6.b. In this case, the point
pi+1 was generated by the (i + 1)st edge of the upper
chain. Extend this edge to the right until it hits some
edge of the funnel. If it does not hit chain [yz] then we
know there exists a ham-sandwich geodesic contained
in the funnel that joins [pipi+1] to [yz] and we can find
it in O(nlogk) time using our algorithm for skinny
funnels.

Otherwise, the right-extension of the edge hits the
chain [yz] in some point ¢’. There are three subcases
to consider depending on the relative locations of ¢’,
¢; and g;4+1 on the chain [yz]:

(a) ¢i+1 and ¢; are above ¢' (Figure 6.b.1). Then
we know there exists a ham-sandwich geodesic
contained in the skinny funnel joining [p;pi+1] to
[¢igi+1] and we can find it in O(nlog k) time using
our algorithm for skinny funnels.

(b) gi+1 is above ¢’ and ¢; is below ¢’ (Figure 6.b.1).
Then we compute the geodesic p’q’ having exactly
b’ blue points below it (which will have its other
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Figure 6. Reducing a fat funnel to a 6-gon by (a) extending the upper chain edges until they intersect [wz], (b.1-b3) using p; and p;y1 to
eliminate all but one reflex vertex of the upper chain, and (c-d) replacing the two convex chains with vertical edges.



endpoint p’ in [p;pit1]). If p'q’ has at least r’ red
points below it then there exists a ham-sandwhich
geodesic in the skinny funnel that joins [p'pi+1]
and [¢'gi+1] and we can find it in O(nlogk) time.
Otherwise, there exists a ham-sandwhich geodesic
in the funnel that joins [p;p'] to [¢;¢']. But this
funnel has only one two edges on its upper chain,
as required.

(¢) gi+1 and ¢; are both below ¢’ (Figure 6.b.1).. In
this case, the funnel joining [pipi+1] and [g;qi+1]
has at most one reflex vertex in its upper chain,
as required.

By applying the above procedure to both the upper and
lower chains we reach a state in which our funnel has at
most two reflex vertices, one on the upper chain and one
on the lower chain. This funnel can be further simplified
since we already argued that the actual convex chains are
not relevant, thus they can be replaced with vertical edges
as in Figure 6.c-d.

2.5 Lo and Steiger Revisited

We are now left with the problem of computing a ham-
sandwich geodesic in a 6-gon, in which two edges are vertical
and these two vertical edges are joined by reflex chains con-
sisting of at most 2 edges each. Because of the way in which
it was constructed, this polygon also has the property that
the segment joining the top left corner to the bottom right
corner is completely contained in the polygon, as is the seg-
ment joining the bottom left corner to the top right corner.

We wish to make use of the algorithm of Lo and Steiger
[13] which is most easily described in the dual. In the dual,
their algorithm operates on a set of red lines and blue lines
and finds an intersection between the median level of the
blue lines and the median level of the red lines. More gen-
erally, if we provide their algorithm with two vertical lines
Ly and L2 and two integers r’ and b’ such that

1. the intersection of the ' level of the red lines with L1
is above the intersection of the b’ level of the blue lines
with L; and

2. the intersection of the 7’ level of the red lines with Lo
is below the intersection of the b’ level of the blue lines
with Lo

then their algorithm can find an intersection of the r’ level
of the red lines with the &’ level of the blue lines in O(n)
time and the intersection found is between the vertical lines
Ly and Ls. In fact, their algorithm is even more general;
a careful inspection of their algorithm reveals that it works
even when the input consists of z-monotone pseudolines.?

Our goal, therefore, is to find a dualization of points in
the 6-gon to xz-monotone Jordan arcs. It will be easier to
first describe the dualization of a geodesic. Recall that we
are only interested in the interesting geodesics which join one
vertical edge of our 6-gon to the other. We can parameterize
these two vertical edges linearly so that any point on the
edge is represented by a real number in the interval (0,1).
(See Figure 7 (left).) Therefore, any interesting geodesic

2A set of z-monotone Jordan arcs are called pseudolines if any
two elements of the set intersect in at most one point.

g can be described by a pair of real numbers (gz,gy) that
describe the locations of the left and right endpoints of g,
respectively, on the vertical edges. In our dualization, the
geodesic g dualizes to the point ¢(g) = (gz, gy)-

The dual of a point p in our polygon is defined as follows:
There is an infinite set of interesting geodesics that contain
p. Each of these geodesics g maps to a dual point (g, gy) as
described above. The locus of all such points is a (weakly) z
and y-monotone curve that joins two points on the boundary
of the unit square. (This latter property depends on the top
left corner of the polygon being visible from the bottom right
corner and the bottom left corner being visible from the top
right corner.) To obtain p(p) we extend this curve into a
Jordan arc by attaching two rays whose slope is 1 (45°).

Figure 7 shows an example 6-gon containing three points
(left) and the dual of these three points (right). The dashed
lines in the left figure show the duals of the polygon’s two
reflex vertices. This dualization has the following properties:

1. For a point p, ¢(p) consists of at most five line seg-
ments and can be computed in constant time.

2. For a point p, ¢(p) is an z and y-monotone Jordan arc.

3. If a geodesic g is above a point p then the point ¢(g)
is above the Jordan arc ¢(p).

4. For two points p and ¢ such that the line through p
and ¢ is not collinear with either reflex vertex, ¢(p)
and ¢(g) have at most one point in common. lLe., a
set of points dualizes to a set of pseudolines.

Property 3 above implies that our problem of finding an
interesting geodesic with " red points below it and b’ blue
points below it is equivalent to finding an intersection of the
r’ level in ¢(R) with the b’ level in ¢(B). Properties 1, 2
and 4 imply that this intersection can be found in O(n) time
using the algorithm of Lo and Steiger. This completes the
proof of:

THEOREM 1. Given a polygon P with m wvertices, k of
which are reflex, and containing a set R of r red points and
a set B of b blue points, with r + b+ m = n, there exists
a randomized algorithm that finds a geodesic pq that simul-
taneously bisects R and B and runs in O(nlogk) expected
time.

3. AN Q(Nlog K) LOWER BOUND

In this section we show that the algorithm of the previous
section is optimal when parameterizing the running time
only in terms of n and k. To prove this result, we start
with a 1-dimensional problem that has an Q(nlogk) lower
bound.

Let G and Y be two sets of distinct integers. We call
an element € Y odd (respectively, even) if the number of
elements of G less than or equal to = is odd (respectively,
even). Let Y, denote the set of odd elements in Y and let Y.
denote the set of even elements in Y. From the work of Yao,
it follows that testing if |Y,| = |Ye| requires Q(|Y]log|G|)
time in the algebraic computation tree model. This is true
even if the elements of G (but not Y) are given in sorted
order. We refer to the problem of testing if |Y,| = |Ye| as
the COLORED-PARITY problem.
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Figure 7. A 6-gon containing three points (left) and the dual of these three points (right).

Given an instance of COLORED-PARITY we construct a
ham-sandwich instance as follows (see Figure 8): Our blue
point set B will have |Y'|+2 points. Of these points, |Y| are
on the z axis and take their z-coordinate from the elements
of Y. Our polygon P has a series of |G| + 2 spikes through
the z-axis such that the line segment joining the tip of the
ith spike to the tip of the (i + 1)st spike intersects the x
axis at the ith value of G. These spikes are skinny enough
and placed so that they do not intersect any elements of
G U B. Such a set of spikes is easy to compute in O(|G|)
time because the elements of G U B are integers and the
elements of |G| are sorted. We then complete our polygon
into a series of |G| + 2 chambers as shown in Figure 8.

Figure 8. The lower bound input to a ham-sandwich algorithm.

Our two remaining blue points are placed in the (|G|42)nd
chamber in such a way that any geodesic that separates
them and enters another chamber must pass through the
tip of the last spike. Finally, we place two red points in the
first chamber so that any geodesic that separates them and
enters another chamber must pass through the tip of the
first spike.

Observe that, if we take a geodesic g that separates the
two red points in the first chamber and separates the two
blue points in the last chamber, then the number of blue
points above and below G is |Ye| + 1 and |Y,| 4 1, respec-
tively. Furthermore, of all the geodesics that separate the
two red points, only those that separate the two blue points
in the final chamber have this property. Therefore, a ham-
sandwich geodesic separates the two blue points in the fi-

nal chamber if and only |Y.| = |Y,|. Thus, computing a
ham-sandwich geodesic and testing if it separates the two
blue points in the final chamber is sufficient to solve the
COLORED-PARITY problem. Since this reduction can be ac-
complished in O(|Y| + |G|) time and produces a polygon
with O(]G|) reflex vertices we obtain the following theorem:

THEOREM 2. Given sets R of red points and B of blue
points in a simple polygon P with k reflex vertices, finding
a ham-sandwich geodesic requires Q2(nlogk) time in the al-
gebraic computation tree model.
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