Geodesic-Loxodromes for Diffusion Tensor Interpolation and Difference Measurement

Gordon Kindlmann, Raúl San José Estépar, Marc Niethammer, Steven Haker, Carl-Fredrik Westin

Laboratory of Mathematics in Imaging Department of Radiology Brigham & Women's Hospital Harvard Medical School

Rest of talk

- Previous work
- Tensor shape
- Loxodromes
- Geodesic-Loxodromes, Results
- Distance measures, Results
- Conclusions

Space of Tensor Shape

⇒ Geodesic-Loxodromes monotonically interpolate {K_i} or {R_i}

Loxodrome defined

Path $\gamma(t)$ of constant speed and bearing \Leftrightarrow Fixed angle with respect to North $\widehat{\mathbf{n}}(\mathbf{x})$ $|\gamma'(t)| = 1$ and $\gamma'(t) \cdot \widehat{\mathbf{n}}(\gamma(t)) = \alpha$ for all t

Loxodromes monotonically interpolate latitude

Geodesic-Loxodrome defined, intuitively

Minimal-length path between two tensors that monotonically interpolates tensor shape

Geodesic-Loxodrome defined, mathematically

Geodesic-loxodrome $\gamma(t)$ between **A** and **B** is the *shortest* path satisfying:

 $\gamma(0) = \mathbf{A}, \ \gamma(l) = \mathbf{B}, \ |\gamma'(t)| = 1, \text{ and}$ $\gamma'(t): \widehat{\nabla} J_i(\gamma(t)) = \alpha_i \text{ for all } t \in [0, l], i \in \{1, 2, 3\}$ where $J_i = K_i \text{ or } J_i = R_i \text{ and } \widehat{\nabla} J_i = \frac{\nabla J_i}{|\nabla J_i|}$ Constants α_i and l are path "bearing" and length Monotonic: $\frac{d}{dt} J_i(\gamma(t)) = \gamma'(t): \nabla J_i(\gamma(t)) = \alpha_i |\nabla J_i(\gamma(t))|.$ $J_i(\mathbf{A}) = J_i(\mathbf{B}) \Rightarrow J_i(\mathbf{A}) = J_i(\gamma(t)) = J_i(\mathbf{B}) \text{ for all } t$ Intersection of isocontours = rotation orbit; geodesic

Distance measurement

Integrate tangent norm: $d(\mathbf{A}, \mathbf{B}) = \int_{0}^{t} |\gamma'(t)| dt = l$ Or, exploit shape and orientation '(t) $oldsymbol{\omega}(t)$ subspaces: $\gamma'(t_0)$ $oldsymbol{\omega}(t) = oldsymbol{\gamma}'(t) - oldsymbol{\sigma}(t)$ $\boldsymbol{\sigma}(t)$ $\widehat{oldsymbol{
abla}} J_1(oldsymbol{\gamma}(t_0))$ $\nabla J_2(\boldsymbol{\gamma}(t_0))$ $d_{or}(\mathbf{A}, \mathbf{B}) = \int_0^l |\boldsymbol{\omega}(t)| dt$ $\widehat{oldsymbol{
abla}} J_3(oldsymbol{\gamma}(t_0)$ shape $\boldsymbol{\sigma}(t) = \sum_{i} \boldsymbol{\gamma}'(t) : \widehat{\boldsymbol{\nabla}} J_{i}(\boldsymbol{\gamma}(t)) \widehat{\boldsymbol{\nabla}} J_{i}(\boldsymbol{\gamma}(t))$ $d_{sh}(\mathbf{A}, \mathbf{B}) = \int_0^l |\boldsymbol{\sigma}(t)| dt$

Distance measurement, Results

Conclusions, Future Work

- Intuition about orientation and shape mapped to formulation of geodesic and loxodrome properties
- Structure math of interpolation around established tensor **parameters**, not just positive-definiteness
- Tensor Mode ($K_3 = R_3$) important for shape
- Working on fast approximations
- Need log(), exp() map analogs for multi-linear

Acknowledgements

- NIH funding: U41-RR019703, P41-RR13218, R01-MH050740, R01-MH074794.
- Data: Dr. Susumu Mori, Johns Hopkins University, NIH R01-AG-20012-01, P41-RR15241-01A1

gk@bwh.harvard.edu

http://lmi.bwh.harvard.edu/~gk

Thank you