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Abstract

This monograph reviews both the theory and practice of the numeri-

cal computation of geodesic distances on Riemannian manifolds . The

notion of Riemannian manifold allows one to define a local metric

(a symmetric positive tensor field) that encodes the information about

the problem one wishes to solve. This takes into account a local

isotropic cost (whether some point should be avoided or not) and a local

anisotropy (which direction should be preferred). Using this local tensor

field, the geodesic distance is used to solve many problems of practical

interest such as segmentation using geodesic balls and Voronoi regions,

sampling points at regular geodesic distance or meshing a domain with

Full text available at: http://dx.doi.org/10.1561/0600000029



geodesic Delaunay triangles. The shortest paths for this Riemannian

distance, the so-called geodesics, are also important because they follow

salient curvilinear structures in the domain. We show several applica-

tions of the numerical computation of geodesic distances and shortest

paths to problems in surface and shape processing, in particular seg-

mentation, sampling, meshing and comparison of shapes. All the figures

from this review paper can be reproduced by following the Numerical

Tours of Signal Processing.

http://www.ceremade.dauphine.fr/∼peyre/numerical-tour/

Several textbooks exist that include description of several manifold

methods for image processing, shape and surface representation and

computer graphics. In particular, the reader should refer to [42, 147,

208, 209, 213, 255] for fascinating applications of these methods to

many important problems in vision and graphics. This review paper is

intended to give an updated tour of both foundations and trends in the

area of geodesic methods in vision and graphics.
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1

Theoretical Foundations of Geodesic Methods

This section introduces the notion of Riemannian manifold that is a

unifying setting for all the problems considered in this review paper.

This notion requires only the design of a local metric, which is then

integrated over the whole domain to obtain a distance between pairs

of points. The main property of this distance is that it satisfies a non-

linear partial differential equation, which is at the heart of the fast

numerical schemes considered in Section 2.

1.1 Two Examples of Riemannian Manifolds

To give a flavor of Riemannian manifolds and geodesic paths, we give

two important examples in computer vision and graphics.

1.1.1 Tracking Roads in Satellite Image

An important and seminal problem in computer vision consists in

detecting salient curves in images, see for instance [57]. They can be

used to perform segmentation of the image, or track features. A repre-

sentative example of this problem is the detection of roads in satellite

images.

1
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2 Theoretical Foundations of Geodesic Methods

Fig. 1.1 Example of geodesic curve extracted using the weighted metric (1.1). xs and xe

correspond, respectively, to the red and blue points.

Figure 1.1, upper left, displays an example of satellite image f ,

that is modeled as a 2D function f :Ω → R, where the image domain is

usually Ω = [0,1]2. A simple model of road is that it should be approxi-

mately of constant gray value c ∈ R. One can thus build a saliency map

W (x) that is low in area where there is a high confidence that some

road is passing by, as suggested for instance in [72]. As an example, one

can define

W (x) = |f(x) − c| + ε (1.1)

where ε is a small value that prevents W (x) from vanishing.

Using this saliency map, one defines the length of a smooth curve

on the image γ: [0,1] → Ω as a weighted length

L(γ) =

∫ 1

0
W (γ(t))||γ′(t)||dt (1.2)

Full text available at: http://dx.doi.org/10.1561/0600000029



1.1 Two Examples of Riemannian Manifolds 3

where γ′(t) ∈ R
2 is the derivative of γ. We note that this measure of

lengths extends to piecewise smooth curves by splitting the integration

into pieces where the curve is smooth.

The length L(γ) is smaller when the curve passes by regions where

W is small. It thus makes sense to declare as roads the curves that

minimize L(γ). For this problem to make sense, one needs to further

constrain γ. And a natural choice is to fix its starting and ending points

to be a pair (xs,xe) ∈ Ω2

P(xs,xe) = {γ : [0,1] → Ω \ γ(0) = xs and γ(1) = xe} , (1.3)

where the paths are assumed to be piecewise smooth so that one can

measure their lengths using (1.2).

Within this setting, a road γ⋆ is a global minimizer of the length

γ⋆ = argmin
γ∈P(xs,xe)

L(γ), (1.4)

which in general exists, and is unique except in degenerate situations

where different roads have the same length. Length L(γ⋆) is called

geodesic distance between xs and xe with respect to W (x).

Figure 1.1 shows an example of geodesic extracted with this method.

It links two points xs and xe given by the user. One can see that this

curve tends to follow regions with gray values close to c, which has been

fixed to c = f(xe).

This idea of using a scalar potential W (x) to weight the length of

curves has been used in many computer vision applications beside road

tracking. This includes in particular medical imaging where one wants

to extract contours of organs or blood vessels. These applications are

further detailed in Section 3.

1.1.2 Detecting Salient Features on Surfaces

Computer graphics applications often face problems that require the

extraction of meaningful curves on surfaces. We consider here a smooth

surface S embedded into the 3D Euclidean space, S ⊂ R
3.

Similarly to (1.2), a curve γ̃: [0,1] → S traced on the surface has a

weighted length computed as

L(γ̃) =

∫ 1

0
W (γ̃(t))||γ̃′(t)||dt, (1.5)

Full text available at: http://dx.doi.org/10.1561/0600000029



4 Theoretical Foundations of Geodesic Methods

where γ̃′(t) ∈ Tγ̃(t) ⊂ R
3 is the derivative vector, that lies in the embed-

ding space R
3, and is in fact a vector belonging to the 2D tangent plane

Tγ̃(t) to the surface at γ̃(t), and the weight W is a positive function

defined on the surface domain S.

Note that we use the notation x̃ = γ̃(t) to insist on the fact that

the curves are not defined in a Euclidean space, and are forced to be

traced on a surface.

Similarly to (1.4), a geodesic curve

γ̃⋆ = argmin
γ̃∈P(x̃s,x̃e)

L(γ̃), (1.6)

is a shortest curve joining two points x̃s, x̃e ∈ S.

When W = 1, L(γ̃) is simply the length of a 3D curve, that is

restricted to be on the surface S. Figure 1.2 shows an example of

surface, together with a set of geodesics joining pairs of points, for

W = 1. As detailed in Section 3.2.4, a varying saliency map W (x̃) can

be defined from a texture or from the curvature of the surface to detect

salient curves.

Geodesics and geodesic distance on 3D surfaces have found many

applications in computer vision and graphics, for example, surface

matching, detailed in Section 5, and surface remeshing, detailed in

Section 4.

Fig. 1.2 Example of geodesic curves on a 3D surface.

Full text available at: http://dx.doi.org/10.1561/0600000029



1.2 Riemannian Manifolds 5

1.2 Riemannian Manifolds

It turns out that both previous examples can be cast into the same

general framework using the notion of a Riemannian manifold of dimen-

sion 2.

1.2.1 Surfaces as Riemannian Manifolds

Although the curves described in Sections 1.1.1 and 1.1.2 do not belong

to the same spaces, it is possible to formalize the computation of

geodesics in the same way in both cases. In order to do so, one needs to

introduce the Riemannian manifold Ω ⊂ R
2 associated to the surface

S [148].

A smooth surface S ⊂ R
3 can be locally described as a parametric

function

ϕ:
Ω ⊂ R

2 → S ⊂ R
3

x 7→ x̃ = ϕ(x)
(1.7)

which is required to be differentiable and one-to-one, where Ω is an

open domain of R
2.

Full surfaces require several such mappings to be fully described,

but we postpone this difficulty until Section 1.2.2.

The tangent plane Tx̃ at a surface point x̃ = ϕ(x) is spanned by

the two partial derivatives of the parameterization, which define the

derivative matrix at point x = (x1,x2)

Dϕ(x) =

(

∂ϕ

∂x1
(x),

∂ϕ

∂x2
(x)

)

∈ R
3×2. (1.8)

As shown in Figure 1.3, the derivative of any curve γ̃ at a point x̃ = γ̃(t)

belongs to the tangent plane Tx̃ of S at x̃.

The curve γ̃(t) ∈ S ⊂ R
3 defines a curve γ(t) = ϕ−1(γ̃(t)) ∈ Ω traced

on the parameter domain. Note that while γ̃ belongs to a curved sur-

face, γ is traced on a subset of a Euclidean domain.

Since γ̃(t) = ϕ(γ(t)) ∈ Ω the tangents to the curves are related via

γ̃′(t) = Dϕ(γ(t))γ′(t) and γ̃′(t) is in the tangent plane Tγ̃(t) which is

spanned by the columns of Dϕ(γ(t)). The length (1.5) of the curve γ̃

Full text available at: http://dx.doi.org/10.1561/0600000029



6 Theoretical Foundations of Geodesic Methods

Fig. 1.3 Tangent space Tx̃ and derivative of a curve on surface S.

is computed as

L(γ̃) = L(γ) =

∫ 1

0
||γ′(t)||Tγ(t)

dt, (1.9)

where the tensor Tx is defined as

∀x ∈ Ω, Tx =
√

W (x̃)Iϕ(x) where x̃ = ϕ(x),

and Iϕ(x) ∈ R
2×2 is the first fundamental form of S

Iϕ(x) = (Dϕ(x))TDϕ(x) =

(〈

∂ϕ

∂xi
(x)

∂ϕ

∂xj
(x)

〉)

1≤i,j≤2

(1.10)

and where, given some positive symmetric matrix A = (Ai,j)1≤i,j≤2 ∈

R
2×2, we define its associated norm

||u||2A = 〈u, u〉A where 〈u, v〉A = 〈Au, v〉 =
∑

1≤i,j≤2

Ai,juivj . (1.11)

A domain Ω equipped with such a metric is called a Riemannian

manifold.

The geodesic curve γ̃⋆ traced on the surface S defined in (1.6)

can equivalently be viewed as a geodesic γ⋆ = ϕ−1(γ̃⋆) traced on the

Riemannian manifold Ω. While γ̃⋆ minimizes the length (1.5) in the 3D

embedding space between x̃s and x̃e the curve γ⋆ minimizes the Rie-

mannian length (1.9) between xs = ϕ−1(x̃s) and xe = ϕ−1(x̃e).

Full text available at: http://dx.doi.org/10.1561/0600000029



1.2 Riemannian Manifolds 7

1.2.2 Riemannian Manifold of Arbitrary Dimensions

Local description of a manifold without boundary. We con-

sider an arbitrary manifold S of dimension d embedded in R
n for some

n ≥ d [164]. This generalizes the setting of the previous Section 1.2.1

that considers d = 2 and n = 3. The manifold is assumed for now to be

closed, which means without boundary.

As already done in (1.7), the manifold is described locally using a

bijective smooth parametrization

ϕ:
Ω ⊂ R

d → S ⊂ R
n

x 7→ x̃ = ϕ(x)

so that ϕ(Ω) is an open subset of S.

All the objects we consider, such as curves and length, can be trans-

posed from S to Ω using this application. We can thus restrict our

attention to Ω, and do not make any reference to the surface S.

For an arbitrary dimension d, a Riemannian manifold is thus locally

described as a subset of the ambient space Ω ⊂ R
d, having the topology

of an open sphere, equipped with a positive definite matrix Tx ∈ R
d×d

for each point x ∈ Ω, that we call a tensor field. This field is further

required to be smooth.

Similarly to (1.11), at each point x ∈ Ω, the tensor Tx defines the

length of a vector u ∈ R
d using

||u||2Tx
= 〈u, u〉Tx

where 〈u, v〉Tx
= 〈Txu, v〉 =

∑

1≤i,j≤d

(Tx)i,juivj .

This allows one to compute the length of a curve γ(t) ∈ Ω traced on

the Riemannian manifold as a weighted length where the infinitesimal

length is measured according to Tx

L(γ) =

∫ 1

0
||γ′(t)||Tγ(t)

dt. (1.12)

The weighted metric on the image for road detection defined in Sec-

tion 1.1.1 fits within this framework for d = 2 by considering Ω = [0,1]2

and Tx = W (x)2Id2, where Id2 ∈ R
2×2 is the identity matrix. In this

case, Ω = S, and ϕ is the identity application. The parameter domain

metric defined from a surface S ⊂ R
3 considered in Section 1.1.2 can

Full text available at: http://dx.doi.org/10.1561/0600000029



8 Theoretical Foundations of Geodesic Methods

also be viewed as a Riemannian metric as we explained in the previous

section.

Global description of a manifold without boundary. The local

description of the manifold as a subset Ω ⊂ R
d of an Euclidean space

is only able to describe parts that are topologically equivalent to open

spheres.

A manifold S ∈ R
n embedded in R

n with an arbitrary topology is

decomposed using a finite set of overlapping surfaces {Si}i topologically

equivalent to open spheres such that

⋃

i

Si = S. (1.13)

A chart ϕi:{Ωi}i → Si is defined for each of sub-surface Si.

Figure 1.4 shows how a 1D circle is locally parameterized using

several 1D segments.

Manifolds with boundaries. In applications, one often encounters

manifolds with boundaries, for instance images defined on a square,

volume of data defined inside a cube, or planar shapes.

The boundary ∂Ω of a manifold Ω of dimension d is itself by defini-

tion a manifold of dimension d − 1. Points x strictly inside the manifold

are assumed to have a local neighborhood that can be parameterized

over a small Euclidean ball. Points located on the boundary are param-

eterized over a half Euclidean ball.

Fig. 1.4 The circle is a 1-dimensional surface embedded in R
2, and is thus a 1D manifold.

In this example, it is decomposed in four sub-surfaces which are topologically equivalent to
sub-domains of R, through charts ϕi.

Full text available at: http://dx.doi.org/10.1561/0600000029



1.2 Riemannian Manifolds 9

Such manifolds require some extra mathematical care, since

geodesic curves (local length minimizers) and shortest paths (global

length minimizing curves), defined in Section 1.2.3, might exhibit tan-

gential discontinuities when reaching the boundary of the manifold.

Note however that these curves can still be computed numerically

as described in Section 2. Note also that the characterization of the

geodesic distance as the viscosity solution of the Eikonal equation still

holds for manifolds with boundary.

1.2.3 Geodesic Curves

Globally minimizing shortest paths. Similarly to (1.4), one

defines a geodesic γ⋆(t) ∈ Ω between two points (xs,xe) ∈ Ω2 as the

curve between xs and xe with minimal length according to the

Riemannian metric (1.9):

γ⋆ = argmin
γ∈P(xs,xe)

L(γ). (1.14)

As an example, in the case of a uniform Tx = Idd (i.e., the metric

is Euclidean) and a convex Ω, the unique geodesic curve between xs

and xe is the segment joining the two points.

Existence of shortest paths between any pair of points on a

connected Riemannian manifold is guaranteed by the Hopf-Rinow

theorem [134]. Such a curve is not always unique, see Figure 1.5.

Locally minimizing geodesic curves. It is important to note that

in this paper the notion of geodesics refers to minimal paths, that

Fig. 1.5 Example of non-uniqueness of a shortest path between two points: there is an
infinite number of shortest paths between two antipodal points on a sphere.

Full text available at: http://dx.doi.org/10.1561/0600000029



10 Theoretical Foundations of Geodesic Methods

are curves minimizing globally the Riemannian length between two

points. In contrast, the mathematical definition of geodesic curves usu-

ally refers to curves that are local minimizer of the geodesic lengths.

These locally minimizing curves are the generalization of straight lines

in Euclidean geometry to the setting of Riemannian manifolds.

Such a locally minimizing curve satisfies an ordinary differential

equation, that expresses that it has a vanishing Riemannian curvature.

There might exist several local minimizers of the length between

two points, which are not necessarily minimal paths. For instance, on

a sphere, a great circle passing by two points is composed of two local

minimizer of the length, and only one of the two portion of circle is a

minimal path.

1.2.4 Geodesic Distance

The geodesic distance between two points xs,xe is the length of γ⋆.

d(xs,xe) = min
γ∈P(xs,xe)

L(γ) = L(γ⋆). (1.15)

This defines a metric on Ω, which means that it is symmetric d(xs,xe) =

d(xe,xs), that d(xs,xe) > 0 unless xs = xe and then d(xs,xe) = 0, and

that it satisfies the triangular inequality for every point y

d(xs,xe) ≤ d(xs,y) + d(y,xe).

The minimization (1.15) is thus a way to transfer a local metric defined

point-wise on the manifold Ω into a global metric that applies to arbi-

trary pairs of points on the manifold.

This metric d(xs,xe) should not be mistaken for the Euclidean

metric ||xs − xe|| on R
n, since they are in general very different. As

an example, if r denotes the radius of the sphere in Figure 1.5,

the Euclidean distance between two antipodal points is 2r while the

geodesic distance is πr.

1.2.5 Anisotropy

Let us assume that Ω is of dimension 2. To analyze locally the behavior

of a general anisotropic metric, the tensor field is diagonalized as

Tx = λ1(x)e1(x)e1(x)T + λ2(x)e2(x)e2(x)T, (1.16)

Full text available at: http://dx.doi.org/10.1561/0600000029



1.2 Riemannian Manifolds 11

where 0 < λ1(x) ≤ λ2(x). The vector fields ei(x) are orthogonal eigen-

vectors of the symmetric matrix Tx with corresponding eigenvalues

λi(x). The norm of a tangent vector v = γ′(t) of a curve at a point

x = γ(t) is thus measured as

||v||Tx
= λ1(x)|〈e1(x), v〉|2 + λ2(x)|〈e2(x), v〉|2.

A curve γ is thus locally shorter near x if its tangent γ′(t) is collinear

to e1(x), as shown in Figure 1.6. Geodesic curves thus tend to be as

parallel as possible to the eigenvector field e1(x). This diagonalization

(1.16) carries over to arbitrary dimension d by considering a family of

d eigenvector fields.

For image analysis, in order to find significant curves as geodesics

of a Riemannian metric, the eigenvector field e1(x) should thus match

the orientation of edges or of textures, as this is the case for Figure 1.7,

right.

The strength of the directionality of the metric is measured by its

anisotropy A(x), while its global isotropic strength is measured using

its energy W (x)

A(x) =
λ2(x) − λ1(x)

λ2(x) + λ1(x)
∈ [0,1] and W (x)2 =

λ2(x) + λ1(x)

2
> 0.

(1.17)

A tensor field with A(x) = 0 is isotropic and thus verifies Tx =

W (x)2Id2, which corresponds to the setting considered in the road

tracking application of Section 1.1.1.

Figure 1.7 shows examples of metric with a constant energy

W (x) = W and an increasing anisotropy A(x) = A. As the anisotropy

Fig. 1.6 Schematic display of a local geodesic ball for an isotropic metric or an anisotropic
metric.
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Fig. 1.7 Example of geodesic distance to the center point, and geodesic curves between this
center point and points along the boundary of the domain. These are computed for a metric
with an increasing value of anisotropy A, and for a constant W . The metric is computed
from the image f using (4.37).

A drops to 0, the Riemannian manifold comes closer to Euclidean, and

geodesic curves become line segments.

1.3 Other Examples of Riemannian Manifolds

One can find many occurrences of the notion of Riemannian mani-

fold to solve various problems in computer vision and graphics. All

these methods build, as a pre-processing step, a metric Tx suited for

the problem to solve, and use geodesics to integrate this local distance

information into globally optimal minimal paths. Figure 1.8 synthe-

sizes different possible Riemannian manifolds. The last two columns

correspond to examples already considered in Sections 1.1.1 and 1.2.5.

1.3.1 Euclidean Distance

The classical Euclidean distance d(xs,xe) = ||xs − xe|| in Ω = R
d is

recovered by using the identity tensor Tx = Idd. For this identity met-

ric, shortest paths are line segments. Figure 1.8, first column, shows

this simple setting. This is generalized by considering a constant metric

Tx = T ∈ R
2×2, in which case the Euclidean metric is measured accord-

ing to T , since d(xs,xe) = ||xs − xe||T . In this setting, geodesics between

two points are straight lines.

1.3.2 Planar Domains and Shapes

If one uses a locally Euclidean metric Tx = Id2 in 2D, but restricts

the domain to a non-convex planar compact subset Ω ⊂ R
2, then
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Fig. 1.8 Examples of Riemannian metrics (top row), geodesic distances and geodesic curves

(bottom row). The blue/red color-map indicates the geodesic distance to the starting red
point. From left to right: Euclidean (Tx = Id2 restricted to Ω = [0,1]2), planar domain

(Tx = Id2 restricted to M ⊂ [0,1]2), isotropic metric (Ω = [0,1]2, T (x) = W (x)Id2, see
Equation (1.1)), Riemannian manifold metric (Tx is the structure tensor of the image, see
Equation (4.37)).

the geodesic distance d(xs,xe) might differ from the Euclidean length

||xs − xe||. This is because paths are restricted to lie inside Ω, and some

shortest paths are forced to follow the boundary of the domain, thus

deviating from line segment (see Figure 1.8, second column).

This shows that the global integration of the local length measure Tx

to obtain the geodesic distance d(xs,xe) takes into account global geo-

metrical and topological properties of the domain. This property is

useful to perform shape recognition, that requires some knowledge of

the global structure of a shape Ω ⊂ R
2, as detailed in Section 5.

Such non-convex domain geodesic computation also found applica-

tion in robotics and video games, where one wants to compute an opti-

mal trajectory in an environment consisting of obstacles, or in which

some positions are forbidden [153, 161]. This is detailed in Section 3.6.

1.3.3 Anisotropic Metric on Images

Section 1.1.1 detailed an application of geodesic curve to road tracking,

where the Riemannian metric is a simple scalar weight computed from

some image f . This weighting scheme does not take advantage of the
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local orientation of curves, since the metric W (x)||γ′(t)|| is only sensitive

to the amplitude of the derivative.

One can improve this by computing a 2D tensor field Tx at each pixel

location x ∈ R
2×2. The precise definition of this tensor depends on the

precise applications, see Section 3.2. They generally take into account

the gradient ∇f(x) of the image f around the pixel x, to measure the

local directionality of the edges or the texture. Figure 1.8, right, shows

an example of metric designed to match the structure of a texture.

1.4 Voronoi Segmentation and Medial Axis

1.4.1 Voronoi Segmentation

For a finite set S = {xi}
K−1
i=0 of starting points, one defines a segmen-

tation of the manifold Ω into Voronoi cells

Ω =
⋃

i

Ci where Ci = {x ∈ Ω \ ∀j 6= i, d(x,xj) ≥ d(x,xi)} . (1.18)

Each region Ci can be interpreted as a region of influence of xi. Sec-

tion 2.6.1 details how to compute this segmentation numerically, and

Section 4.1.1 discusses some applications.

This segmentation can also be represented using a partition function

ℓ(x) = argmin
0≤i<K

d(x,xi). (1.19)

For points x which are equidistant from at least two different starting

points xi and xj , i.e., d(x,xi) = d(x,xj), one can pick either ℓ(x) = i or

ℓ(x) = j. Except for these exceptional points, one thus has ℓ(x) = i if

and only if x ∈ Ci.

Figure 1.9, top row, shows an example of Voronoi segmentation for

an isotropic metric.

This partition function ℓ(x) can be extended to the case where S is

not a discrete set of points, but for instance the boundary of a 2D shape.

In this case, ℓ(x) is not integer valued but rather indicates the location

of the closest point in S. Figure 1.9, bottom row, shows an example

for a Euclidean metric restricted to a non-convex shape, where S is the

boundary of the domain. In the third image, the colors are mapped to

the points of the boundary S, and the color of each point x corresponds

to the one associated with ℓ(x).
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Fig. 1.9 Examples of distance function, Voronoi segmentation and medial axis for an
isotropic metric (top left) and a constant metric inside a non-convex shape (bottom left).

1.4.2 Medial Axis

The medial axis is the set of points where the distance function US is

not differentiable. This corresponds to the set of points x ∈ Ω where

two distinct shortest paths join x to S.

The major part of the medial axis is thus composed of points that

are at the same distance from two points in S

{

x ∈ Ω \ ∃(x1,x2) ∈ S2

∣

∣

∣

∣

x1 6= x2

d(x,x1) = d(x,x2)

}

⊂ MedAxis(S). (1.20)

This inclusion might be strict because it might happen that two points

x ∈ Ω and y ∈ S are linked by two different geodesics.

Finite set of points. For a discrete finite set S = {xi}
N−1
i=0 , a point

x belongs to MedAxis(S) either if it is on the boundary of a Voronoi

cell, or if two distinct geodesics are joining x to a single point of S. One

thus has the inclusion

⋃

xi∈S

∂Ci ⊂ MedAxis(S) (1.21)

where Ci is defined in (1.18).
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For instance, if S = {x0,x1} and if Tx is a smooth metric, then

MedAxis(S) is a smooth mediatrix hyper surface of dimension d − 1

between the two points. In the Euclidean case, Tx = Idd, it corresponds

to the separating affine hyperplane.

As detailed in Section 4.1.1, for a 2D manifold and a generic dense

enough configuration of points, it is the union of portion of mediatri-

ces between pairs of points, and triple points that are equidistant from

three different points of S.

Section 2.6.2 explains how to compute numerically the medial axis.

Shape skeleton. The definition (1.20) of MedAxis(S) still holds

when S is not a discrete set of points. The special case considered

in Section 1.3.2 where Ω is a compact subset of R
d and S = ∂Ω is of

particular importance for shape and surface modeling. In this setting,

MedAxis(S) is often called the skeleton of the shape S, and is an impor-

tant perceptual feature used to solve many computer vision problems.

It has been studied extensively in computer vision as a basic tool for

shape retrieval, see for instance [252]. One of the main issues is that

the skeleton is very sensitive to local modifications of the shape, and

tends to be complicated for non-smooth shapes.

Section 2.6.2 details how to compute and regularize numerically the

skeleton of a shape. Figure 1.9 shows an example of skeleton for a 2D

shape.

1.5 Geodesic Distance and Geodesic Curves

1.5.1 Geodesic Distance Map

The geodesic distance between two points defined in (1.15) can be gen-

eralized to the distance from a point x to a set of points S ⊂ Ω by

computing the distance from x to its closest point in Ω, which defines

the distance map

US(x) = min
y∈S

d(x,y). (1.22)

Similarly a geodesic curve γ⋆ between a point x ∈ Ω and S is a curve

γ⋆ ∈ P(x,y) for some y ∈ S such that L(γ⋆) = US(x).
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Fig. 1.10 Examples of geodesic distances and curves for a Euclidean metric with different
starting configurations. Geodesic distance is displayed as an elevation map over Ω = [0,1]2.
Red curves correspond to iso-geodesic distance lines, while yellow curves are examples of
geodesic curves.

Figure 1.8, bottom row, shows examples of geodesic distance map

to a single starting point S = {xs}.

Figure 1.10 is a three-dimensional illustration of distance maps for

a Euclidean metric in R
2 from one (left) or two (right) starting points.

1.5.2 Eikonal Equation

For points x outside both the medial axis MedAxis(S) defined in (1.20)

and S, one can prove that the geodesic distance map US is differen-

tiable, and that it satisfies the following non-linear partial differential

equation

||∇US(x)||T−1
x

= 1, with boundary conditions US(x) = 0 on S, (1.23)

where ∇US is the gradient vector of partial differentials in R
d.

Unfortunately, even for a smooth metric Tx and simple set S, the

medial axis MedAxis(S) is non-empty (see Figure 1.10, right, where

the geodesic distance is clearly not differentiable at points equidistant

from the starting points). To define US as a solution of a PDE even

at points where it is not differentiable, one has to resort to a notion

of weak solution. For a non-linear PDE such as (1.23), the correct

notion of weak solution is the notion of viscosity solution, developed

by Crandall and Lions [82, 83, 84].

A continuous function u is a viscosity solution of the Eikonal equa-

tion (1.23) if and only if for any continuously differentiable mapping

ϕ ∈ C1(Ω) and for all x0 ∈ Ω\S local minimum of u − ϕ we have

||∇ϕ(x0)||T−1
x0

= 1
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Fig. 1.11 Schematic view in 1D of the viscosity solution constrain.

For instance in 1D, d = 1, Ω = R, the distance function

u(x) = US(x) = min(|x − x1|, |x − x2|)

from two points S = {x1,x2} satisfies |u′| = 1 wherever it is differen-

tiable. However, many other functions satisfies the same property, for

example v, as shown on Figure 1.11. Figure 1.11, top, shows a C1(R)

function ϕ that reaches a local minimum for u − ϕ at x0. In this case,

the equality |ϕ′(x0)| = 1 holds. This condition would not be verified by

v at point x0. An intuitive vision of the definition of viscosity solution

is that it prevents appearance of such inverted peaks outside S.

An important result from the viscosity solution of Hamilton–Jacobi

equation, proved in [82, 83, 84], is that if S is a compact set, if x 7→ Tx

is a continuous mapping, then the geodesic distance map US defined in

(1.22) is the unique viscosity solution of the following Eikonal equation
{

∀x ∈ Ω, ||∇US(x)||T−1
x

= 1,

∀x ∈ S, US(x) = 0.
(1.24)

In the special case of an isotropic metric Tx = W (x)2Idd, one recovers

the classical Eikonal equation

∀x ∈ Ω, ||∇US(x)|| = W (x). (1.25)

For the Euclidean case, W (x) = 1, one has ||∇US(x)|| = 1, whose

viscosity solution for S = {xs} is Uxs
(x) = ||x − xs||.
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1.5.3 Geodesic Curves

If the geodesic distance US is known, for instance by solving the Eikonal

equation, a geodesic γ⋆ between some end point xe and S is computed

by gradient descent. This means that γ⋆ is the solution of the following

ordinary differential equation






∀ t > 0,
dγ⋆(t)

dt
= −ηtv(γ⋆(t)),

γ⋆(0) = xe.
(1.26)

where the tangent vector to the curve is the gradient of the distance,

twisted by T−1
x

v(x) = T−1
x ∇US(x),

and where ηt > 0 is a scalar function that controls the speed of the

geodesic parameterization. To obtain a unit speed parameterization,

||(γ⋆)′(t)|| = 1, one needs to use

ηt = ||v(γ⋆(t))||−1.

If xe is not on the medial axis MedAxis(S), the solution of (1.26) will

not cross the medial axis for t > 0, so its solution is well defined for

0 ≤ t ≤ txe
, for some txe

such that γ⋆(txe
) ∈ S.

For an isotropic metric Tx = W (x)2Idd, one recovers the gradient

descent of the distance map proposed in [74]

∀ t > 0,
dγ⋆(t)

dt
= −ηt∇US(γ⋆(t)).

Figure 1.10 illustrates the case where Tx = Id2: geodesic curves are

straight lines orthogonal to iso-geodesic distance curves, and corre-

spond to greatest slopes curves, since the gradient of a function is

always orthogonal to its level curves.
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[138] A. Ion, G. Peyré, Y. Haxhimusa, S. Peltier, W. G. Kropatsch, and L. Cohen,
“Shape matching using the geodesic eccentricity transform — a study,” in
The 31st Annual Workshop of the Austrian Association for Pattern Recog-
nition (OAGM/AAPR), (C. Beleznai, W. Ponweiser, and M. Vincze, eds.),
pp. 97–104, Schloss Krumbach, Austria: OCG, May 2007.

[139] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” ACM
Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[140] S. Jbabdi, P. Bellec, R. Toro, J. Daunizeau, M. Pélégrini-Issac, and H. Benali,
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tions on Graphics, vol. 25, no. 3, pp. 1160–1168, 2006.

[274] A. Trouve and L. Younes, “Diffeomorphic matching problems in one dimen-
sion: Designing and minimizing matching functionals,” in Proceedings of
ECCV, vol. I, pp. 573–587, 2000.

[275] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao, “Fast sweeping algo-
rithms for a class of Hamilton–Jacobi equations,” SIAM Journal on Numerical
Analysis, vol. 41, no. 2, pp. 673–694, April 2003.

[276] J. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,” IEEE
Transactions on Automatic Control, vol. 40, no. 9, pp. 1528–1538, September
1995.

[277] W. T. Tutte, “How to draw a graph,” Proceedings of London Mathematic,
vol. 13, pp. 743–768, 1963.

[278] S. Valette, J. M. Chassery, and R. Prost, “Generic remeshing of 3D triangular
meshes with metric-dependent discrete Voronoi diagrams,” IEEE Transactions
on Visualization and Computer Graphics, vol. 14, no. 2, pp. 369–381, 2008.

[279] R. Van Uitert and I. Bitter, “Subvoxel precise skeletons of volumetric data
based on fast marching methods,” Medical physics, vol. 34, pp. 627–638, 2007.

[280] R. C. Veltkamp, “Shape matching: Similarity measure and algorithms,” in
Proceedings Shape Modelling International, pp. 188–197, IEEE Press, 2001.

Full text available at: http://dx.doi.org/10.1561/0600000029



202 References

[281] R. C. Veltkamp and L. J. Latecki, “Properties and performance of shape
similarity measures,” in Proceedings of the 10th IFCS Conference on Data
Science and Classification, Slovenia, July 2006.

[282] C. Villani, Topics in Optimal Transportation. American Mathematical Society,
2003.

[283] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm
based on immersion simulations,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 13, no. 6, pp. 583–598, 1991.

[284] D. Wagner and T. Willhalm, “Geometric speed-up techniques for finding
shortest paths in large sparse graphs,” in Proceedings of ESA, vol. 2832, (G. D.
Battista and U. Zwick, eds.), pp. 776–787, Springer, 2003.

[285] C. Wang, M. M. Bronstein, and N. Paragios, “Discrete minimum distortion
correspondence problems for non-rigid shape matching,” INRIA Report, 7333,
2010.

[286] J. G. Wardrop, “Some theoretical aspects of road traffic research,” Proceed-
ings — Institution of Civil Engineers, vol. 2, no. 2, pp. 325–378, 1952.

[287] O. Weber, Y. S. Devir, A. M. Bronstein, M. M. Bronstein, and R. Kimmel,
“Parallel algorithms for approximation of distance maps on parametric sur-
faces,” ACM Transactions on Graphics, vol. 27, no. 4, no. 4, 2008.

[288] J. W. J. Williams, “Algorithm 232: Heapsort,” Communications of the ACM,
vol. 7, pp. 347–348, 1964.

[289] L. R. Williams and D. W. Jacobs, “Stochastic completion fields: A neural
model of illusory contour shape and salience,” Neural Computation, vol. 9,
no. 4, pp. 837–858, 1997.

[290] E. Wolfson and E. L.Schwartz, “Computing minimal distances on polyhedral
surfaces,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 11, no. 9, pp. 1001–1005, 1989.

[291] R. P. Woods, “Characterizing volume and surface deformations in an atlas
framework: Theory, applications, and implementation,” NeuroImage, vol. 18,
no. 3, pp. 769–788, 2003.

[292] S. Yamakawa and K. Shimada, “High quality anisotropic tetrahedral mesh
generation via ellipsoidal bubble packing,” in 9th International Meshing
Roundtable, pp. 263–274, 2000.

[293] L. Yatziv, A. Bartesaghi, and G. Sapiro, “O(n) implementation of the fast
marching algorithm,” Journal of Computational Physics, vol. 212, no. 2,
pp. 393–399, 2006.

[294] Y. Yokosuka and K. Imai, “Guaranteed-quality anisotropic mesh generation
for domains with curves,” in Proceedings of EWCG’06, 2006.

[295] C. T. Zahn and R. Z. Roskies, “Fourier descriptors for plane closed curves,”
IEEE Transactions on Computer, vol. 21, no. 3, pp. 269–281, March 1972.

[296] D. S. Zhang and G. J. Lu, “Review of shape representation and description
techniques,” Pattern Recognition, vol. 37, no. 1, pp. 1–19, January 2004.

[297] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah, “Shape from shading: A
survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 21, no. 8, pp. 690–706, 1999.

[298] H. Zhao, “Parallel implementations of the fast sweeping method,” Journal of
Computational Mathematics, vol. 25, no. 4, pp. 421–429, 2007.

Full text available at: http://dx.doi.org/10.1561/0600000029



References 203

[299] L. Zhou, M. S. Rzeszotarski, L. J. Singerman, and J. M. Chokreff, “The detec-
tion and quantification of retinopathy using digital angiograms,” IEEE Trans-
actions on Medical Imaging, vol. 13, no. 4, pp. 619–626, 1994.

[300] S. C. Zhu, “Stochastic jump-diffusion process for computing medial axes in
markov random fields,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 21, no. 11, pp. 1158–1169, November 1999.

[301] S. C. Zhu and A. L. Yuille, “FORMS: A flexible object recognition and mod-
elling system,” International Journal of Computer Vision, vol. 20, no. 3,
pp. 187–212, 1996.

[302] G. Zigelman, R. Kimmel, and N. Kiryati, “Texture mapping using surface
flattening via multi-dimensional scaling,” IEEE Transactions on Visualization
and Computer Graphics, vol. 8, no. 1, pp. 198–207, 2002.

Full text available at: http://dx.doi.org/10.1561/0600000029


	Theoretical Foundations of Geodesic Methods
	Two Examples of Riemannian Manifolds
	Riemannian Manifolds
	Other Examples of Riemannian Manifolds
	Voronoi Segmentation and Medial Axis
	Geodesic Distance and Geodesic Curves

	Numerical Foundations of Geodesic Methods
	Eikonal Equation Discretization
	Algorithms for the Resolution of the Eikonal Equation
	Isotropic Geodesic Computation on Regular Grids
	Anisotropic Geodesic Computation on Triangulated Surfaces
	Computing Minimal Paths
	Computation of Voronoi Segmentation and Medial Axis
	Distance Transform
	Other Methods to Compute Geodesic Distances
	Optimization of Geodesic Distance with Respect to the Metric

	Geodesic Segmentation
	From Active Contours to Minimal Paths
	Metric Design
	Centerlines Extraction in Tubular Structures
	Image Segmentation Using Geodesic Distances
	Shape Offsetting
	Motion Planning
	Shape From Shading

	Geodesic Sampling
	Geodesic Voronoi and Delaunay Tesselations
	Geodesic Sampling
	Image Meshing
	Surface Meshing
	Domain Meshing
	Centroidal Relaxation
	Perceptual Grouping

	Geodesic Analysis of Shape and Surface
	Geodesic Dimensionality Reduction
	Geodesic Shape and Surface Correspondence
	Surface and Shape Retrieval Using Geodesic Descriptors

	References

