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Abstract. We introduce the method of Geodesic Principal Component Analysis (GPCA) on the space of probability measures on
the line, with finite second moment, endowed with the Wasserstein metric. We discuss the advantages of this approach, over a
standard functional PCA of probability densities in the Hilbert space of square-integrable functions. We establish the consistency
of the method by showing that the empirical GPCA converges to its population counterpart, as the sample size tends to infinity.
A key property in the study of GPCA is the isometry between the Wasserstein space and a closed convex subset of the space of
square-integrable functions, with respect to an appropriate measure. Therefore, we consider the general problem of PCA in a closed
convex subset of a separable Hilbert space, which serves as basis for the analysis of GPCA and also has interest in its own right.
We provide illustrative examples on simple statistical models, to show the benefits of this approach for data analysis. The method
is also applied to a real dataset of population pyramids.

Résumé. Nous introduisons la méthode d’Analyse en Composantes Principales Géodésiques (GPCA) dans l’espace des mesures
de probabilités à support sur la droite réelle, admettant un moment d’ordre deux, et muni de la métrique de Wasserstein. Nous
discutons des avantages de cette approche par rapport à une ACP fonctionnelle standard de densités de probabilités dans l’espace
de Hilbert des fonctions de carrés intégrable. Nous établissons la consistence de cette méthode en montrant que la GPCA empirique
converge vers sa version population lorsque la taille de l’échantillon tend vers l’infini. Une propriété clé dans l’étude de la GPCA
est l’isométrie entre l’espace de Wasserstein et un sous-espace convexe fermé de l’ensemble des fonctions de carrés intégrable, par
rapport à une mesure de référence appropriée. De ce fait, nous considérons le problème général de l’ACP dans un sous-ensemble
convexe fermé d’un espace de Hilbert séparable, qui sert de base à l’analyse de la GPCA. Nous proposons différents exemples
illustratifs à partir de modèles statistiques simples pour montrer les bénéfices de cette approche pour l’analyse de données. La
méthode est également appliquée à un exemple réel sur les pyramides des âges.
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1. Introduction

1.1. Main goal of this paper

The main goal of this paper is to define a notion of principal component analysis (PCA) of a family of probability
measures ν1, . . . , νn, defined on the real line R. In the case where the measures admit square-integrable densities
f1, . . . , fn, the standard approach is to use functional PCA (FPCA) (see e.g. [11,23,26]) on the Hilbert space L2(R),
of square-integrable functions, endowed with its usual inner product. This method has already been applied in [12,19]
for analysing the main modes of variability of a set of densities.
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We briefly introduce elements of standard PCA in a separable Hilbert space H , endowed with inner product 〈·, ·〉
and norm ‖ · ‖. A PCA of the data x1, . . . , xn in H is carried out by diagonalizing the empirical covariance operator
Kx = 1

n

∑n
i=1〈xi − x̄n, x〉(xi − x̄n), x ∈ H , where x̄n = 1

n

∑n
i=1 xi is the Euclidean mean.

The eigenvectors of K , associated to the largest eigenvalues, describe the principal modes of data variability
around x̄n. The first principal mode of linear variation of the data is defined by the H -valued curve g : R → H

given by

gt = x̄n + tσ1w1, t ∈ R, (1.1)

where w1 ∈ H is the eigenvector corresponding to the largest eigenvalue σ1 ≥ 0 of K . On the other hand, it is well
known that PCA can be formulated as the problem of finding a sequence of nested affine subspaces, minimizing the
sum of norms of projection residuals. In particular, w1 is a solution of

min
v∈H,‖v‖=1

n∑
i=1

d2(xi, Sv) = min
v∈H,‖v‖=1

n∑
i=1

∥∥xi − x̄n − 〈xi − x̄n, v〉v∥∥2
, (1.2)

where Sv = {x̄n + tv, t ∈ R} is the affine subspace through x̄n, with direction v ∈ H , and d(x,S) = infx′∈S ‖x − x′‖
denotes the distance from x ∈ H to S ⊂ H .

We illustrate the strategy discussed above on the set of Gaussian densities f1, . . . , f4, shown in Figure 1. These
densities are sampled from the following location-scale model, to be used throughout the paper as illustrative example:
let f0 be a density in L2(R) and, for (ai, bi) ∈ (0,∞) ×R, i = 1, . . . , n, we define νi as the probability measure with
density

fi(x) := a−1
i f0

(
a−1
i (x − bi)

)
, x ∈R. (1.3)

This model is appropriate in many applications such as curve registration and signal warping, see e.g. [7] and
[15]. The main sources of variability in these densities are the variation in location along the x-axis, and the scaling
variation. One of the purposes of this paper is to develop a notion of PCA, that has desirable and coherent properties

Fig. 1. (a,b,c,d) Graphs of Gaussian densities f1, . . . , f4, with different means and variances sampled from a location-scale model. (e) Euclidean
mean of f1, . . . , f4 in L2(R). (f) Density of the barycenter ν̄4 of ν1, . . . , ν4 in the Wasserstein space W2(R).
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Fig. 2. An example of functional PCA of densities. First principal mode of linear variation gt in L2(R), for −2 ≤ t ≤ 2, of the densities displayed
in Figure 1; see equation (1.1).

with respect to this variability and the model. A first requirement is that the principal modes of variation be densities.
Moreover, they should reflect the fact that the data vary in location and scale around f0.

The densities displayed in Figure 1 represent an example of realizations of this model, with f0 the standard normal
density and n = 4. Let us first consider the FPCA of this dataset. To that end we compute the Euclidean mean f̄4,
shown in Figure 1(e), a bi-modal density which is not a “satisfactory” average of the uni-modal densities f1, . . . , f4.
In Figure 2 we display the first mode of linear variation g, given by (1.1), and observe that it is not a “meaningful”
descriptor of the variability in the data. Indeed, for |t | sufficiently large, gt may take negative values and does not
integrate to one, as illustrated in Figure 2(a), (e), (f). Moreover, even for small values of |t |, gt does not represent the
typical shape of the observed densities, as shown by Figure 2(c), (d). Therefore, the FPCA of densities in L2(R) is
not always appropriate as it may lead to principal modes of linear variation that are not coherent with the sources of
variability observed in the data (e.g., sampled from a location-scale model). To overcome some of these issues, one
could constrain the first mode of variation to lie in the set of positive functions, integrating to one. However, such a
constrained PCA would be computed via the L2(R) norm, so the Euclidean mean f̄4 would stay unchanged and still
not be satisfactory. We believe these drawbacks of FPCA are mainly due to the fact that the Euclidean distance in
L2(R) is not appropriate to perform PCA for densities.

1.2. Main contributions and organization of the paper

In this paper we suggest to rather consider that ν1, . . . , νn belong to the Wasserstein space W2(�) of probability
measures over �, with finite second order moment, where � is R or a closed interval of R. This space is endowed
with the Wasserstein distance, associated to the quadratic cost; see [28] for an overview of Wasserstein spaces. In this
setting it is not possible to define a notion of PCA in the usual sense as W2(�) is not a linear space. Nevertheless,
we show how to define a proper notion of Geodesic PCA (GPCA), by relying on the formal Riemannian structure of
W2(�), developed in [2], that we describe in Section 2.1. A first idea in that direction is related to the mean of the data,
which is an essential ingredient in any notion of PCA. We propose to use the Fréchet mean (also called barycenter)
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Fig. 3. An example of GPCA of densities. First principal mode of geodesic variation g̃t in W2(R), for −2 ≤ t ≤ 2, of the densities displayed in
Figure 1; see (5.1).

as introduced in [1], with asymptotic properties studied in [7]. It is significant that the barycenter of ν1, . . . , ν4, in our
example above, preserves the shapes of the densities; see Figure 1(f).

Before precisely defining GPCA in W2(�), we display g̃ in Figure 3, the first principal mode of geodesic variation
in W2(�), of the data displayed in Figure 1; see equation (5.1). GPCA clearly gives a better description of the vari-
ability in the data, compared to the results in Figure 2, that correspond to the first principal mode of linear variation g

in L2(R), given by (1.1).
Our approach shares similarities with analogs of PCA for data belonging to a Riemannian manifold. There is

currently a growing interest in the statistical literature on the development of nonlinear analogs of PCA, for the
analysis of data belonging to curved Riemannian manifolds; see e.g. [14,17,27] and references therein. These methods,
generally referred to as Principal Geodesic Analysis (PGA), extend the notion of classical PCA in Hilbert spaces.
Nevertheless, as the Wasserstein space is not a Riemannian manifold, existing methods to perform a PGA cannot be
directly applied to the setting of this paper.

The key property that we use to develop a notion of GPCA in the Wasserstein space is the isometry between W2(�)

and a closed convex subset of the Hilbert space of square-integrable functions L2
μ(�), with respect to an appropriate

measure μ; see Theorem 2.2. In this paper we thus consider the statement of the general problem of PCA in a closed
convex subset of a Hilbert space, which not only serves as basis for the analysis of GPCA in W2(�), but may also
have interest in its own right, for further developments. For example, the notion of convex PCA introduced in this
paper could be of interest, when probability distributions are characterized by observed parameters, belonging to
some convex subset of an Euclidean space.

Throughout the paper, various notions from Riemannian geometry such as geodesic, tangent space, exponential
and logarithmic maps, are used to illustrate the connection between our approach and PGA. However, the important
issue here is not the geometry of W2(�) but rather the use of these notions to state precisely the isometry between
W2(�) and a closed convex set of L2

μ(�). The GPCA in the Wasserstein space is then an application of these results.
The rest of the paper is organized as follows. In Section 2, we present the isometry between W2(�) and a closed

convex subset of L2
μ(�). We also recall basic definitions such as tangent space, geodesic, exponential and logarithmic
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maps in the Wasserstein space framework, having their analogs in the Riemannian setting. Section 3 is devoted to the
definition and analysis of Convex PCA (CPCA) in a general framework. The main results on GPCA are gathered in
Section 4. In Section 5 we describe some numerical aspects of GPCA on simulated examples, using simple statistical
models. We also analyze a real dataset of population pyramids of 223 countries, for the year 2000. Section 6 is dedi-
cated to the consistency of the empirical CPCA and GPCA, as the number of random data points tends to infinity. We
conclude the paper in Section 7, discussing the differences between GPCA and existing PGA methods on Riemannian
manifolds. We also mention potential extensions of this work. Finally, to make the paper self-contained, we collect in
the Appendix some technical results about quantiles, geodesic spaces, Kuratowski convergence and �-convergence.

Remark 1.1. In this paper we assume that the input data consist of probabilities ν1, . . . , νn belonging to W2(�). How-
ever, in many applications we may have access, only to random observations from each of these probabilities. A natural
strategy to address this issue is to estimate the associated densities by means of kernel estimators, for instance, and
then a GPCA could be applied to the estimations. Possibly, more efficient estimators of principal geodesics could be
obtained by adapting ideas from [19] which would, however, require a simple representation of principal geodesics in
terms of densities.

2. Convexity of the Wasserstein space W2(�) up to an isometry

2.1. The pseudo-Riemannian structure of W2(�)

Let � be either the real line R or a closed interval of R and let W2(�) be the set of probability measures over
(�,B(�)), with finite second moment, where B(�) is the σ -algebra of Borel subsets of �. For ν ∈ W2(�) and
T : � → � (always assumed measurable), we recall that the push-forward measure T #ν is defined by (T #ν)(A) =
ν{x ∈ �|T (x) ∈ A}, for A ∈ B(�). The cumulative distribution function (cdf) and the quantile function of ν are
denoted respectively by Fν and F−

ν ; see Definition A.2. If ν is absolutely continuous (a.c.), its density is denoted
by fν .

Definition 2.1. The quadratic Wasserstein distance dW in W2(�) is defined by

d2
W(ν1, ν2) := inf

π∈�(ν1,ν2)

∫
|x − y|2 dπ(x, y), ν1, ν2 ∈ W2(�),

where �(ν1, ν2) is the set of probability measures on � × �, with marginals ν1 and ν2.

It can be shown that W2(�) endowed with dW is a metric space, usually called Wasserstein space. For a detailed
analysis of W2(�), we refer to [28]. In particular, the following formula, from Theorem 2.18 in [28], is important in
the sequel:

d2
W(ν1, ν2) =

∫ 1

0

(
F−

ν2
(y) − F−

ν1
(y)

)2
dy. (2.1)

Also important is the following celebrated theorem (stated for measures on R
d ), from optimal transportation theory,

due to Brenier [8].

Theorem 2.1. Let μ,ν ∈ W2(R
d) such that μ gives no mass to small sets, then

d2
W(μ,ν) = inf

T ∈MP(μ,ν)

∫
�

∣∣T (x) − x
∣∣2

dμ(x), (2.2)

where MP(μ, ν) = {T : Rd → R
d |ν = T #μ}. Moreover, there exists T ∗ ∈ MP(μ, ν) such that d2

W(μ,ν) =∫
�

|T ∗(x) − x|2 dμ(x), characterized as the unique (up to a μ-negligible set) element in MP(μ, ν) that can be
represented, μ-almost everywhere (a.e.), as the gradient of a convex function.
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Since we are in dimension d = 1, T ∗ in Theorem 2.1, being the gradient of a convex function, is increasing.
Observe also that T ∗ may possibly be defined and be increasing only in a set of μ measure 1, but still T ∗#μ makes
sense; see [28], page 67. Finally note that in R it suffices to assume μ atomless, that is, Fμ continuous. Under the
above stated conditions it is well known that T ∗ = F−

ν ◦ Fμ and

d2
W(μ,ν) =

∫
�

(
F−

ν ◦ Fμ(x) − x
)2

dμ(x), (2.3)

with F−
ν ◦ Fμ defined on the full μ-measure set Aμ := {x ∈ �|Fμ(x) ∈ (0,1)}.

The W2(�) space has a formal Riemannian structure described, for example, in [2]. We provide some basic defini-
tions, having their analogs in the Riemannian manifold setting.

From here onwards we consider that μ ∈ W2(�) is a reference measure, with continuous cdf Fμ. Following [2], we
define the tangent space at μ as the Hilbert space L2

μ(�) of real-valued, μ-square-integrable functions on �, equipped
with the standard inner product 〈·, ·〉μ and norm ‖ · ‖μ. Furthermore, we define the exponential and the logarithmic
maps at μ, as follows.

Definition 2.2. Let id be the identity on �. The exponential expμ : L2
μ(�) → W2(�) and logarithmic logμ : W2(�) →

L2
μ(�) maps are defined respectively as

expμ(v) = (v + id)#μ and logμ(ν) = F−
ν ◦ Fμ − id. (2.4)

Remark 2.1.

(a) expμ(v) ∈ W2(�), for any v ∈ L2
μ(�), since

∫
x2 d expμ(v)(x) =

∫ (
x + v(x)

)2
dμ(x) ≤ 2

∫
x2 dμ(x) + 2

∫
v2(x) dμ(x) < +∞.

(b) By Theorem 2.1 and (2.3), logμ(ν) is unique (μ-a.e.) and belongs to L2
μ(�) since ‖ logμ(ν)‖2

μ = d2
W(μ,ν) < +∞,

for all ν ∈ W2(�). But, as commented after (2.3), logμ(ν) is only defined on Aμ. Finally, the continuity of Fμ

implies expμ(logμ(ν)) = ν.

Example 2.1. We illustrate the notions of exponential and logarithmic maps, using again the location-scale model.
For μ0 ∈ W2(R) a.c. and (a, b) ∈ (0,∞) ×R, let ν(a,b) be the probability measure, with cdf and density respectively
given by

F (a,b)(x) := Fμ0

(
(x − b)/a

)
, f (a,b)(x) := fμ0

(
(x − b)/a

)
/a, x ∈R. (2.5)

From (2.4), logμ(ν(a,b))(x) = [F (a,b)]− ◦ Fμ(x) − x and logμ0
(ν(a,b))(x) = (a − 1)x + b. Therefore, letting v(x) =

(a − 1)x + b, we have

expμ0
(v) = ν(a,b). (2.6)

In the setting of Riemannian manifolds, the exponential map at a given point is a local homeomorphism from a
neighborhood of the origin in the tangent space to the manifold. However, this is not the case for expμ defined above,
as it is possible to find two arbitrarily small functions in L2

μ(�), with equal exponentials, see e.g. [2]. On the other
hand, we show that expμ is an isometry when restricted to a specific set of functions defined below.

2.2. Isometry between W2(�) and a closed convex subset of L2
μ(�)

We consider below the image of W2(�) under the logarithmic map, denoted Vμ(�), which is shown to be a closed
convex subset of L2

μ(�). We also prove that expμ, restricted to Vμ(�), is an isometry. These are crucial properties
needed to define and to compute the GPCA in W2(�).
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Theorem 2.2. The exponential map expμ restricted to Vμ(�) := logμ(W2(�)) is an isometric homeomorphism, with
inverse logμ.

Proof. Let ν ∈ W2(�) then, from Theorem 2.1, F−
ν ◦ Fμ is the unique μ-a.e. increasing map (see Definition A.1),

such that (F−
ν ◦ Fμ)#μ = ν. In other words, v := logμ(ν) = F−

ν ◦ Fμ − id is the unique element in Vμ(�) such that

expμ(v) = ν. The isometry property follows from (2.1) because d2
W(ν1, ν2) = ∫ 1

0 (F−
ν2

(y)−F−
ν1

(y))2 dy = ‖F−
ν1

◦Fμ −
F−

ν2
◦ Fμ‖2

μ = ‖ logμ(ν1) − logμ(ν2)‖2
μ, for any ν1, ν2 ∈ W2(�). �

Proposition 2.1. The set Vμ(�) := logμ(W2(�)) is closed and convex in L2
μ(�).

Proof. Let (νn) be a sequence in W2(�), such that logμ(νn) → v ∈ L2
μ(�). Then F−

νn
◦ Fμ → v + id and, because

Fμ is continuous, we have F−
νn

→ w ∈ L2(0,1) (the space of square-integrable functions with respect to the Lebesgue
measure on (0,1)). From Proposition A.2, there exists ν ∈ W2(�) such that w = F−1

ν a.e. and so, F−
νn

◦Fμ → F−
ν ◦Fμ

in L2
μ(�), that is, logμ(νn) → logμ(ν) ∈ Vμ(�). Convexity follows also from Proposition A.2 because, for λ ∈ [0,1],

there exists νλ ∈ W2(�) such that λ logμ(ν1) + (1 − λ) logμ(ν2) = (λF−
ν1

+ (1 − λ)F−
ν2

) ◦ Fμ − id = F−
νλ

◦ Fμ − id ∈
Vμ(�). �

Remark 2.2. The space Vμ(�) can be characterized as the set of functions v ∈ L2
μ(�) such that T := id + v is μ-a.e.

increasing (see Definition A.1) and that T (x) ∈ �, for x ∈ �.

2.3. Geodesics in W2(�)

A general overview of geodesics in a metric space is given in the Appendix. In this section, we consider the notion
of geodesic in W2(�), as given in Definition A.4. A direct consequence of Corollary A.1, Proposition 2.1 and Theo-
rem 2.2 is that geodesics in W2(�) are exactly the image under expμ of straight lines in Vμ(�). In particular, given
two measures in W2(�), there exists a unique shortest path connecting them. This property is stated in the following
lemma.

Lemma 2.1. Let γ : [0,1] → W2(�) be a curve and let v0 := logμ(γ (0)), v1 := logμ(γ (1)). Then γ is a geodesic if
and only if γ (t) = expμ((1 − t)v0 + tv1), for all t ∈ [0,1].

Example 2.2. To illustrate Lemma 2.1, let us consider again the location-scale model (2.5). Then one has v0(x) :=
logμ0

(ν(1,0)) = 0 and v1(x) := logμ0
(ν(a,b)) = (a − 1)x + b, x ∈ R. From Lemma 2.1, the curve γ : [0,1] → W2(�),

defined by

γ (t) = expμ0

(
(1 − t)v0 + tv1

) = expμ0

(
t (a − 1)x + tb

) = ν(at ,bt ), t ∈ [0,1],

is a geodesic such that γ (0) = μ0 = ν(1,0) and γ (1) = ν(a,b), where at = 1 − t + ta and bt = tb. Moreover, for each
time t ∈ [0,1], the measure γ (t) admits the density

f (at ,bt )(x) = a−1
t f0

(
a−1
t (x − bt )

)
, x ∈R. (2.7)

In Figure 4 we display the densities f (at ,bt ) for some values of t ∈ [0,1], with μ0 the standard Gaussian measure,
a = 0.5 and b = 2.

Remark 2.3. By Lemma 2.1, W2(�) endowed with the Wasserstein distance dW is a geodesic space. Moreover, we
have the following corollary.

Corollary 2.1. A set G ⊂ W2(�) is geodesic (in the sense of Definition A.5) if and only if logμ(G) is convex.
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Fig. 4. Visualization of the densities f (at ,bt ) associated to the geodesic curve γ (t) = ν(at ,bt ) in W2, described in Example 2.2, with a = 0.5 and
b = 2, in the case where μ = μ0 is the standard Gaussian measure.

Definition 2.3. Let G ⊆ W2(�) be geodesic. The dimension of G, denoted dim(G), is defined as the dimension of the
smallest affine subspace of L2

μ(�) containing logμ(G).

Remark 2.4. dim(G) does not depend on the reference measure μ. Indeed, μ′ ∈ W2(�) (atomless) and E an affine
subspace of L2

μ(�), such that logμ(G) ⊆ E. It is easy to see that logμ′ ◦ expμ : L2
μ(�) → L2

μ′(�) is affine, therefore

logμ′ ◦ expμ(E) is an affine subspace of L2
μ′(�) containing logμ′(G) and dim(E) = dim(logμ′ ◦ expμ(E)). Observe

also that, if γ : [0,1] → W2(�) is a geodesic, then γ ([0,1]) is a geodesic space of dimension 1.

3. Convex PCA

We have shown in Section 2 that W2(�) is isometric to the closed convex subset Vμ(�), of the Hilbert space L2
μ(�).

As can be seen in Section 4, the notion of GPCA in W2(�) is strongly linked to a PCA constrained to Vμ(�). It is
then natural to develop a general strategy of convex-constrained PCA, in a general Hilbert space. This method, which
we call Convex PCA (CPCA), could be applicable beyond the GPCA in W2(�). We introduce the following notation:

– H is a separable Hilbert space, with inner product 〈·, ·〉 and norm ‖ · ‖.
– d(x, y) := ‖x − y‖ and d(x,E) := infz∈E d(x, z), for x, y ∈ H,E ⊂ H .
– X is a closed convex subset of H , equipped with its Borel σ -algebra B(X).
– x is an X-valued random element, assumed square-integrable, in the sense that E‖x‖2 < +∞, with expected

value Ex.
– x0 ∈ X is a reference element and k ≥ 1 an integer.

Remark 3.1. (E‖x‖)2 ≤ E‖x‖2 < +∞ and so, Ex ∈ H . It is well known that Ex is characterized as the unique
element in H satisfying 〈Ex, x〉 = E〈x, x〉, for all x ∈ H , and also, as the unique element in arg miny∈X Ed2(x, y).
Hence Ex can be seen as a natural notion of average in X.
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3.1. Principal convex components

Definition 3.1. For C ⊂ X, let KX(C) = Ed2(x,C).

Remark 3.2. Note that KX(C) is the expected value of the squared residual of x projected onto C, necessarily finite
since x is assumed square-integrable. Observe also that KX is monotone, in the sense that KX(C) ≥ KX(B), if C ⊂ B .

Definition 3.2. Let

(a) CL(X) be the metric space of nonempty, closed subsets of X, endowed with the Hausdorff distance h (see Defini-
tions A.7, A.8),

(b) CCk(X) be the family of convex sets C ∈ CL(X), such that dim(C) ≤ k, where dim(C) is the dimension of the
smallest affine subspace of H containing C, and

(c) CCx0,k(X) be the family of sets C ∈ CCk(X), such that x0 ∈ C.

Proposition 3.1. If X is compact, then KX is continuous on CL(X).

Proof. Let Cn,C ∈ CL(X),n ≥ 1, such that h(Cn,C) → 0, and observe that d2(x,Cn) is a.s. bounded by the diameter
of X. Then, by Proposition A.3 and the dominated convergence theorem, KX(Cn) → KX(C). �

Proposition 3.2. If X is compact, then CL(X),CCk(X) and CCx0,k(X) are compact.

Proof. The compactness of CL(X) is proved in [22] and [16] and so we proceed with CCk(X) and CCx0,k(X). Let
Cn ∈ CCk(X),n ≥ 1, and C ∈ CL(X), such that h(Cn,C) → 0. Then, from Blaschke’s selection theorem in Banach
spaces (see [16,22]), C is convex.

Let us check by contradiction that dim(C) ≤ k. Assume that dim(C) > k, then there exists linearly independent
elements x1, . . . , xk+1 ∈ C or, equivalently, with Gram determinant det(GM) �= 0 (the Gram matrix GM has elements
GMi,j = 〈xi, xj 〉, i, j = 1, . . . , k + 1). Observe that h(Cn,C) → 0 implies that Cn → C in the sense of Kuratowski
(see Remark A.2). By Definition A.6(i), there exist x1,n, . . . , xk+1,n ∈ Cn, for every n ≥ 1, such that xj,n → xj , for
j = 1, . . . , k + 1. But as dim(Cn) ≤ k, the Gram determinant det(GMn) of x1,n, . . . , xk+1,n is zero. Also, it is easy
to see that det(GMn) → det(GM), which implies that det(GM) = 0, a contradiction. We conclude that CCk(X) is
closed, hence compact, as it is a subset of the compact space CL(X). Finally, observe that if x0 ∈ Cn, for all n ≥ 1,
then x0 ∈ C, by Definition A.6(ii). So CCx0,k(X) is also closed, thus compact. �

We define two notions of principal convex component (PCC), nested and global, and prove their existence. In the
nested case, the definition is inductive and is motivated by the usual characterization of PCA, in terms of a nested
sequence of optimal linear subspaces.

Definition 3.3.

(a) A (k, x0)-global principal convex component (GPCC) of x is a set Ck ∈ Gx0,k(X) := arg minC∈CCx0,k(X) KX(C).
(b) Let Nx0,1(X) = Gx0,1(X) and C1 ∈ Gx0,1(X). For k ≥ 2, a (k, x0)-nested principal convex component (NPCC) of

x is a set

Ck ∈ Nx0,k(X) := arg min
C∈CCx0,k(X),C⊃Ck−1∈Nx0,k−1(X)

KX(C).

Theorem 3.1. If X is compact, then Gx0,k(X) and Nx0,k(X) are nonempty.

Proof. The result for Gx0,k(X) is a direct consequence of Propositions 3.1 and 3.2. We show that Nx0,k(X) �= ∅

by induction on k: first observe that Nx0,1(X) = Gx0,1(X) �= ∅ and suppose that Ck−1 ∈ Nx0,k−1(X) �= ∅, k ≥ 2.
Furthermore, let Bn ∈ CL(X), such that Ck−1 ⊂ Bn,n ≥ 1, and K-limBn = B ∈ CL(X) (the notation K-lim de-
notes convergence in the sense of Kuratowski, see Appendix A.1 for a precise definition, where it is also recalled,



10 J. Bigot et al.

that since X is compact, the convergence with respect to the Hausdorff distance is equivalent to convergence in the
sense of Kuratowski). It is clear that Ck−1 ⊂ B , hence Ck−1 := {C ∈ CL(X)|C ⊃ Ck−1} is closed and so, by Propo-
sition 3.2, {C ∈ CCx0,k(X)|C ⊃ Ck−1} = Ck−1 ∩ CCx0,k(X) is closed, thus compact. Finally, Proposition 3.1 implies
Nx0,k(X) �=∅. �

Remark 3.3. For k = 1 the notions of GPCC and NPCC coincide. However, this might not be the case for k ≥ 2.

Definition 3.4. Given x1, . . . , xn ∈ X, we denote by x(n) the (square-integrable) X-valued random element such that
P(x(n) ∈ A) = 1

n

∑n
i=1 1A(xi), for any A ∈ B(X), where 1A is the indicator function of A.

Definition 3.5. The empirical GPCC and NPCC are defined as in Definition 3.3, with x replaced by x(n). The empir-
ical version of KX is K(n)

X (C) := Ed2(x(n),C) = 1
n

∑n
i=1 d2(xi,C).

3.2. Formulation of CPCA as an optimization problem in H

Definition 3.6. For U = {u1, . . . , uk} ⊂ H , let

(a) Sp(U) be the subspace spanned by u1, . . . , uk ,
(b) CU = (x0 + Sp(U)) ∩ X ∈ CCx0,k(X) and
(c) HX(U) := KX(CU ).

To simplify notations in Definition 3.6, we write Sp(u), HX(u) or Cu whenever U = {u}. We show below that
finding a GPCC can be formulated as an optimization problem in Hk .

Proposition 3.3. Let U∗ = {u∗
1, . . . , u

∗
k} be a minimizer of HX over orthonormal sets U = {u1, . . . , uk} ⊂ H , then

CU∗ ∈ Gx0,k(X).

Proof. For any C ∈ CCx0,k(X), there exists an orthonormal set U = {u1, . . . , uk} ⊂ H , such that C ⊂ CU . Thus, as
KX is monotone, KX(C) ≥ KX(CU ) = HX(U) ≥ HX(U∗) = KX(CU∗), and the conclusion follows. �

The analogous result for NPCC is stated below. The proof, similar to that of Proposition 3.3, is omitted.

Proposition 3.4. Let u∗
1, . . . , u

∗
k ∈ H such that u∗

1 ∈ arg minu∈H,‖u‖=1 HX(u) and, for j = 2, . . . , k, let u∗
j ∈

arg minu∈Sp(u∗
1,...,u∗

j−1)
⊥,‖u‖=1 HX(u), where ⊥ denotes orthogonal. Then C{u∗

1,...,u∗
k } ∈Nx0,k(X).

Remark 3.4. The empirical version of HX is H(n)
X (U) := K(n)

X (CU ) = 1
n

∑n
i=1 d2(xi,CU ). A minimizer U∗ =

{u∗
1, . . . , u

∗
k} of H(n)

X (U) leads to the construction of the empirical GPCC.

In the following proposition we give a sufficient condition for the standard PCA on H to be a solution of the CPCA
problem. For the sake of simplicity, we state the result only for GPCC. Given x ∈ H and C a closed convex subset of
H , we denote by �Cx the projection of x onto C.

Proposition 3.5. Let Ũ = {ũ1, . . . , ũk} ⊂ H be a set of orthonormal eigenvectors, associated to the k largest eigen-
values of the covariance operator Ky = E〈x − x0, y〉(x − x0), y ∈ H . If �

x0+Sp(Ũ)
x ∈ X a.s., then CŨ ∈ Gx0,k(X).

Proof. It is well known that Ũ is minimizer of KX(x0 + Sp(U)) = E(‖x − �x0+Sp(U)x‖2), over orthonormal sets
U = {u1, . . . , uk} ⊂ H . Further, HX(U) = E(‖x − �(x0+Sp(U))∩Xx‖2) and, since by hypothesis �

x0+Sp(Ũ)
x ∈ X, we

have HX(Ũ) = KX(x0 + Sp(Ũ)).
Also, the monotonicity of KX implies KX(x0 + Sp(U)) ≤ KX((x0 + Sp(U)) ∩ X) = HX(U). Finally, from the

relations above, we get

HX(Ũ) = KX

(
x0 + Sp(Ũ)

) ≤ KX

(
x0 + Sp(U)

) ≤ HX(U),
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which means that Ũ is a minimizer of HX(U) over orthonormal sets U = {u1, . . . , uk} ⊂ H . Finally, from Proposi-
tion 3.3 we obtain the result. �

Remark 3.5.

(a) We can informally say that, if the data is sufficiently concentrated around the reference element x0, then the CPCA
in X is simply obtained from the standard PCA in H . In particular, if there exists a ball B(x0, r), with center x0
and radius r > 0, such that x ∈ B(x0, r) ⊂ X, a.s., then the hypothesis of Proposition 3.5 is satisfied. Indeed,
‖�

x0+Sp(Ũ)
x − x0‖ = ‖�

x0+Sp(Ũ)
(x − x0)‖ ≤ ‖x − x0‖ ≤ r and so �

x0+Sp(Ũ)
x ∈ X.

(b) The previous condition of data concentration is quite strong. However, obtaining weaker conditions ensuring
�

x0+Sp(Ũ)
x ∈ X a.s., seems to be a difficult problem.

(c) If we replace x by x(n), we obtain the empirical version of Proposition 3.5. In this case, if Ũ = {ũ1, . . . , ũk} ⊂ H

are orthonormal eigenvectors associated to the k largest eigenvalues of the empirical covariance operator Ky =
1
n

∑n
i=1〈xi − x0, y〉(xi − x0), y ∈ H , and if �

x0+Sp(Ũ)
xi ∈ X, for i = 1, . . . , n, then GŨ is an empirical GPCC.

(d) In this section we have used an arbitrary reference element x0 ∈ X. However, a natural choice for x0 would be
Ex or x̄n := Ex(n), in the empirical case.

4. Geodesic PCA

We consider W2(�) equipped with the Borel σ -algebra B(W), relative to the Wasserstein metric. Also, ν denotes a
W2(�)-valued random element, assumed square-integrable in the sense that Ed2

W(ν, λ) < +∞, for some (thus for all)
λ ∈ W2(�). As in Section 2, we assume that μ ∈ W2(�) is atomless, thus Fμ is continuous.

4.1. Fréchet mean

A natural notion of average in W2(�) is the Fréchet mean, studied in [7] in a more general setting. In what follows
we define and give some properties of the population Fréchet mean ν∗ of ν. Our results are stated in dimension one,
that is, in W2(R). The higher dimensional case is more involved and we refer to [1,7] for further details.

Observe that if u is a L2
μ(�)-valued random element, such that E‖u‖μ < +∞, then its expectation Eu is given by

(Eu)(x) = Eu(x), for all x ∈ R. Clearly ‖Eu‖μ ≤ E‖u‖μ < ∞, hence Eu ∈ L2
μ(�). Also, if P(u ∈ Vμ(�)) = 1, then

Eu ∈ Vμ(�).

Proposition 4.1.

(i) There exists a unique ν∗ ∈W := arg minν∈W2(�) Ed2
W(ν, ν), called the Fréchet mean of ν.

(ii) ν∗ = expμ(Ev), where v = logμ(ν).
(iii) F−

ν∗ = E(F−
ν ), where Fν is the (random) cdf of ν.

(iv) If Fν is continuous a.s., then Fν∗ is continuous.

Proof. (i), (ii) Let L = arg minu∈L2
μ(�) E‖v −u‖2

μ, V = arg minu∈Vμ(�) E‖v −u‖2
μ. From Theorem 2.2, E‖v −u‖2

μ =
Ed2

W(ν, expμ(u)), for all u ∈ L2
μ(�). Therefore infν∈W2(�) Ed2

W(ν, ν) = infu∈Vμ(�)E‖v−u‖2
μ, and u∗ ∈ V if and only

if expν(u
∗) ∈W .

On the other hand, Ev ∈ Vμ(�) is the unique element of L, hence the unique element in V . Thus, by Theorem 2.2,
ν∗ = expμ(Ev) is the unique element of W .

(iii) From (ii) and (2.4), we have the chain of equalities F−
ν∗ ◦ Fμ = logμ(ν∗) + id = Ev + id = E(v + id) =

E(logμ(ν) + id) = E(F−
ν ◦ Fμ) = E(F−

ν ) ◦ Fμ, which implies F−
ν∗ = E(F−

ν ) because Fμ is continuous.
(iv) Observe that Fν is continuous if and only if F−

ν is strictly increasing. So, if F−
ν (y)−F−

ν (x) > 0 a.s., for x < y,
then F−

ν∗(y) − F−
ν∗(x) = E(F−

ν (y) − F−
ν (x)) > 0, that is, Fν∗ is continuous. �

Remark 4.1. It is interesting to see, from Proposition 4.1(ii), that expμ(E(logμ(ν))) does not depend on μ.
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4.2. Principal geodesics

In this section we present definitions and results similar to those of Section 3; k denotes a positive integer and ν0 ∈
W2(�) is a reference measure.

Definition 4.1. For ν ∈ W2(�), G ⊂ W2(�), let dW (ν,G) = infλ∈G dW(ν,λ) and KW(G) := Ed2
W(ν,G).

Definition 4.2. Let

(a) CL(W) be the metric space of nonempty, closed subsets of W2(�), endowed with the Hausdorff distance hW2 , and
(b) CGν0,k(W) = {G ∈ CL(W)|ν0 ∈ G,G is a geodesic set and dim(G) ≤ k}, k ≥ 1.

The notions of global and nested principal geodesics of ν with respect to ν0, are presented below, followed by the
main existence result. In the case of the nested geodesics, the definition is inductive. The proof depends on the relation
between GPCA and CPCA in Vμ(�).

Definition 4.3.

(a) A (k, ν0)-global principal geodesic (GPG) of ν is a set Gk ∈ Gν0,k(W) := arg minG∈CGν0,k(W) KW(G).
(b) A (k, ν0)-nested principal geodesic (NPG) of ν is a set Gk ∈ arg minG∈CGν0,k(W),G⊃Gk−1

KW(G), k ≥ 2, with
G1 ∈ Gν0,k(W).

Theorem 4.1. If � is compact, then Gν0,k(W) and Nν0,k(W) are nonempty.

Proof. As � is compact, W2(�) is also compact (see [28]) and so is Vμ(�), by Theorem 2.2. Then, Theorem 3.1 and
Propositions 4.3, 4.4 ensure the existence of GPG and NPG. �

Remark 4.2. As commented in Remark 3.3 for CPCA, the notions of GPG and NPG are not equivalent, except obvi-
ously for k = 1.

4.3. Empirical Fréchet mean and principal geodesics

Definition 4.4. Given ν1, . . . , νn ∈ W2(�), we denote by ν(n) the W2(�)-valued random element, such that P(ν(n) ∈
A) = 1

n

∑n
i=1 1A(νi), for any A ∈ B(W).

Definition 4.5. The empirical Fréchet mean of ν1, . . . , νn ∈ W2(�), denoted by ν∗
n , is defined, following Proposi-

tion 4.1, as the Fréchet mean of ν(n) defined above. Equivalently, ν∗
n is the unique element of

arg min
ν∈W2(�)

1

n

n∑
i=1

d2
W(νi, ν).

Proposition 4.2. Let ν1, . . . , νn ∈ W2(�). Then, the following formula holds

F−
ν∗
n

= 1

n

n∑
i=1

F−
νi

. (4.1)

Proof. The result is a direct consequence of Proposition 4.1(iii). �

Remark 4.3. Formula (4.1) is known in statistics as quantile averaging; see [15,29]. A detailed characterization of
ν∗
n can be found in [1], for measures supported on R

d , d ≥ 1.

Definition 4.6. The empirical GPG and NPG are defined as in Definition 4.3, with ν replaced by ν(n).
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Remark 4.4.

(a) A natural choice for the reference measure ν0 is the Fréchet mean ν∗, which is atomless thanks to Proposi-
tion 4.1(iv).

(b) In the empirical case KW is given by K(n)
W (G) := Ed2

W(ν(n),G) = 1
n

∑n
i=1 d2

W(νi,G).

4.4. Formulation of GPCA as CPCA in Vμ(�)

Recall that geodesic sets in W2(�) are the image under the exponential map expμ, of convex sets in Vμ(�) (see
Corollary 2.1). Thus, the GPCA in W2(�) can be formulated as a CPCA in Vμ(�), as shown in this section. CPCA is
applied to H = L2

μ(�), X = Vμ(�), x0 = logμ(ν0) and x = logμ(ν). In this setting KX(C) = Ed2
μ(x,C),C ⊂ Vμ(�).

The following proposition shows that the search of GPG in W2(�) is equivalent to the search of GPCC in Vμ(�).
The same principle applies to NPG.

Proposition 4.3. Let Gν0,k(W) be the set of GPG of ν and Gx0,k(Vμ(�)) be the set of GPCC of x = logμ(ν). Then
Gν0,k(W) = expμ(Gx0,k(Vμ(�))).

Proof. From Corollary 2.1 we have CGν0,k(W) = expμ(CCx0,k(Vμ(�))). On the other hand, from Theorem 2.2 and
Definition 4.1, KW(G) = Ed2

W(ν,G) = Ed2
μ(x, logμ(G)). Therefore, KW(G) = KX(logμ(G)), for G ⊂ W2(�). The

result follows from Theorem 2.2. �

Proposition 4.4. Let Nν0,k(W) be the set of NPG of ν and Nx0,k(Vμ(�)) the set of NPCC of x = logμ(ν). Then
Nν0,k(W) = expμ(Nx0,k(Vμ(�))).

5. Numerical examples of GPCA in W2(R)

In Section 5.1 we show an example of concentrated data, such that Proposition 3.5 can be applied and the problem of
finding GPG is reduced to standard PCA on the logarithms; see Remark 3.5(a). In Section 5.2 we exhibit “spread-out
data,” where the GPG cannot be obtained from standard PCA.

5.1. Concentrated data

We consider the set of probabilities ν1, . . . , ν4, with densities f1, . . . , f4, displayed in Figure 1. These measures
satisfy the location-scale model (2.5), with μ0 being the standard Gaussian measure and the values of ai and bi given
in Table 1.

The Fréchet mean ν∗
4 of ν1, . . . , ν4 is computed using the quantile average formula (4.1), from which we obtain the

density g∗
4 of ν∗

4 (Figure 1(f)), given by

g∗
4(x) = f (ā4,b̄4)(x) = fμ0

(
(x − b̄4)/ā4

)
/ā4 = fμ0(x), x ∈R,

where ā4 = 1 and b̄4 = 0 are the arithmetic means of the parameters ai, bi , and so, ν∗
4 = μ0. Observe that the measures

ν1, . . . , ν4 are concentrated around their Fréchet mean, in the sense that their expectations and variances are not too
far from those of ν∗

4 (see Figure 1).

Table 1
Values of parameters for concentrated data

i 1 2 3 4

ai 0.4 0.8 1.2 1.6
bi −1.8 −0.1 0.7 1.2
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Fig. 5. Two-dimensional representation of the affine functions u(x) = αx + β in L2
μ0

(R). The horizontal and vertical axes represent the slope
and the intercept parameters α,β , respectively. Points to the right of the vertical dashed line at α = −1, correspond to affine functions in Vμ0 (R).
Circles represent the vectors Vi = (ai − 1, bi )

′ , associated to the functions vi (x) = (ai − 1)x + bi , for 1 ≤ i ≤ 4, corresponding to the measures
with densities displayed in Figure 1. The dash–dot line is the linear space spanned by the first eigenvector W1 from the standard PCA of V1, . . . , V4.

We apply Propositions 3.5 and 4.3 to compute an empirical first GPG, with both μ and ν0 equal to μ0. Let w1

be the eigenvector associated to the largest eigenvalue of the empirical covariance operator Kv = ∑4
i=1〈vi, v〉vi/4,

v ∈ L2
μ0

(R), where

vi(x) = logμ0
(νi)(x) = (ai − 1)x + bi, i = 1, . . . ,4;x ∈R.

Given that the vi ∈ A ⊆ L2
μ0

(R), the subspace of affine functions (generated by the identity and the constant function 1,

which are orthonormal in L2
μ0

(R)), the operator K can be identified with the 2 × 2 matrix M = ∑4
i=1 V ′

i Vi/4 with
Vi = (ai − 1, bi)

′ ∈ R
2, 1 ≤ i ≤ 4. Therefore, w1 ∈ A and w1(x) = α1x +β1, where W1 := (α1, β1)

′ = (0.36,0.93)′ ∈
R

2 is the eigenvector associated to the largest eigenvalue of M . In other words, computing w1 simply amounts to
calculating the first eigenvector associated to the standard PCA of the Vi ∈R

2, which represent the slope and intercept
parameters of the functions vi . In Figure 5 we display the vectors Vi (circles), together with the linear space spanned
by W1 (dash–dot line), which corresponds to the first principal direction of variation of this dataset.

Affine functions u(x) = αx + β in Vμ0(R) are represented by points (α,β)′ ∈ R
2, with α ≥ −1, which is the

region to the right of the vertical dashed line in Figure 5. Hence, it can be seen from the projections of the Vi onto
the space spanned by W1, that �Sp(w1)vi ∈ Vμ0(R), for 1 ≤ i ≤ 4. Therefore, from Propositions 3.5 and 4.3, the set of
probability measures

G1 = {
ν1,t := expμ0

(tw1)|t ∈R,1 + tα1 ≥ 0
}
,

is a first empirical GPG. From (2.5) and (2.6), each ν1,t ∈ G1 admits the density

g1,t (x) = fμ0

(
(x − b1,t )/a1,t

)
/a1,t , x ∈ R, (5.1)

with a1,t = 1+ tα1 and b1,t = tβ1. In Figure 3, we display the first principal mode of geodesic variation g1,t , for −2 ≤
t ≤ 2, of the densities displayed in Figure 1. As already mentioned, the GPCA in W2(�) gives a better interpretation
of the data variability, when compared to results from the first principal mode of linear variation of the densities in
L2

μ0
(R), displayed in Figure 2.
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5.2. The case of spread-out data

We exhibit a case where standard PCA of logs in L2
μ(R) does not lead to a solution of GPCA in W2(�). Measures

ν1, . . . , ν4 are as in Section 5.1, with parameters ai, bi given in Table 2. We have again ā4 = 1, b̄4 = 0 and ν∗
4 = μ0.

From Figure 6, we see that ν1, . . . , ν4 are less concentrated around ν∗
4 , compared to the foregoing example (see

Figure 1).
As for concentrated data, we first perform a standard PCA on the logarithms in Vμ0(R). In what follows, we keep

the same notation as in Section 5.1. In Figure 7 we display the vectors Vi and the linear space Sp(W1). From the
projections of the vectors Vi onto the space spanned by W1, it can be seen that �Sp(w1)v1 /∈ Vμ0(R). Therefore, the
condition �

x0+Sp(Ũ)
x ∈ X a.s. in Proposition 3.5 is not satisfied. Thus, one cannot conclude that G1 is a first empirical

GPG.
Now, in order to show that G1 is not a GPG, it suffices to find G∗

1 ∈ CGμ0,1(W), such that K(n)
W (G∗) < K(n)

W (G∗
1). To

that end we perform a CPCA of v1, . . . , v4, with X = A ∩ Vμ0(R) and reference element x0 = 0. By Proposition 3.3,
this amounts to solving

min
u∈A,‖u‖μ0=1

H(n)
X (u) = 1

n

n∑
i=1

d2
μ0

(
vi,Sp(u) ∩ X

)
. (5.2)

Table 2
Values of parameters for spread-out data

i 1 2 3 4

ai 0.2 0.2 0.2 3.4
bi −3 −1 1 3

Fig. 6. Gaussian densities f1, . . . , f4 from the location-scale model (2.5), with means and variances given in Table 2. (e) Euclidean mean of the
densities in L2(R). (f) Density of the barycenter ν∗

4 ∈ W2(�) of ν1, . . . , ν4, with densities f1, . . . , f4.
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Fig. 7. Same interpretation as Figure 5. The dash–dot line is the linear space spanned by the first eigenvector W1 from the standard PCA of
V1, . . . , V4. The solid line is the convex set Sp(W∗

1 ) ∩ Y where W∗
1 = (α∗

1 , β∗
1 ) is the minimizer of (5.3). The dot on the solid line is the projection

of V1 = (0.2,−3) onto Sp(W∗
1 ) ∩ Y , while the dot on the dash–dot line is the projection of V1 onto Sp(W1) ∩ Y .

On the other hand, letting Y = {(α,β)′ ∈R
2|α ≥ −1}, (5.2) is equivalent to

min
U∈R2,‖U‖=1

H(n)
Y (U) := 1

n

n∑
i=1

d2(Vi,Sp(U) ∩ Y
)
, (5.3)

where d,‖ · ‖ are the Euclidean distance and norm in R
2 and Vi = (ai − 1, bi)

′ ∈ R
2, 1 ≤ i ≤ 4. We have numerically

found a unique minimizer W ∗
1 = (α∗

1 , β∗
1 ) of (5.3) and so, w∗

1(x) = α∗
1x + β∗

1 is the unique minimizer of (5.2).

Letting G∗
1 := {ν∗

1,t := expμ0
(tw∗

1)|t ∈ R,1 + tα∗
1 ≥ 0} ∈ CGμ0,1(W), we find that G∗

1 �= G1 and K(n)
W (G∗

1) <

K(n)
W (G1). Indeed, from Figure 7 it can be seen that W ∗

1 �= W1 and also that H(n)
Y (W ∗

1 ) < H(n)
Y (W1).

Remark 5.1. For this example of spread-out data, it should be noted that G∗
1 is not necessarily the first empirical

GPG. Indeed, G∗
1 is a minimizer of K(n)

W (G) over the sets G ∈ CGμ0,1(W) such that G ⊂ {ν(a,b)|(a, b) ∈ (0,∞) ×
R}. Whether or not G∗

1 is a first empirical GPC remains as an open issue. Problem (5.3) is locally convex in a
neighborhood of the (unique) optimum, after parametrization of the unitary sphere of R2 using polar coordinates.
In the general case of the optimization problems in Propositions 3.3 and 3.4, issues such as convexity, uniqueness of
solution and optimality conditions, need to be addressed.

5.3. Real data example: Statistical analysis of population pyramids

We analyze a real dataset consisting of histograms that represent the population pyramids of 223 countries for the year
2000. This dataset has been studied in [12] using FPCA of densities. The data are available from the International Data
Base (IDB), produced by the International Programs Center, US Census Bureau (IPC, 2000), and they can be down-
loaded from the URL http://www.census.gov/ipc/www/idb/region.php. Each histogram in the database represents the
relative frequency by age, of people living in a given country. Each bin in a histogram is an interval of one year, and
the last interval corresponds to people older than 85 years. The histograms are normalized so that their area is equal
to one, and thus they represent a set of probability density functions. In Figure 8, we display the population pyramids
of five countries.

For the purpose of summarizing this dataset in an efficient way, we propose to compare the results obtained using
either FPCA or GPCA. Note that FPCA of histograms amounts to a standard multivariate PCA in the Euclidean space

http://www.census.gov/ipc/www/idb/region.php
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Fig. 8. Population pyramids of 5 countries for the year 2000.

R
p with p = 85. In Figure 9(a), we display the projection of the data onto the first two principal components (PC)

when performing FPCA. Note that 81% (resp. 8%) of variability is explained by the first PC (resp. the second PC).
To perform GPCA we proceed as follows. First we compute the cdf of each histogram, which allows, from (2.4), the

computation of vi = logν∗
n
(νi), i = 1, . . . , n = 223, where νi is the probability associated to the ith histogram and ν∗

n is

the Fréchet mean of these probability measures in W2(�). Then, we perform the FPCA of the vi in L2
ν∗
n
(R) to compute

the first two PC that we denote by w1 and w2. For this dataset, we notice that the conditions �Sp({w1,w2})vi ∈ Vν∗
n
, for

all i = 1, . . . , n = 223, are satisfied. Therefore, Propositions 3.5 and 4.3, the FCPA of data-logarithms in L2
ν∗
n
(R) leads

to a solution of GPCA in W2(�). In Figure 9(b), we display the projection in L2
ν∗
n
(R) of vi, i = 1, . . . , n, onto the first

two PC w1 and w2. Note that, when using GPCA, 96% (resp. 2%) of variability is explained by the first PC (resp. the
second PC). Hence, we achieve a better reduction of dimensionality by the use of GPCA. Using the representation in
the Wasserstein space, one may conclude that this dataset is essentially one dimensional, in terms of variability around
its Fréchet mean in W2(�). In particular, this fact can be observed in Figure 10, where we plot the projections of the
five histograms displayed in Figure 8.

6. Analysis of consistency

6.1. Consistency of the empirical CPCA

Throughout this section we use the notation of Section 3; limits are understood as n → ∞. Let x0 = Ex and let
x1, . . . ,xn be independent, identically distributed (iid) copies of x. Denote by x̄n := ∑n

i=1 xi/n their arithmetic mean
and observe that x̄n → x0 a.s., by the strong law of large numbers (SLLN) in a Hilbert space (see [20]). Let also
K(n)

X (C) = 1
n

∑n
i=1 d2(xi ,C) be the random version of K(n)

X .
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Fig. 9. Population pyramids of 223 countries. (a) Standard PCA: projection of the data on the first PC (81%) and second PC (8%). (b) GPCA:
projection of the data on the first PC (96%) and second PC (2%)

Fig. 10. Projection of the five histograms displayed in Figure 8, using the whole dataset, on the first two PC, from (a) standard PCA and (b) GPCA.

We prove in Theorem 6.1 that empirical GPCC based on x1, . . . ,xn converge, in a sense defined below, to GPCC
of x. The analogous result for NPCC is omitted.

Following Definition 3.5, let Gx0,k(X) be the set of GPCC of x, with reference point x0 = Ex, and Gn,k(X) :=
arg minC∈CCx̄n,k(X) K(n)

X (C) the (random) set of empirical GPCC of x1, . . . ,xn, with x̄n as reference point.

Definition 6.1. The empirical GPCC are consistent, denoted Gn,k(X) → Gx0,k(X) a.s., if for every measurable selec-
tion of Cn ∈ Gn,k(X),n ≥ 1, and C ∈ Gx0,k(X),

(a) K(n)
X (Cn) → KX(C) a.s., and

(b) the accumulation points of (Cn) belong to Gx0,k(X) a.s.
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In the following lemma we show that the indicators of CCxn,k(X) (denoted χn,k) �-converge to the indicator of
CCx,k(X) (denoted χk) when xn → x ∈ X. We refer to Section A.1 for the definitions of �-convergence and indicator.

Lemma 6.1. Let xn ∈ X,n ≥ 1, with xn → x ∈ X. If X is compact then �-limn→∞ χn,k = χk .

Proof. Recall that under compactness of X, h(Cn,C) → 0 is equivalent to K-limCn = C (see Section A.1). By
Lemma A.5, it is sufficient to show that CCxn,k(X) converges to CCx,k(X) in the sense of Kuratowski. That is, we
have to show that:

(a) for every C ∈ CCx,k(X) there exist Cn ∈ CCxn,k(X),n ≥ 1, with h(Cn,C) → 0, and
(b) if C is an accumulation point of Cn ∈ CCxn,k(X),n ≥ 1, then C ∈ CCx,k(X).

For (a) take C ∈ CCx,k(X) and let Cn := C + xn − x ∈ CCxn,k(X), n ≥ 1. After some calculation we find that
the deviations d(C,Cn) and d(Cn,C) (see Definition A.7) are bounded above by ‖x − xn‖. Therefore, h(C,Cn) ≤
‖x − xn‖ → 0.

For (b) let C be an accumulation point of (Cn). Then, since xn ∈ Cn and xn → x, it follows that x ∈ C, by
(ii) in Definition A.6. On the other hand, recall that CCk(X) is compact, thanks to Proposition 3.2. Then, as Cn ∈
CCk(X),n ≥ 1, we have C ∈ CCk(X) and, since x ∈ C, we conclude that C ∈ CCx,k(X). �

Theorem 6.1. If X is compact then Gn,k(X) → Gx0,k(X) a.s.

Proof. Let χ0,k , χn,k be the indicators of CCx0,k(X),CCx̄n,k(X) respectively. Note that

Gx0,k(X) = arg min
C∈CL(X)

KX(C) + χ0,k(C) and Gn,k(X) = arg min
C∈CL(X)

K(n)
X (C) + χn,k(C). (6.1)

From Lemma 6.1, we have

�- lim
n→∞χn,k = χ0,k a.s., (6.2)

where the �-convergence takes place in the space CL(X). From Proposition A.3 and recalling that X is compact, we
have that d2(x,C) is separately continuous in x ∈ X and C ∈ CL(X). Hence, d2(x,C) is measurable on the product
space X × CL(X); see [18] or [25]. Thus, from Theorem 2.3 in [3], we have the following �-convergence in CL(X),

�- lim
n→∞ K(n)

X (·) = KX(·) a.s. (6.3)

On the other hand, as X is compact, there exists a constant R > 0 such that d2(x,C) ≤ R, for all x ∈ X and C ∈
CL(X). Also, by Proposition 3.2 , CL(X) is a compact set. Therefore, by the uniform strong law of large number (see
Lemma 2.4 in [21]), K(n)

X (C) → KX(C) uniformly in CL(X) a.s., that is,

lim
n→∞ sup

C∈CL(X)

∣∣KX(C) − K(n)
X (C)

∣∣ = 0 a.s. (6.4)

From (6.2) to (6.4) and by Proposition 6.24 in [10], we obtain

�- lim
n→∞ K(n)

X + χn,k = KX + χ0,k a.s. (6.5)

Therefore, from (6.1), (6.5), the compactness of CL(X) and Theorem A.1, the conclusion follows. �

6.2. Consistency of the empirical GPCA

In this section we use the notation of Section 4, with ν0 = ν∗, the Fréchet mean of ν. Let ν1, . . . ,νn be iid copies of ν
and let ν∗

n be their empirical Fréchet mean. Let x = logμ(ν),xi = logμ(νi ), i = 1, . . . , n and x0 = logμ(ν0). Let also

K(n)
W (G) = 1

n

∑n
i=1 d2

W2
(νi ,G) be the random version of K(n)

W . We show the convergence of ν∗
n and of the empirical

GPG to their population counterparts.
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Proposition 6.1. dW (ν∗
n, ν0) → 0 a.s.

Proof. From Proposition 4.1(ii), x0 = logμ(ν0) = Ex and logμ(ν∗
n) = x̄n := 1

n

∑n
i=1 xi . By Theorem 2.2 and the

SLLN in a Hilbert space (see [20]), d2
W(ν∗

n, ν0) = ‖x̄n −Ex‖2
μ → 0, a.s. �

Remark 6.1. As pointed out by an anonymous reviewer, the result in Proposition 6.1 follows from Ziezold’s strong law
of large number [30].

Recall that if � is compact then W2(�) is compact. In this case CL(W) is also compact, as can be easily shown
from Theorem 2.2 and Proposition 3.2. Therefore, if � is compact, then every sequence Gn ∈ Gn,k(W),n ≥ 1, has a
convergent subsequence in CL(W).

Let Gν0,k(W) be the set of GPG of ν, with reference measure ν0 = ν∗. Let also

Gn,k(W) := arg min
G∈CGν∗

n,k(W)

K(n)
W (G)

the (random) set of empirical GPG of ν1, . . . ,νn, with reference measure ν∗
n, and

Gn,k

(
Vμ(�)

) := arg min
C∈CCx̄n,k(Vμ(�))

K(n)
X (C).

Definition 6.2. The empirical GPG are consistent, denoted Gn,k(W) → Gν0,k(W) a.s., if for every Gn ∈ Gn,k(W),
n ≥ 1, and G ∈ Gν0,k(W),

(a) K(n)
W (Gn) → KW(G) a.s., and

(b) the accumulation points of (Gn) belong to Gν0,k(W) a.s.

Theorem 6.2. If � is compact then Gn,k(W) → Gν0,k(W) a.s.

Proof. From Proposition 4.3

Gx0,k

(
Vμ(�)

) = logμ

(
Gν0,k(W)

)
and Gn,k

(
Vμ(�)

) = logμ

(
Gn,k(W)

)
. (6.6)

On the other hand, from Theorem 2.2, it can be shown that logμ is an isometric bijection for the Hausdorff distance,
between CL(W) and CL(Vμ(�)). Let Gn ∈ Gn,k(W), n ≥ 1, with a subsequence (Gn′) converging to G ∈ CL(W).
Then, by the continuity of logμ, Cn′ := logμ(Gn′) → C := logμ(G).

From (6.6), we have Cn ∈ Gn,k(Vμ(�)),n ≥ 1. Therefore, Theorem 6.1 implies that C ∈ Gx0,k(Vμ(�)) and

K(n)
X (Cn) → KX(C) a.s. Finally, the result follows from the equalities KX(C) = KW(G),K(n)

X (Cn) = K(n)
W (Gn),

n ≥ 1, and (6.6). �

Remark 6.2. From the proof of Theorem 6.2 one can see that the sequence of reference measures ν∗
n (the empirical

Fréchet means) can be replaced by any other sequence of atomless measures in W2(�), converging to an atomless
limit, say, μ0. Of course, the limiting GPG would have μ0 as reference measure.

Remark 6.3. As commented in Remark 1.1, in practical situations we often have access only to, say, ni random
observations from each νi . In this context, consistency has to be redefined as n and the ni tend to infinity.

7. GPCA in W2(�) and PCA in a Riemannian manifold

As already mentioned in the introduction, nonlinear analogs of PCA have been proposed in the literature for the
analysis of data belonging to curved Riemannian manifolds [14,17]. To perform a PCA-like analysis two popular
approaches are:
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1. Standard PCA of the data projected onto the tangent space at their Fréchet mean, with back projection onto the
manifold and

2. Principal Geodesic Analysis (PGA), that is, a PCA along geodesics.

Below, we briefly recall the main ideas of these two approaches that generally lead to different directions of geodesic
variability in a curved manifold [27].

Consider y1, . . . , yn belonging to a complete Riemannian manifold M admitting a geodesic distance dM. In order
to define a PCA like analysis in M, one needs a notion of average. It has been suggested [14] that the appropriate
notion is the Fréchet mean, defined as an element z ∈ M (not necessarily unique) minimizing the sum of squared
distances to the data, namely

z ∈ arg min
y∈M

1

n

n∑
i=1

d2
M(y, yi).

We refer to [6] for details and properties of the Fréchet mean in Riemannian manifolds.
Let TzM be the tangent space to M at z. If v denotes a tangent vector in TzM, there exists a unique geodesic γv(t)

having v as its initial velocity, where t ∈R is a time parameter. The Riemannian exponential map expz : TzM → M,
defined by expz(v) = γv(1) is a diffeomorphism on a neighborhood of zero and its inverse is the Riemannian log map,
denoted by logz.

(1) PCA via linearization in the tangent space: in this approach the data y1, . . . , yn is first projected on TzM by
means of the logz map, thus obtaining xi = logz(yi), i = 1, . . . , n. Next, a standard PCA of x1, . . . , xn is performed
in the linear space (TzM, 〈·, ·〉,‖ · ‖), which leads to computing the first principal component vlin, the eigenvector
associated with the largest eigenvalue of the covariance operator

Kv = 1

n

n∑
i=1

〈xi − x̄n, v〉(xi − x̄n), v ∈ TzM,

where x̄n = 1
n

∑n
i=1 xi . Finally, vlin is projected back onto M by means of the expz map to obtain wlin = expz(v

lin),
which represents a first notion of principal direction of geodesic variability. The main drawback of PGA via lineariza-
tion is the fact that distances are generally not preserved by the projection step, that is, ‖xi − xj‖ �= dM(yi, yj ).

(2) PGA on M: the notion of PCA along geodesics on M is motivated by formulation (1.2), which characterizes
standard PCA. In a first step, one computes

vgeo = arg min
v∈TzM,‖v‖=1

1

n

n∑
i=1

d2
M(yi,Gv),

where Gv = {expz(tv), t ∈ R} and dM(y,G) = infy′∈G dM(y, y′) for y ∈ M and G ⊂ M. Then, in a second (and
final) step, one projects the element vgeo ∈ TzM onto M, by computing wgeo = expz(v

geo). This yields another
notion of principal direction of geodesic variability of the data and generally one has that wlin �= wgeo, except if M is
a Hilbert space. Therefore, PCA via linearization on the tangent space and PCA along geodesics may lead to different
directions of geodesic variability in a curved manifold. A detailed analysis of the differences between these methods
can be found in [27]. In both methods it is also possible to define subsequent principal directions (second, third, and
so on) of geodesic variability in a recursive manner, and we refer to [14] for further details.

In this paper, we have considered the analysis of data in the Wasserstein space W2(�), which is not a Riemannian
manifold but has pseudo-Riemannian structure, rich enough to allow the definition of a notion of geodesic PCA. By
means of the analogs of the logarithmic and of the exponential maps, we also introduce the corresponding version of
the standard PCA in the tangent space, with back projection onto W2(�), thus establishing a parallel to the method-
ological duality available for data in Riemannian manifolds, as presented above. Also, as could be expected, these two
approaches yield, in general, different forms of geodesic variability.

There is however a significant distinguishing feature of our methodology, namely the possibility of performing a
PCA in the tangent space under convexity restrictions, which is equivalent (after projection) to the geodesic PCA in
W2(�). This motivates the definition of Convex PCA (see Section 3), a general PCA-like method for analyzing data
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on a closed convex subset of a Hilbert space, which can be of interest beyond its specific application in the context of
GPCA. The CPCA applied to the logarithms of the data measures is interesting because it is formally simpler than the
geodesic PCA in W2(�) although more complex than standard PCA. In this respect it is also worth noticing that if the
data are “sufficiently concentrated,” the standard and the restricted PCA in the tangent space yield the same results.

It should be mentioned that the terminology geodesic PCA (GPCA) was used previously by Huckemann et al. in
[17] to denote a Riemannian manifold generalization of linear PCA. Their approach shares similarities with the PGA
method introduced in [14] but optimizes additionally for the placement of the center point (not necessarily equal to the
Fréchet mean). Furthermore, it does not use a linear approximation of the manifold and is only suited for Riemannian
manifolds, where explicit formulas for geodesics exist. However, it is difficult to compare our approach to the GPCA
in [17] since the notion of principal geodesic, that we propose in this paper, is defined with respect to a given reference
measure ν0 (chosen to be either the population or the empirical Fréchet mean). For a precise comparison it would be
necessary to carry out the optimization in Definition 4.3(a), with respect to the reference measure ν0, a task which is
beyond the scope of this paper.

Finally observe that, from Theorem 2.2, one can interpret W2(�) as a space with no curvature, and hence the
pseudo-Riemannian formalism, used in Section 2.1, is not essential for our development. However, such a framework
allows making a connection between our approach and PCA methods adapted to Riemannian manifolds.

Appendix

A.1. Increasing functions and quantiles

We present some useful, well-known results about increasing functions and quantiles. For additional information, see
[13,24]. In this section μ,ν denote probability measures on (R,B(R)), Fν denotes the (right-continuous) cdf of ν and
L2(0,1) is the space of square-integrable functions, with respect to the Lebesgue measure on (0,1).

Definition A.1. Let A ⊆R and T : A → R.

(a) T is increasing on B ⊆ A if ∀x, y ∈ B , x < y implies T (x) ≤ T (y).
(b) T is μ-a.e. increasing if there exists Bμ ∈ B(�), with Bμ ⊆ A, μ(Bμ) = 1 and T increasing on Bμ.

Remark A.1. A μ-a.e. increasing function T : A → R needs not to have a version increasing on A. A version of T is
a function T̃ : A →R such that T = T̃ , μ-a.e.

Definition A.2. The quantile function of ν is defined as F−
ν (y) = inf{x ∈R|Fν(x) ≥ y}, y ∈ (0,1).

Proposition A.1.

(a) F−
ν is left-continuous and increasing on (0,1).

(b) Any left-continuous and increasing T : (0,1) →R is the quantile of some probability ν.
(c) ν has finite second moment if and only if

∫ 1
0 (F−

ν (x))2 dx < ∞.

Proof. See [13,24]. �

Lemma A.1. Let T ∈ L2(0,1) a.e. increasing. Then there exists ν ∈ W2(R) such that T = F−
ν a.e.

Proof. Suppose T is increasing on a full measure set B ⊆ (0,1) (that is the Lebesgue measure of B is one). Let
T̃ : (0,1) → R be defined as T̃ (x) = T (x), for x ∈ B , and T̃ (x) = infy∈B,x<y T (y), for x /∈ B . Then T̃ is increasing
in (0,1) and T̃ = T a.e. Finally, let T̂ be the left-continuous version of T̃ , that is, T̂ (x) := limt→x− T̃ (t). So, as T̂ is
left-continuous and increasing on (0,1), from Proposition A.1(b), (c) there exists a probability ν ∈ W2(R), such that
F−

ν = T̂ . Finally, since the number of discontinuities of any increasing function is countable, we have T̂ = T̃ a.e. �

Proposition A.2. Let � be an interval of real numbers (not necessarily bounded). Then, the set of quantile functions
{F−

ν |ν ∈ W2(�)} is closed and convex in L2(0,1).
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Proof. For convexity let α ∈ (0,1) and ν1, ν2 ∈ W2(�). Then Tα := αF−
ν1

+ (1 − α)F−
ν2

is increasing, left-continuous
and square integrable. Hence, by Proposition A.1(b), (c), Tα is the quantile of some να ∈ W2(�). For closedness con-
sider a sequence (νn) in W2(�), such that

∫ 1
0 (F−

νn
(x) − T (x))2 dx → 0, as n → ∞. Then, there exists a subsequence

(νkn) of (νn) such that F−
νkn

→ T a.e. and hence, T is square-integrable and a.e. increasing. So, by Lemma A.1, T is

a quantile. As usual, the elements of L2(0,1) are understood as equivalence classes. �

A.1. Geodesics in metric spaces

We introduce the concept of geodesic in metric spaces. For notations, definitions and results, we follow [9] and
references therein. For convenience, without loss of generality, we consider I such that [0,1] ⊂ I .

Definition A.3. A curve in a metric space (X,d) is a continuous function γ : I → X, where I ⊂ R is a closed (not
necessarily bounded) interval. Also

(i) γ is said to pass through z ∈ X if γ (t) = z, for some t ∈ I ;
(ii) γ joins x, y ∈ X if there exists a, b ∈ I , such that γ (a) = x and γ (b) = y and

(iii) γ is rectifiable if its length L(γ ) is finite.

Definition A.4. A metric space (X,d) is said to be geodesic if for every x, y ∈ X, there exists a rectifiable curve γ

joining x and y, such that d(x, y) = L(γ ). Such minimum length curve γ is called a shortest path between x and y.
A curve γ : I → X is a geodesic if for every t ∈ I , there exist a, b ∈ I, a < b,a ≤ t ≤ b such that the restriction of γ

to [a, b] is a shortest path between γ (a) and γ (b).

The following is a useful characterization of shortest path (see [9] for a proof).

Lemma A.2. For any shortest path, there exists a continuous reparametrization γ on [0,1] such that

d
(
γ (s), γ (t)

) = |t − s|d(
γ (0), γ (1)

)
for all s, t ∈ [0,1].

Lemma A.3. Let H be a Hilbert space and x, y ∈ H . Then γ is a shortest path joining x and y if and only if
γ (t) = (1 − t)x + ty, for all t ∈ [0,1], up to a continuous reparametrization.

Proof. Denote the inner product and the induced norm in H by 〈·, ·〉 and ‖ · ‖ respectively. Let γ be a shortest path
between x and y, and t ∈ [0,1]. After a reparametrization such that γ (0) = x and γ (1) = y, from Lemma A.2 we
have ‖x − γ (t)‖ = t‖x − y‖ and ‖γ (t) − y‖ = (1 − t)‖x − y‖, then ‖x − γ (t)‖ + ‖γ (t) − y‖ = ‖x − y‖.

Squaring and simplifying the former expression above, we obtain ‖x − γ (t)‖‖γ (t) − y‖ = 〈x − γ (t), γ (t) − y〉.
Hence, by the Cauchy–Schwarz inequality, there exists λ ≥ 0 such that x − γ (t) = λ(γ (t) − y). Finally, taking norm
we find λ = t

1−t
and the result follows. The other implication is direct. �

From the previous lemma we deduce that, in Hilbert spaces, any geodesic is locally a segment and so, geodesics
are straight lines. We state this in the following corollary.

Corollary A.1. Let H be a Hilbert space and γ : I → H a curve, such that γ (0) = x and γ (1) = y. Then γ is a
geodesic if and only if γ (t) = (1 − t)x + ty, for all t ∈ I , up to a continuous reparametrization.

Definition A.5. Let (X,d) be a geodesic space and Y ⊂ X. We say that Y is geodesic if the induced metric space
(Y, d) is geodesic. In other words, if for any x, y ∈ Y , there exists a shortest path joining x and y, totally contained
in Y .

Note from Lemma A.3 that a Hilbert space H is geodesic and C ⊂ H is geodesic if and only if C is convex.
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A.1. K-Convergence

In this section we present definitions and results that we use for proving the existence of principal geodesics (see
Section 4.2). In particular, we define an appropriate concept of convergence for sequences of convex sets in a metric
space (X,d).

Definition A.6. Let C,Cn ⊂ X,n ≥ 1. We say that the sequence (Cn) converges to C in the sense of Kuratowski,
denoted by K-limn→∞ Cn = C, if

(i) for all x ∈ C, there exist xn ∈ Cn, n ≥ 1, such that xn → x and
(ii) for all xn ∈ Cn, n ≥ 1, and for any accumulation point x of (xn), x ∈ C.

Definition A.7. The deviation from x ∈ X to B ⊆ X is defined by d(x,B) := infx′∈B d(x, x′); the deviation from
A ⊆ X to B is d(A,B) := supx∈A d(x,B) and the Hausdorff distance between the sets A and B is

h(A,B) := max
{
d(A,B), d(B,A)

}
. (A.1)

Remark A.2. It is well known (see [5,22] and references therein) that convergence with respect to the Hausdorff dis-
tance is stronger than convergence in the sense of Kuratowski. Moreover, if X is compact both notions of convergence
coincide.

Definition A.8. We define the metric space CL(X) as the set of nonempty, closed subsets of X, endowed with the
Hausdorff distance h.

Proposition A.3. For all x ∈ X, then d(x, ·) is continuous on CL(X).

Proof. Observe that, for all x ∈ X and A,B ∈ CL(X), d(x,A) ≤ d(x,B) + h(A,B). Then |d(x,A) − d(x,B)| ≤
h(A,B) and the conclusion follows. �

Lemma A.4. Let B,C,Bn,Cn ⊂ X, with Bn ⊂ Cn, n ≥ 1, such that K-limn→∞ Bn = B and K-limn→∞ Cn = C.
Then B ⊂ C.

Proof. By Definition A.6(i), for any x ∈ B there exist xn ∈ Bn,n ≥ 1, such that xn → x. As xn ∈ Bn ⊂ Cn, n ≥ 1,
from Definition A.6(ii) we have x ∈ C. �

A.1. �-Convergence

The notion of �-convergence in a metric space (X,d) [4,10] is used in the proof of Theorem 6.2.

Definition A.9. Let F,Fn : X �→ R := R∪{+∞,−∞}, n ≥ 1, a sequence of functions. We say that (Fn) �-converges
to F , denoted �-limn→∞ Fn = F , if, for every x ∈ X,

(i) F(x) ≤ lim infn→∞ Fn(xn), for any xn ∈ X,n ≥ 1, with xn → x, and
(ii) there exist xn ∈ X,n ≥ 1, with xn → x, such that F(x) = limn→∞ Fn(xn).

Definition A.10. For F : X → R, let M(F) := {x ∈ X : F(x) = infy∈X F(y)}.
The following result (see [10], Theorems 7.8 and 7.23) shows that �-convergence together with compactness (or

more generally equicoercivity) implies convergence of minimum values and minimizers.

Theorem A.1. Assume that X is compact and let F,Fn : X �→ R, n ≥ 1, such that �-limn→∞ Fn = F . Then M(F) is
nonempty and

lim
n→∞ inf

x∈X
Fn(x) = min

x∈X
F(x).

Moreover, if xn ∈ M(Fn),n ≥ 1, then the accumulation points of (xn) belong to M(F).
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Definition A.11. The indicator of A ⊂ X is the function χA : X → R ∪ {+∞} defined by χA(x) = 0, if x ∈ A, and
χA(x) = +∞, if x /∈ A.

The following Proposition (see [4], Proposition 4.15.) shows the relation between K-convergence (see Defini-
tion A.6) and �-convergence.

Lemma A.5. Let A,An ⊂ X, n ≥ 1. Then K-limn→∞ An = A if and only if �-limn→∞ χAn = χA.
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