
Geodesic Shape Retrieval

via Optimal Mass Transport⋆

Julien Rabin, Gabriel Peyré, and Laurent D. Cohen
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Abstract. This paper presents a new method for 2-D and 3-D shape
retrieval based on geodesic signatures. These signatures are high dimen-
sional statistical distributions computed by extracting several features
from the set of geodesic distance maps to each point. The resulting high
dimensional distributions are matched to perform retrieval using a fast
approximate Wasserstein metric. This allows to propose a unifying frame-
work for the compact description of planar shapes and 3-D surfaces.

1 Introduction

Content based 2-D and 3-D shape retrieval is an important problem in com-
puter vision. It requires to design both representations and similarity measures
to discriminate shapes from different classes, while being invariant to some de-
formations.

1.1 Feature-Based Shape Retrieval

There is a large amount of literature on content-based retrieval using similarity
measures between descriptors. In this section, a brief review is given, focusing
on bending and isometric deformations (i.e. preserving the topology). We refer
the reader to the following review papers devoted to planar shapes [1,2] and 3-D
surfaces [3,4] retrieval for a complete review.

Global descriptors. Simple global features are computed using polynomial mo-
ments [5,6,7], or Fourier transform [8] (see [9] for review).

The spectrum of the Laplace Beltrami operator defines a descriptor invariant
to rigid motion and to simple bendings [10]. Shape distributions [11] compute de-
scriptors as histograms of the distribution of Euclidean distance between points
on the surface. This is extended to bending invariant descriptors in [12,13,14]
using geodesic distances. It is possible to replace the geodesic distance by a
diffusion distance [15] computed by solving a linear Poisson PDE.
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Local descriptors. Many other shape representations do not make use of a single
descriptor. They rather compute similarities by matching points of interest for
which local descriptors are defined. Shape context features [16] are local 2-D his-
tograms of contours around points of interest. Geodesic shape context makes use
of geodesic curves to gain bending invariance [17]. Local tomographic projections
on tangent planes (spin images) [18] define a set of local descriptors.

Similarity measure. Most of the previous approaches make use of Euclidean
metric, Kullback-Leibler or χ2 distance to compare low-dimensional histogram-
based descriptors in linear time. When considering high-dimensional descriptors
(either histograms or discrete point clouds), another possibility is to use the
Wasserstein distance [19], see e.g. [20,21,22].

1.2 Contributions

This paper introduces a novel framework for bending invariant recognition of
shapes. We use the setting of geodesic distances on Riemannian manifolds, which
unifies both planar shape and 3-D surface retrieval problems. This novel frame-
work builds on several already known statistical descriptors, and encompasses
them into a single high-dimensional descriptor. This allows us to take advan-
tage of the richness of information available in each separate statistical measure
to enhance the retrieval performance. The retrieval method is based on an ap-
proximation of the Wasserstein distance, that works directly over discrete point
clouds, and can be computed with an iterative algorithm.

2 Geodesic Distances

In the following, we consider shapes as compact 2-D manifolds Ω ⊂ IRs, where
s = 2 (planar shapes) or s = 3 (surfaces). Note however that our approach is
generic and accommodates for domains of arbitrary dimension.

2.1 Geodesic Distance Definition

The length of a curve γ : [0, 1] → Ω traced within the domain is defined as

L(γ) =
∫ 1

0
||γ′(t)||dt. The geodesic distance between two points xs, xe ∈ Ω is the

length of the shortest piecewise smooth curve joining the two points

dΩ(xs, xe) = min
γ(0)=xs,γ(1)=xe

L(γ). (1)

The geodesic map dΩ(xi, x) differs significantly from the the Euclidean distance
map ||xi − x|| when the shapes are non convex, as it is illustrated by Fig. 1.

A curve γ⋆ satisfying dΩ(xs, xe) = L(γ⋆) is called a shortest path, sometimes
also referred to as a (globally minimizing) geodesic. Figure 1 (on the far right)
shows several examples of geodesics, each time computed between a starting
point xs ∈ Ω (red dot) and some ending points {xe} lying on the boundary ∂Ω
of the manifold (blue dots).
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Euclidean ||xi − x|| Geodesic dΩ(xi, x) Shortest curves γ⋆

Fig. 1. Left and center: comparison of Euclidean and geodesic distances inside a 2-D
shape. Right: display of geodesic curves.

2.2 Geodesic Distance Computation

Geodesic distance within a planar shape. Given some starting point xs, the
geodesic distance map Uxs

(x) = dΩ(xs, x) can be shown to be the unique vis-
cosity solution of the following non-linear PDE,

∀x ∈ Ω, ||∇Uxs
(x)|| = 1 and Uxs

(xs) = 0. (2)

where the derivative should be understood in a weak sense at points along the
medial axis of xs where Uxs

is not smooth.
The PDE (2) can be discretized with upwind finite difference. The resulting

discrete equation can be and solved in O
(

N log(N)
)

operations using the Fast
Marching algorithm [23,24]. This algorithm performs a front propagation within
the shape, as displayed on Fig. 2.

Fig. 2. Fast Marching propagation inside a 2-D shape

Geodesic distance on a 3-D surface. If the surface Ω is parametrized using
ψ : V ⊂ [0, 1]2 �→ Ω, then one can prove that the distance map

∀x ∈ V, Uxs
(x) = dΩ(xs, ψ(x))

satisfies an anisotropic Eikonal PDE

∀x ∈ V, ||∇Uxs
(x)||T−1

x
= 1, and Uxs

(ψ(xs)) = 0, (3)
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where Tx =

(

〈
∂ψ

∂xi

,
∂ψ

∂xj

〉

)

0�i,j�1

and ||x||A =
∑

0�i,j�1

Ai,jxixj .

This equation (3) extends to surfaces of arbitrary topology using several charts
that parametrize locally the surface.

The Eikonal equation (3) can be discretized on 3-D meshes. In the case of
mesh with no obtuse angle, the discrete equation can be solved in O

(

N log(N)
)

operations [25]. For general meshes, the resolution requires more advanced sche-
mes, see for instance [26]. An example of a Fast Marching propagation from a
set of starting points on a 3-D shape is given on Fig. 3.

Fig. 3. Example of Fast Marching propagation on a triangulated mesh

3 Geodesic Descriptors

Similarity measures between shapes are computed by extracting global or lo-
cal features ϕ(Ω), and then performing some comparison between the resulting
descriptors.

An important goal in designing a similarity measure is to achieve invariance
to some class R of deformations. This requires that the descriptors are invariant,
so that ϕ(RΩ) = ϕ(Ω) for any R ∈ R.

This section details a class of geodesic descriptors that are invariant under
geodesic isometries, and quasi-invariant to shape articulations and bendings.
This is especially relevant to perform robust retrieval on articulated shapes,
such as animal or human with varying poses.

3.1 Local Descriptors

Geodesic distance distributions. To design features invariant to bendings and
articulations, we consider, for each point x ∈ S ⊂ Ω, the set {dΩ(x, y)}y∈E⊂Ω ⊂
IR+ of distances to a subset E ⊂ Ω. This set of distances should be thought as
being a 1-D distribution of values in IR+.

For numerical applications, the set S is a discrete sub-sampling of the manifold
computed as described in Sect. 3.2. The set E used to compute the distributions
can be defined depending on the application. In our numerical examples, we
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choose E = ∂Ω to be the boundary of the manifold for 2-D shapes, and E = Ω
for 3-D surfaces.

Figure 4 shows examples of geodesic distance distribution, conveniently dis-
played using 1-D histograms.

Fig. 4. Histogram of the distribution of the geodesic distance to several points

Geodesic quantile measures. The whole set of distances {dΩ(x, y), y ∈ E , x ∈
S} is too large to be used for retrieval applications. To achieve dimensionality
reduction, we retain only a few statistical measures out of this distribution of
values. This article considers quantiles statistical measures Qx(α) defined as, for
all α ∈ [0, 1],

∀x ∈ S, Qx(α) = F−1
x (α) = max{δ ∈ IR+, Fx(δ) � α} (4)

where Fx is the cumulative distribution function of the set {dΩ(x, y), y ∈ E},
and F−1

x is its pseudo-inverse.
Observe that Qx(0) is the minimum geodesic distance between x and E , while

Qx(1/2) is the median distance. The maximum distance Qx(1) is also known as
the eccentricity, and has been used for 2-D shapes [13] and surfaces [14] retrieval.
Other statistical measures can be retained as well. For instance, the mean of the
distance

∫

E
dΩ(x, y)dy is used in [12] to perform surface retrieval.

Geodesic local descriptors. At each location x ∈ S, the local descriptor px ∈ IRd

is a vector of d quantiles

px = (Qx(αℓ))1�ℓ�d ∈ IRd,

where 0 � αℓ � 1 are equi-spaced values. Figure 5 displays each of the d = 3
components Qx(αℓ) of px as a function of x ∈ Ω, with αℓ ∈ {0, 1

2 , 1}.
The key feature of our approach, that makes it significantly different from

these previous works is that it uses several statistical measures, and thus builds
high dimensional descriptors.
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Fig. 5. Display of x �→ Qx(αℓ) for several αℓ ∈ {0, 1

2
, 1} and of the corresponding 3-D

distribution {px = (Qx(αℓ))1�ℓ�3}x∈S ⊂ IR3

3.2 Global Descriptors

The local descriptors px are sampled on a set S ⊂ Ω to obtain a global descriptor
that characterizes the shape.

Farthest Point Sampling. Estimating the full set {px}x∈Ω of descriptors is com-
putationally intractable, and one thus needs to compute a sub-sampling S =
{xi}i∈I of n points on the manifold, where I = {0, . . . , n − 1}. To perform a
uniform sampling of the manifold, we use the farthest point sampling strategy.
It corresponds to a greedy scheme, originally introduced in [27], and extended
to geodesic distances on manifolds for surface remeshing in [28].

The initial point x0 ∈ Ω is sampled at random. Given a set of k points
{x0, . . . , xk−1}, the next point is computed as

xk = argmax
x∈Ω

min
0�i<k

dΩ(xi, x).

Once this new point xk has been computed, the set {dΩ(xk, x)}x∈E of geodesic
distances is computed in O

(

n log(n)
)

operations, and the geodesic descriptor

pxk
∈ IRd is obtained by computing the quantiles (4) from these distances. This

process of iteratively adding the furthest point to the set S is continued until a
given number of points n is reached. Examples of this farthest point sampling
method on a 2-D shape and a surface are shown in Fig. 6.

Global descriptor as a point cloud. The global descriptor is then defined as a
uniform sampling of the local descriptors

ϕ(Ω) = {pxi
}i∈I ⊂ IRd,

and is thus a cloud of n points in IRd.
This point cloud ϕ(Ω) should be thought as being drawn from a probabil-

ity distribution. Each shape has its own distribution, that is invariant under
isometric bending of the shape.
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Fig. 6. Illustration of the farthest point sampling strategy for a 2-D shape
and a 3-D surface. For each case |S| = n = 100 points are sampled (red dots). The
geodesic distances between each x ∈ Ω and these points are plotted as a colormap.

An alternative representation is to compute the d-dimensional histogram of
the distribution. We prefer in this paper to work directly using discretized point
cloud, because it offers a more precise matching.

The resulting global descriptor ϕ(Ω) is invariant to isometric deformations, in
the sense that ϕ(Ω) = ϕ(RΩ) if R is a deformation of Ω that maintains geodesic
distances. More generally, if R does not modify too much the distances, meaning

∀ (x, y) ∈ Ω2, dΩ(x, y) ≈ dRΩ(Rx, Ry), (5)

then ϕ(Ω) ≈ ϕ(RΩ). This is the case for bending deformations and articulations,
see [17]. Observe that geodesic distances {dΩ(x, y)}x,y ∈Ω have to be normalized
(according to maximum distance) to achieve invariance to scaling.

4 Optimal Transport Retrieval

Our shape retrieval method uses a similarity measure that compares the geodesic
descriptors ϕ(Ω) using the Wasserstein metric related to the Monge-Kantorovich
optimal transport problem (see [19] for an in-depth study).

4.1 Similarity Measure

In classical settings, shapes are generally represented by histogram-based de-
scriptors and thus compared with Lp distances or the Kullback-Leibler diver-
gence. In our setting, the descriptors are high dimensional discrete distributions,
and we propose to use the Wasserstein distance [19] which is well adapted to
compare statistical distributions [20], and is know to be more robust that Haus-
dorff distance [29]. Our similarity measure is thus defined as

∆(Ω0, Ω1) = W (ϕ(Ω0), ϕ(Ω1)),

where W (X, Y ) is the Wasserstein distance between two point clouds X, Y ⊂ IRd,
defined in the next section. Since our geodesic descriptors satisfy the approximate
invariance (5) for bendings and articulations R ∈ R, our similarity measure
satisfies ∆(Ω0, R(Ω0)) ≈ 0.
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4.2 Wasserstein Distance

Given two point clouds X, Y ⊂ IRd of n elements, the L2-Wasserstein distance
is defined as

W (X, Y ) 2 = min
σ∈Σn

∑

i∈I

||Xi − Yσ(i)||
2 , (6)

where Σn is the set of all permutations of n elements and I = {0, . . . , n − 1}.
Our framework extends to arbitrary strictly convex cost such as Lp-metric for
p > 1. Computing this distance boils down to estimate the optimal assignment
i �→ σ⋆(i) minimizing Formula (6). This can be computed exactly using linear
programming or other dedicated algorithms in O

(

n2.5 log(n)
)

operations [30].

One-dimensional case. It is well known that the Wasserstein assignment problem
in 1-D can be easily solved in O

(

n log(n)
)

operations by sorting the values [19].
Indeed, σX and σY being two permutations such that {XσX(i)}i and {YσY (i)}i

are sorted in increasing order, the optimal assignment is

σ⋆ = σY ◦ σ−1
X . (7)

4.3 Approximate Wasserstein Distance

For large point clouds in high dimension (d � 2), computing exactly (6) is too
demanding. Following an idea recently introduced in [31], we propose to use the
an approximate transport cost W̃ (X, Y ) defined as

W̃ (X, Y ) = ||X − X(∞) || , (8)

where X(∞) is computed using an iterative algorithm described in the following
paragraph. Starting from X(0) = X , this algorithm computes points clouds
{X(k)}k that progressively evolves X(k) toward Y , minimizing at each iteration
an energy EY which is a sum of 1-D Wasserstein distances on the unit sphere
Sd−1 in IRd:

EY (U) =
1

2

∫

θ∈Sd−1

∑

i∈I

〈Ui − Yσ⋆

θ
(i), θ〉2 dθ , (9)

where 〈. , .〉 is the L2-scalar product, and where σ⋆
θ is the optimal 1-D assignment

according to direction θ of {〈Yi, θ〉}i with {〈Ui, θ〉}i following Formula (7).

Algorithm. Finding a minimum of energy (9) can be done using a classical
gradient descent strategy. For numerical considerations, this energy is estimated
at each iteration k from a restricted set of directions, thus resulting in a stochastic

gradient descent scheme (see e.g. [32]), which relies on three steps:

⊲ Step 1. Define the direction set Ψ (k) ⊂ Sd−1, a collection of vectors randomly

and uniformly sampled on Sd−1. The corresponding energy E
(k)
Y is therefore

E
(k)
Y

(

U
)

=
1

2

∑

θ∈Ψ (k)

∑

i∈I

〈Ui − Yσ⋆

θ
(i), θ〉2 . (10)
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⊲ Step 2. Compute, for each direction θ ∈ Ψ (k), the optimal 1-D assignment σ⋆
θ

of 1-D distribution {〈Yi, θ〉}i∈I with {〈X
(k)
i , θ〉}i∈I using Formula (7).

⊲ Step 3. The set {σ⋆
θ} being computed, update the point cloud using a Newton

step with parameter λ ∈ ]0, 2[ to minimize the energy E
(k)
Y , such that ∀ i ∈ I

X
(k+1)
i = X

(k)
i − λ

(

∇2E
(k)
Y

(

X(k)
)

)−1

∇E
(k)
Y

(

X
(k)
i

)

,

= (1 − λ) · X
(k)
i + λH−1

∑

θ∈Ψ (k)

〈Yσ⋆

θ
(i), θ〉 θ , (11)

where H =
∑

θ∈Ψ (k) θθT ∈ IRd×d is the Hessian matrix of E
(k)
Y at point X

(k)
i .

Convergence. Stochastic gradient descent is known to converge if one uses a
properly chosen step size λ = λk that decays through the iterations, see [32]. In
numerical simulations, we always observed convergence of X(k) to some X(∞)

using the fixed step size λ = 1/|Ψ (k)|. Furthermore, X(∞) is actually equal (up to
a permutation) to Y , so that the algorithm computes an assignment between the
two distributions –which is not necessarily optimal in the sense of Formula (6).

Implementation. In the numerical simulations of Sect. 5, we used a fixed number
of K = 100 iterations and |Ψ | = d directions, and we noticed that using more
iterations does not improve significantly the retrieval results. The complexity of
the proposed algorithm is therefore O

(

|Ψ |Kn log(n)
)

.
This method extends the algorithm proposed by [33] that makes use of an

orthogonal set of direction Ψk, and a descent step size λ = 1. Using a smaller
step, e.g. λ = 1/|Ψk| is important to ensure the convergence of the method.
Using a larger set of directions is useful to obtain a assignment that is closer
to the optimal one, see [31] for more details. Observe that other approximation
methods has been previously proposed in the literature, e.g. making use of metric
embedding [21] or wavelet approximations [34].

5 Numerical Examples

Given a database of manifolds {Ωj}j∈J , our algorithm for shape retrieval begins
by computing the global signature ϕ(Ωj) for each manifold in the database.
This is performed in parallel to the farthest point sampling algorithm described
in Sect. 3.2. When an input manifold Ω is queried in the database, its global
signature ϕ(Ω) is computed, and the shape in the database are ordered according
to the Wasserstein distance approximation W̃ (ϕ(Ω), ϕ(Ωj)).

To evaluate the retrieval performance of the proposed descriptor, two classical
performances curves are displayed:

– the average recall curve shows the average number of correct shapes (or
“true-positives”) retrieved per query among the r most similar ones in the
dataset. This curve, plotted depending of the rank r, is obtained by querying
every shape in the dataset (the query itself is no used to compute the score);
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– the average precision-recall curve plots the rate of correct shapes retrieved
among r as a function of the average recall rate.

In order to show the interest of considering high dimensional geodesic statistics,
each performance curves are shown for two different descriptors: the aforemen-
tioned multi-dimensional descriptor and also a simple 1-D descriptor correspond-
ing to the distribution of eccentricity (maximal geodesic distances).

5.1 2-D Shape Retrieval

In this setting, the domain E of ending points {yj}j∈J is the boundary ∂Ω of
the manifold. 4-dimensional distributions of n = 500 points are used as global
descriptors, considering 3 quantiles Qx(αj) (minimum, median and maximum)
in addition with the mean values of geodesic distances.

We consider first the “Articulated Shapes” dataset of [17] (see Fig. 7(a)), a
small dataset being designed to evaluate the robustness of retrieval to bending
deformations. Performance curves are shown in Figs. 7(b) and 7(c) for both 4-D
and 1-D descriptors. Comparison with state-of-the-art methods [17,22] is also
provided in Table 1. One can see that considering several geodesic statistics at
the same time enables to catch more sophisticated information on the shape
while being more robust to bending deformations. Note that it is not the case
when using Euclidean metric with descriptors made of 4 1-D histograms instead
of the approximate Wasserstein metric with 4-D discrete distributions.

Table 1. Retrieval results on the articulated shapes dataset [17]. Scores cor-
respond to the number of correct shapes retrieved among 40 depending on their rank.

Method Rank

Descriptor Metric 1st 2nd 3rd 4th

Geodesic quantile distribution (4-D) Approx. Wasserstein 39 34 30 24

Maximal geodesic distribution (1-D) Wasserstein 27 24 16 18

4 Geodesic quantile histogram (1-D) Euclidean 21 15 7 11

Inner Distance Shape Context χ2 [17] 40 34 35 27

Inner Distance Shape Context EMD-L1 [22] 39 39 34 32

In order to evaluate the robustness of our approach for 2-D shape retrieval
on a larger database, we consider now the MPEG-7 dataset of 1400 shapes (see
Fig. 8(a)). Results are shown in Figs. 8(b) and 8(c). Again, one can see that
using multi-dimensional statistics on geodesic distances yields far better results.
The state-of-the art method of [22] yields a bullseye score (average recall rate
for rank r = 40) of 86.56%, whereas we obtain 59.7%. This can be explained
by the strongly non-isometric variations of the objects in the MPEG-7 classes,
which makes our representation quite inefficient for this retrieval. An important
avenue for future work is to design a large benchmark of planar shapes undergo-
ing bendings and articulation deformations, to explore the performance of our
algorithm and related methods.
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(a) Articulated shapes dataset of [17]. Pairs of shapes from different classes. The
complete dataset is composed of 8 classes of 5 elements.
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(c) Average Precision-Recall.

Fig. 7. Retrieval results on the articulated shapes database [17]. Figure 7(a):
database overview. Figure 7(b): Average recall rate depending on the shape rank thresh-
old for each query shape in the dataset (the score does not include the query itself).
Figure 7(c): Average Precision versus Recall.

(a) MPEG7 dataset. Pairs of shapes from different classes. The complete dataset
is composed of 8 classes of 5 fives elements.
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(b) Recall vs Image Rank.
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(c) Average Precision-Recall.

Fig. 8. Retrieval results on MPEG7 database. Figure 8(a): database overview.
Figure 8(b): Average recall rate. Figure 8(c): Average Precision versus Recall.

5.2 3-D Shape Retrieval

For surface, the domain E = Ω is the whole manifold. Hence, the first order
quantiles Qx(0) are discarded since they are zero, so that we handle d = 3 -
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(a) McGill dataset of articulated and non-articulated objects [35] (respectively
composed of 9 classes of 202 elements and 10 classes of 255 elements).
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(b) Recall vs Image Rank on articulated
dataset.
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(c) Average Precision-Recall on articu-
lated dataset.
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(d) Recall vs Image Rank on complete
dataset.
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(e) Average Precision-Recall on complete
dataset.

(f) Average Recall on partial McGill
database (14 classes) with [36] method.
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Fig. 9. Retrieval results on McGill database [35]. Figure 9(a): overview of the
database. Figure 9(b) and 9(d): Average recall rate on articulated and complete dataset.
Figure 9(c) and 9(e): Average Precision versus Recall on articulated and complete
dataset. Figures 9(f) (from [36]) and 9(g)): comparison of our approach with state-
of-the-art method described in [36] on partial McGill Dataset (14 classes out of 19).
Results are shown as average recall rate curve (plotted in black) along with the average
intra-class standard deviation (in red).
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dimensional geodesic statistics of n = 500 points, considering from now max

and median in addition with mean values of geodesic distances.
To evaluate the robustness of such global descriptor for 3-D shapes, we used

the McGill dataset of 3-D articulated objects [35] (see Fig. 9(a) for an overview).
Retrieval results are shown in Figs. 9(b) and 9(c). Again, it is clear that the
combination of several geodesic distance characteristics achieves better retrieval
results than considering only one. A comparison with state-of-the-art approach
described in [36] is also provided in Figure 9, where we obtain similar results.
Following the same protocol as in [36], retrieval results are given for a subset of
the complete McGill Database (14 classes out of 19).

6 Conclusion

The first contribution of this paper is a generic framework to represent mani-
folds with statistical signatures based on geodesic distances, which are robust
to bendings. The second contribution of this paper is an algorithm to compute
a similarity measure between multi-dimensional joint distributions, which yields
a fast approximation of the Wasserstein metric. This algorithm is applied to
perform shape retrieval using our geodesic framework.

Our framework extends naturally to include additional information such as
texture. One can indeed use a non-constant Riemannian metric that takes into
account this information.
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