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Geodesic motion determines important features of spacetimes. Null unstable geodesics are closely

related to the appearance of compact objects to external observers and have been associated with the

characteristic modes of black holes. By computing the Lyapunov exponent, which is the inverse of the

instability time scale associated with this geodesic motion, we show that, in the eikonal limit, quasinormal

modes of black holes in any dimensions are determined by the parameters of the circular null geodesics.

This result is independent of the field equations and only assumes a stationary, spherically symmetric and

asymptotically flat line element, but it does not seem to be easily extendable to anti-de Sitter spacetimes.

We further show that (i) in spacetime dimensions greater than four, equatorial circular timelike geodesics

in a Myers-Perry black-hole background are unstable, and (ii) the instability time scale of equatorial null

geodesics in Myers-Perry spacetimes has a local minimum for spacetimes of dimension d � 6.

DOI: 10.1103/PhysRevD.79.064016 PACS numbers: 04.70.Bw, 04.50.Gh, 05.45.�a

I. INTRODUCTION

Geodesics in black-hole spacetimes have been exten-
sively studied, both in four- and higher-dimensional space-
times, with and without a cosmological constant.
Geodesics may display a rich structure and they convey
important information on the background geometry.
Among the different kinds of geodesic motion, circular
geodesics are especially interesting. For instance, the bind-
ing energy of the last stable circular timelike geodesic in
the Kerr geometry is related to the gravitational binding
energy that can be radiated to infinity, and it can be used to
estimate the spin of astrophysical black holes through
observations of accretion disks [1–3].

It was shown many years ago that null geodesics also
play an important role. The optical appearance of a star

undergoing gravitational collapse depends crucially on the
circular unstable null geodesic, which also explains an
exponential fade-out of the collapsing star’s luminosity
[4,5]. Null geodesics are also very useful to explain the
characteristic modes of a black hole—the so-called quasi-
normal modes (QNMs) [6,7]. These ‘‘free’’ modes of
vibration can be interpreted in terms of null particles
trapped at the unstable circular orbit and slowly leaking
out [8–12]. The real part of the complex QNM frequencies
is determined by the angular velocity at the unstable null
geodesic; the imaginary part is related to the instability
time scale of the orbit, a quantity which is seldom consid-
ered in geodesic studies, with some noteworthy exceptions
(see, e.g., [13–19]). Furthermore, there is some evidence
[15] that unstable circular orbits could yield information on
phenomena occurring at the threshold of black-hole for-
mation in the high-energy scattering of black holes, a
process of interest in fundamental physics for a variety of
reasons [20,21].
In this work we clarify some aspects of the relation

among unstable null geodesics, Lyapunov exponents and
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quasinormal modes. In Sec. II we derive a simple formula
for the principal Lyapunov exponent � in terms of the
second derivative of the effective potential for radial mo-
tion Vr:

� ¼
ffiffiffiffiffiffiffi
V00
r

2 _t2

s
; (1)

where t is coordinate time. Throughout this work, a dot
denotes a derivative with respect to proper time and a prime
stands for a derivative with respect to areal radius r. The
result above is valid for a wide class of spacetimes and
geodesics, including stationary spherically symmetric
spacetimes and equatorial orbits in the geometry of
higher-dimensional, rotating (Myers-Perry) black-hole
solutions.

In Sec. III we show that the relation between QNMs and
unstable circular null geodesics is quite general, being
valid in the eikonal limit for any static spherically sym-
metric, asymptotically flat spacetime. More specifically,
we show that the angular velocity �c at the unstable null
geodesic and the Lyapunov exponent, determining the
instability time scale of the orbit (see, for instance,
[13,14]) agree with analytic WKB approximations for
QNMs [22–24]:

!QNM ¼ �cl� iðnþ 1=2Þj�j; (2)

where n is the overtone number and l is the angular
momentum of the perturbation. The WKB results are
formally valid only in the eikonal regime (l � 1), but
they seem to yield surprisingly accurate predictions even
for low values of l [12,25]. A simple derivation of the
Lyapunov exponent for spherically symmetric, asymptoti-
cally flat spacetimes, patterned after the original QNM
calculation by Ferrari and Mashhoon [10,11], is provided
in Appendix A. For the important case of a d-dimensional
Schwarzschild-Tangherlini [26] black-hole solution we
find that the critical exponent defined by Pretorius and
Khurana [15] can be determined analytically to be

� � �c

2��
¼ 1

2�
ffiffiffiffiffiffiffiffiffiffiffiffi
d� 3

p : (3)

By exploring the connection between QNMs and null geo-
desics, we also find a simple analytical result for the
quasinormal frequencies of near-extremal Schwarzschild-
de Sitter black holes in d ¼ 4:

!QNM ¼ �þ½l� iðnþ 1=2Þ�; (4)

where �þ denotes the surface gravity. In the eikonal limit,
the above result agrees with that found in [27].

In Sec. IV we analyze the higher-dimensional rotating
black-hole solutions found by Myers and Perry [28]. In
d ¼ 5 we can compute � analytically. The Lyapunov ex-
ponent goes to zero as one approaches extremality in d ¼
4; 5 spacetime dimensions. However, no such behavior is
observed for d > 5: the Lyapunov exponent (normalized

by the orbital frequency) has a local minimum, which may
be related to a possible instability of the system first
suggested by Emparan and Myers [29]. In Appendix B
we study in some detail timelike circular geodesics in the
Myers-Perry spacetime and show that equatorial circular
orbits are always unstable for d > 4. Finally, in
Appendix C we discuss issues in generalizing our results
to non-asymptotically flat spacetimes.

II. LYAPUNOV EXPONENTS AND GEODESIC
STABILITY

Lyapunov exponents are a measure of the average rate at
which nearby trajectories converge or diverge in the phase
space. A positive Lyapunov exponent indicates a diver-
gence between nearby trajectories, i.e., a high sensitivity to
initial conditions. A geodesic stability analysis in terms of
Lyapunov exponents begins with the equations of motion
schematically written as

dXi

dt
¼ HiðXjÞ (5)

and linearized about a certain orbit:

d�XiðtÞ
dt

¼ KijðtÞ�XjðtÞ: (6)

Here

KijðtÞ ¼ @Hi

@Xj

��������XiðtÞ
(7)

is the linear stability matrix [14]. The solution to the
linearized equations can be written as

�XiðtÞ ¼ LijðtÞ�Xjð0Þ (8)

in terms of the evolution matrix LijðtÞ, which must obey

_L ijðtÞ ¼ KimLmjðtÞ (9)

and Lijð0Þ ¼ �ij. A determination of the eigenvalues of Lij

leads to the principal Lyapunov exponent �, which is the
quantity we focus on. Specifically

� ¼ lim
t!1

1

t
log

�
LjjðtÞ
Ljjð0Þ

�
: (10)

We now restrict attention to a class of problems for
which one has a two-dimensional phase space of the
form XiðtÞ ¼ ðpr; rÞ. This includes circular orbits in sta-
tionary spherically symmetric spacetimes and equatorial
circular orbits in stationary spacetimes, such as the Myers-
Perry metric considered in Sec. IV. Linearizing the equa-
tions of motion with XiðtÞ ¼ ðpr; rÞ about orbits of con-
stant r we get

Kij ¼ 0 K1

K2 0

� �
; (11)

where
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K1 ¼ d

dr

�
_t�1 �L

�r

�
; (12)

K2 ¼ �ð _tgrrÞ�1; (13)

andL is the Lagrangian for geodesic motion (see below for
explicit examples). Therefore, for circular orbits, the prin-
cipal Lyapunov exponents can be expressed as

� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi
K1K2

p
: (14)

From now on we will drop the � sign, and simply refer to
the ‘‘Lyapunov exponent.’’ From the equations of motion it
follows that

d

d�

�L
� _r

¼ �L
�r

(15)

and

d

d�

�L
� _r

¼ d

d�
ð�grr _rÞ ¼ � _r

d

dr
ðgrr _rÞ: (16)

Using the definition of Vr,

_r 2 ¼ Vr; (17)

we can rewrite this as

�L
�r

¼ � 1

2grr

d

dr
ðg2rrVrÞ: (18)

For circular geodesics Vr ¼ V0
r ¼ 0 [30], and Eq. (14)

reduces to

� ¼
ffiffiffiffiffiffiffi
V 00
r

2 _t2

s
: (19)

Following Pretorius and Khurana [15], we can define a
critical exponent

� � �c

2��
¼ T�

T�

; (20)

where we introduced a typical orbital time scale T� �
2�=�c and an instability time scale T� � 1=� (note that
in Ref. [14] the authors use a different definition of the
orbital time scale, T� � 2�= _’, with ’ an angular coor-
dinate). Then we get

� ¼ 1

2�

ffiffiffiffiffiffiffiffiffi
_’2

2V00
r

s
: (21)

For circular null geodesics in many spacetimes of interest
V 00
r > 0, which implies instability. A quantitative charac-

terization of this instability can be achieved by computing
the time scale associated with it. In most of this paper we
will use the method outlined above (see also [13,31,32]),
but there are alternative approaches [10,11,14,33]. In
Appendix A, for example, we recover the results of the
next section following a stability analysis due to Ferrari
and Mashhoon [10,11].

The discussion above is still rather general, assuming
only that the variables in the equations of motion form a
two-dimensional plane in phase space. We now specialize
to spherically symmetric spacetimes.

III. SPHERICALLY SYMMETRIC SPACETIMES

We will consider a stationary spherically symmetric
background

ds2 ¼ fðrÞdt2 � 1

gðrÞdr
2 � r2d�2

d�2; (22)

where fðrÞ and gðrÞ are functions to be determined by
solving the field equations, d�2

d�2 is the metric of the

(d� 2)-sphere and Ad�2 � 2�ðd�1Þ=2=�½ðd� 1Þ=2� is the
area of the unit (d� 2)-sphere. Since we do not specify the
field equations, our results are valid for any field equations
admitting spherically symmetric, asymptotically flat solu-
tions. The last property will be required to enforce the
correct boundary conditions in the WKB calculations of
Sec. III C.

A. Circular orbits

To compute the geodesics in the spacetime (22) we
follow Chandrasekhar [34]. Let us restrict attention to
equatorial orbits, for which the Lagrangian is

2L ¼ fðrÞ _t2 � 1

gðrÞ _r
2 � r2 _’2; (23)

where ’ is an angular coordinate. The generalized mo-
menta derived from this Lagrangian are

pt ¼ fðrÞ _t � E ¼ const; (24)

p’ ¼ �r2 _’ � �L ¼ const; (25)

pr ¼ � 1

gðrÞ _r: (26)

The Lagrangian is independent of both t and ’, so it
follows immediately that pt and p’ are two integrals of

motion. Solving (24) and (25) for _t and _’ we get

_’ ¼ L

r2
; _t ¼ E

fðrÞ : (27)

The Hamiltonian is given by

2H ¼ 2ðpt _tþ p’ _’þ pr _r�LÞ
¼ fðrÞ _t2 � 1

gðrÞ _r
2 � r2 _’2

¼ E _t� L _’� 1

gðrÞ _r
2 ¼ �1 ¼ const: (28)

Here �1 ¼ 1; 0 for timelike and null geodesics, respec-
tively. Inserting Eq. (27) in (28) and using the definition
(17) we get
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Vr ¼ gðrÞ
�
E2

fðrÞ �
L2

r2
� �1

�
: (29)

1. Timelike geodesics

The requirement Vr ¼ V 0
r ¼ 0 for circular orbits yields

E2 ¼ 2f2

2f� rf0
; L2 ¼ r3f0

2f� rf0
; (30)

where here and below all quantities are evaluated at the
radius of a circular timelike orbit. Since the energy must be
real, we require

2f� rf0 > 0: (31)

The second derivative of the potential is

V00
r ¼ 2

g

f

�3ff0=rþ 2ðf0Þ2 � ff00

2f� rf0
; (32)

and the orbital angular velocity is given by

� ¼ _’

_t
¼

�
f0

2r

�
1=2

: (33)

2. Null geodesics

Circular null geodesics satisfy the conditions

E

L
¼ �

ffiffiffiffiffi
fc
r2c

s
; (34)

2fc ¼ rcf
0
c: (35)

Here and below a subscript c means that the quantity in
question is evaluated at the radius r ¼ rc of a circular null
geodesic. An inspection of (35) shows that circular null
geodesics can be seen as the innermost circular timelike
geodesics. In this case

V00
r ðrcÞ ¼ L2gc

r4cfc
½2fc � r2cf

00
c �; (36)

and the coordinate angular velocity is

�c ¼ _’

_t
¼

�
f0c
2rc

�
1=2 ¼ f1=2c

rc
: (37)

B. Lyapunov exponents

1. Timelike geodesics

Using Eqs. (19), (27), and (32) to evaluate the Lyapunov
exponent at the circular timelike geodesics, we get

� ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� g

f

�
3ff0

r
� 2ðf0Þ2 þ ff00

�s

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2f� rf0ÞV 00

r ðr
q

Þ: (38)

Bearing in mind that 2f� rf0 > 0 and that unstable orbits
are defined by V 00

r > 0, we can see that � will be real
whenever the orbit is unstable, as expected. In d ¼ 4 this
formula reduces to well-known results [14]. We also get

1

�2 ¼
�
2��

�

�
2 ¼ ð2�Þ2

�
�3gþ 2r

g

f
f0 � r

gf00

f0

�
: (39)

2. Null geodesics

Using Eqs. (19), (27), (34), and (36), for circular null
geodesics we find

� ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2cfc
L2

V 00
r ðrcÞ

s
¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� r2c
fc

�
d2

dr2�

f

r2

�
r¼rc

s
: (40)

In the last equality we made use of (35) and we defined the
‘‘tortoise’’ coordinate

dr

dr�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðrÞfðrÞ

q
: (41)

C. Unstable null geodesics and quasinormal modes:
Comparison with WKB results

WKB methods [22–25] provide an accurate approxima-
tion of QNM frequencies in the eikonal limit for space-
times where the wave equation can be cast in the form

d2

dr2�
�þQ0� ¼ 0; (42)

where r� is a convenient tortoise coordinate, ranging from
�1 to þ1. In particular, one gets the QNM condition

Q0ðr0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Qð2Þ

0 ðr0Þ
q ¼ iðnþ 1=2Þ; (43)

where Qð2Þ
0 � d2Q0=dr

2� and Eq. (43) is evaluated at the

extremum of Q0, i.e., the point r0 at which dQ0=dr� ¼ 0.
We note that this result is strictly valid only for asymptoti-
cally flat spacetimes, or for spacetimes admitting wavelike
solutions at spatial infinity. It is not valid for anti-de Sitter
backgrounds. In a spacetime of the form (22), we find that
the Klein-Gordon equation can be written as in Eq. (42)
with the tortoise coordinate (41). In the eikonal limit (l !
1) we get

Q0 ’ !2 � f
l2

r2
: (44)

It is known that scalar, electromagnetic and gravitational
perturbations of static black holes in higher dimensions
have the same behavior in the eikonal limit [35–37]. In
other words, there is a well-defined geometric-optics (ei-
konal) limit where the potential for a wide class of mass-
less perturbations is ‘‘universal.’’ ForQ0 above we find that
the extremum of Q0 satisfies 2fðr0Þ ¼ r0f

0ðr0Þ, i.e., r0
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coincides with the location of the null circular geodesic
r0 ¼ rc, as given by Eq. (35). Furthermore, the WKB
formula (43) allows one to conclude that, in the large-l
limit,

!QNM ¼ l

ffiffiffiffiffi
fc
r2c

s
� i

ðnþ 1=2Þffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� r2c
fc

�
d2

dr2�

fðrÞ
r2

�
r¼rc

s
: (45)

Comparing with Eqs. (37) and (40) we find that

!QNM ¼ �cl� iðnþ 1=2Þj�j: (46)

This is one of the main results of this paper: in the eikonal
approximation, the real and imaginary parts of the QNMs
of any spherically symmetric, asymptotically flat space-
time are given by (multiples of) the frequency and insta-
bility time scale of the unstable circular null geodesics.

1. Higher-dimensional Schwarzschild black hole

Let us consider a more specific example: the higher-
dimensional Schwarzschild-Tangherlini metric [26]

ds2 ¼ fdt2 � f�1dr2 � r2d�2
d�2;

fðrÞ ¼ 1�
�
rþ
r

�
d�3

;
(47)

which includes the well-known four-dimensional geometry
as a special case. Here d�2

d�2 is the metric of the (d� 2)-
sphere, and the horizon radius rþ is related to the mass M
of the spacetime via M ¼ ðd� 2ÞAd�2r

d�3þ =ð16�Þ. For
timelike geodesics we find that the orbits must satisfy

r > rc ¼
�
d� 1

2

�
1=ðd�3Þ

rþ; (48)

where rc is the radius of the circular null geodesic. With the
requirement (31) we have V 00

r > 0 for all d > 4, and there-
fore all circular orbits are unstable for d > 4 [26,38]. The
four-dimensional case is special: one gets V00

r ¼
4Mrð6M� rÞ=ð2r� 6MÞ. Thus, in four spacetime dimen-
sions there are stable circular orbits for any r > 6M. The
circular orbits with radius 3M< r< 6M are all unstable.
For lightlike geodesics, one has V00

r ðrcÞ ¼ L2ð2d�
6Þr�4

c > 0. Therefore circular null geodesics are always
unstable for d � 4. The angular velocity at rc is given by

�2
c ¼ d� 3

2

�
2

d� 1

�ðd�1Þ=ðd�3Þ 1

r2þ
: (49)

The calculation of the Pretorius-Khurana [15] critical ex-
ponent yields

� � �c

2��
¼ T�

T�

¼ 1

2�
ffiffiffiffiffiffiffiffiffiffiffiffi
d� 3

p ; (50)

where in the last equality we made use of Eq. (49). This
result is in excellent agreement with numerical calcula-
tions by Merrick and Pretorius [39]. Small values of �
correspond to a strong Lyapunov instability, so the insta-

bility is more pronounced for large spacetime dimensions.
By relating the geodesic orbital frequency and instability
time scale to the QNM frequencies in the eikonal limit, we
get

!QNM

�c
¼ l� i

ffiffiffiffiffiffiffiffiffiffiffiffi
d� 3

p ðnþ 1=2Þ: (51)

This is in complete agreement with known analytical and
numerical results in d ¼ 4 [40] and higher dimensions
[41–43], for asymptotically flat spacetimes.

2. Near-extremal Schwarzschild-de Sitter spacetime in
four dimensions

A nontrivial example concerns a non-asymptotically flat
spacetime, the near-extremal Schwarzschild-de Sitter
(SdS) spacetime in four dimensions. General SdS space-
times have a metric of the form (22) with fðrÞ ¼ gðrÞ ¼
1� 2M=r� ðr=LdSÞ2.M denotes the black-hole mass and
L2
dS is the de Sitter curvature radius, related to the cosmo-

logical constant � by L2
dS ¼ 3=�. The spacetime pos-

sesses two horizons: the black-hole horizon is at r ¼ rþ
and the cosmological horizon is at r ¼ rCo, where rCo >
rþ. The function f has zeros at rþ, rCo, and r0 ¼ �ðrþ þ
rCoÞ. In terms of these quantities, f can be expressed as

f ¼ 1

L2
dSr

ðr� rþÞðrCo � rÞðr� r0Þ: (52)

It is useful to regard rþ and rCo as the two fundamental
parameters of the SdS spacetime, and to expressM and L2

dS

as functions of these variables:

L2
dS ¼ r2þ þ rþrCo þ r2Co; (53)

2ML2
dS ¼ rþrCoðrþ þ rCoÞ: (54)

We also introduce the surface gravity �þ associated with
the black-hole horizon r ¼ rþ: �þ � 1

2 ðdf=drÞr¼rþ .

Explicitly, we have

�þ ¼ ðrCo � rþÞðrþ � r0Þ
2L2

dSrþ
: (55)

Let us now specialize to the near-extremal SdS black
hole, which is defined as the spacetime for which the
cosmological horizon rCo is very close (in the r coordinate)
to the black-hole horizon rþ, i.e.,

rCo � rþ � rþ: (56)

For this spacetime one can make the following approxi-
mations:

r0	�2r2þ; L2
dS	 3r2þ; M	 rþ

3
; �þ	 rCo� rþ

2r2þ
:

(57)

Note that �þ is infinitesimally small, since we assume Eq.
(56) holds. For null geodesics, an exact solution can be
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found with

rc ¼ 3

2

�
1� r2þ

L2
dS

�
rþ: (58)

The angular velocity at this radius is given by

L2
dS�

2
c ¼ �1þ 4

27

�
1� r2þ

L2
dS

��2 L2
dS

r2þ
(59)

and reduces to

�c ¼ ðrCo � rþÞ
2r2þ

¼ �þ (60)

in the near-extremal regime. As in the case of four-
dimensional Schwarzschild black holes, Eq. (50), we find

�=�c ¼ 1: (61)

This formula predicts

!QNM ¼ �þ½l� iðnþ 1=2Þ�: (62)

The QNMs of this spacetime are known in closed form [27]
and agree with (62) in the eikonal limit.

IV. MYERS-PERRY BLACK HOLES

In four dimensions there is only one possible rotation
axis for an axisymmetric spacetime, and there is therefore
only one angular momentum parameter. In higher dimen-
sions there are several choices of rotation axis and there is a
multitude of angular momentum parameters, each refer-
ring to a particular rotation plane. Rotating black-hole
solutions in higher dimensions are known as Myers-Perry
black holes [28]. We focus on the simplest case for which
there is only one angular momentum parameter, that we
shall denote by a. The metric of a d-dimensional Myers-
Perry black hole with only one nonzero angular momentum
parameter in Boyer-Lindquist-type coordinates is given by
(here we adopt the notation commonly used in related
works [43–47])

ds2 ¼ �� a2sin2#

�
dt2 þ 2aðr2 þ a2 � �Þsin2#

�
dtd’

� ðr2 þ a2Þ2 ��a2sin2#

�
sin2#d’2 � �

�
dr2

� �d#2 � r2cos2#d�2
d�4; (63)

where

� ¼ r2 þ a2cos2#; � ¼ r2 þ a2 ��r5�d; (64)

and d�2
d�4 denotes the standard metric of the unit (d� 4)-

sphere [28]. This metric describes a rotating black hole in
an asymptotically flat, vacuum spacetime with mass and
angular momentum proportional to � and �a, respec-
tively. Hereafter we assume �> 0 and a > 0.

The event horizon is located at r ¼ rþ such that
�jr¼rþ ¼ 0. In the standard four-dimensional case, an

event horizon exists only for a < �=2. In d ¼ 5 an event
horizon exists only when a <

ffiffiffiffi
�

p
, and it shrinks to zero

area in the extreme limit a ! ffiffiffiffi
�

p
. On the other hand, when

d � 6, which is the part of the parameter space that we
shall focus on, � ¼ 0 has exactly one positive root for
arbitrary a > 0. This means there is no bound on a, or
(loosely speaking) that there are no extremal rotating black
holes in higher dimensions.

A. Circular geodesics in the equatorial plane

To write down the geodesic equations in the Myers-
Perry spacetime we follow Chandrasekhar [34]. Let us

restrict attention to orbits in the equatorial plane ( _# ¼ 0,
# ¼ �=2), for which the appropriate Lagrangian is

2L ¼ gtt _t
2 þ 2gt’ _t _’þgrr _r

2 þ g’’ _’2: (65)

The generalized momenta following from this Lagrangian
are

pt ¼ gtt _tþ gt’ _’ � E ¼ const; (66)

p’ ¼ gt’ _tþ g’’ _’ � �L ¼ const; (67)

pr ¼ grr _r: (68)

The Lagrangian is independent of both t and ’, so it
follows immediately that pt and p’ are two integrals of

motion. Solving (66) and (67) for _t and _’ we find

_’ ¼ 1

�

�
a�

rd�3
Eþ

�
1� �

rd�3

�
L

�
; (69)

_t ¼ 1

�

��
r2 þ a2 þ a2�

rd�3

�
E� a�

rd�3
L

�
: (70)

The Hamiltonian is given by

2H ¼ 2ðpt _tþ p’ _’þ pr _r�LÞ

¼
�
1� �

rd�3

�
_t2 þ 2a�

rd�3
_t _’� r2

�
_r2

�
�
r2 þ a2 þ a2�

rd�3

�
_’2

¼ E _t� L _’� r2

�
_r2 ¼ �1 ¼ const: (71)

Here �1 ¼ 1; 0 for timelike and null geodesics, respec-
tively. Inserting Eqs. (69) and (70) in Eq. (71) we get

_r2 ¼ Vr;

r2Vr ¼
�
r2E2 þ �

rd�3
ðaE� LÞ2 þ ða2E2 � L2Þ � �1�

�
:

(72)

In d ¼ 4, recalling that � ¼ 2M, we recover the well-
known results for the Kerr geometry [34]. In five dimen-
sions we recover the results by Frolov and Stojkovic [48],
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if we specialize their equations to only one rotation
parameter.

The conditions for the existence of circular orbits, Vr ¼
V 0
r ¼ 0, lead to the following equations:

0 ¼ r2E2 þ�r3�dðaE� LÞ2 þ ða2E2 � L2Þ � �1�;

0 ¼ 4r2E2 � ðd� 5Þ�r3�dðaE� LÞ2 þ 2ða2E2 � L2Þ
� �1ð2�þ r�0Þ: (73)

Eliminating the term a2E2 � L2 we get

2rE2 � ðd� 3Þ�r2�dðaE� LÞ2 ��0�1 ¼ 0: (74)

B. Circular null geodesics

For lightlike geodesics (�1 ¼ 0) we get the explicit
conditions

0 ¼ r2cE
2 þ�r3�d

c ðaE� LÞ2 þ ða2E2 � L2Þ; (75)

0 ¼ 2rcE
2 � ðd� 3Þr2�d

c �ðaE� LÞ2: (76)

The above equations can be simplified by the introduction
of the impact parameter Dc ¼ L=E:

0 ¼ r2c þ�r3�d
c ða�DcÞ2 þ ða2 �D2

cÞ; (77)

0 ¼ 2rc � ðd� 3Þ�r2�d
c ða�DcÞ2: (78)

From Eq. (78) we get

Dc ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rd�1

c

ðd� 3Þ�

s
: (79)

Notice that Eq. (77) is satisfied if and only if jDcj> a. For
counterrotating orbits, we have jDc � aj ¼ �ðDc � aÞ
and this case corresponds to the upper sign in the above
equation, while for corotating orbits, jDc � aj ¼ þðDc �
aÞ and this case corresponds to the lower sign in Eq. (79).

Substituting Eq. (79) in (77), we find an equation for the
radius of circular null geodesics:

d� 1

d� 3
r2c � 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rd�1

c

ðd� 3Þ�

s
� 2rd�1

c

ðd� 3Þ� ¼ 0: (80)

In d ¼ 4 we recover the well-known results [30].
An important quantity for the analysis of the null geo-

desics is the angular frequency at the null geodesic �c:

�c ¼ a�r3�d
c þ ð1��r3�d

c ÞDc

ðr2c þ a2 þ a2�r3�d
c Þ � a�r3�d

c Dc

¼ 1

Dc

; (81)

where we have used Eqs. (79) and (80). Therefore the
frequency of equatorial null geodesics is the inverse of
their impact parameter. This generalizes the four-
dimensional result [34] to the general case of Myers-
Perry spacetimes. It would be interesting to investigate
whether or not this is a general property of any stationary
spacetime.

For corotating orbits with a � �1=ðd�3Þ and d > 5, the
following analytical approximations are valid:

rðd�5Þ=2
c � d� 1

2a
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
�

d� 3

r
;

Dc � a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

�ðd� 3Þ

s �
d� 1

2a
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
�

d� 3

r �ðd�1Þ=ðd�5Þ

ðcorotating; a ! 1Þ: (82)

In particular, when the rotation is very large the radius of
the corotating orbit is at fixed relative distance from the
horizon: �

rcoc
rþ

�ðd�5Þ=2 ! d� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd� 3Þp : (83)

This may be explained by the fact that the angular velocity
of the horizon �rþ ¼ a

r2þþa2
also has a maximum and then

decreases to zero for very large a.
On the other hand, counterrotating orbits are well de-

scribed by

rðd�1Þ=2
c � a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðd� 3Þ

q
; Dc ¼ 1

�c

¼ �a

ðcounterrotating; a ! 1Þ:
(84)

We can express the radius of counterrotating orbits in terms
of the horizon radius in the limit of very large rotation:

�
rcounterc

rþ

�ðd�1Þ=2 ! a2

r2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd� 3Þp

: (85)

Notice how counterrotating orbits must be located very far
away from the horizon as rotation increases. This is a
consequence of having a ‘‘strong’’ ergoregion, extending
through a large region in space.
For d ¼ 5 the previous equations simplify considerably,

and we can find a simple solution:

rc ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� a

ffiffiffiffi
�

pq
; (86)

1

Dc

¼ �c ¼ 1

�a
 2
ffiffiffiffi
�

p : (87)

C. Circular timelike geodesics

Timelike geodesics in a Myers-Perry spacetime are
studied in Appendix B. In Sec. B 1 we show that for d >
4, there are no stable equatorial circular orbits in this
spacetime. This extends the instability proof by
Tangherlini [26] to rotating black holes, and the instability
proof by Frolov and Stojkovic [48] to a general number of
spacetime dimensions.
The energy and angular momentum of timelike circular

geodesics are studied in Sec. B 2, where we also consider
the orbital frequency � of general circular timelike geo-
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desics. In fact, it is possible to obtain a simple expression
for the ratio �=�c [see Eq. (B25) in Appendix B]:

�

�c

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2rd�1

c

p 
 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 3Þ�p

ffiffiffiffiffiffiffiffiffiffiffiffi
2rd�1

p

 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 3Þ�p : (88)

This quantity is plotted in Fig. 1 for � ¼ 2 and selected
values of a and d. There is clearly a change in behavior for
d > 5 and large rotation, exemplified here for d ¼ 6. This
will be explored in more detail in the next section.

D. Lyapunov exponents

Applying Eq. (19) to the case of Myers-Perry black
holes we find

�

�c

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
d� 1

p ð��r4c þ a2rd�1
c þ rdþ1

c Þ
ardc þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2rd�1

c

�ðd�3Þ
q

ðrdc ��r3cÞ
: (89)

Using Eq. (86) we can analytically compute the d ¼ 5
case, and we get

�counter ffiffiffiffi
�

p ¼ ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� ffiffiffiffi

�
p

a
p
a� 2

ffiffiffiffi
�

p ; (90)

�co ffiffiffiffi
�

p ¼ ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ ffiffiffiffi

�
p

a
p
aþ 2

ffiffiffiffi
�

p : (91)

The general case requires a numerical treatment. In Fig. 2
we show the Lyapunov exponent normalized by the angu-
lar velocity �=�c as a function of rotation a.

For corotating geodesics in d ¼ 4 and d ¼ 5, � asymp-
totes to zero near extremality (a ! �=2 and a ! ffiffiffiffi

�
p

,

respectively). This does not happen for d > 5 and large
rotation parameters: in this case, �=�c has a local mini-
mum. This is consistent with QNM calculations in five [49]
and higher dimensions [43]. The local minimum may be
related to a change in behavior corresponding to a
black hole ! black brane transition, observed in [29] in

relation with a conjectured instability of these systems for
very large rotation rates.
The locations of minima in �=�c are given in Table I. In

this table we also list a quantity considered in [29] as a
possible indicator of a ‘‘transition’’ point, in this case the
rotation at which the temperature has a minimum. The two
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Corotating
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0.4
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1.0

Ω
/Ω

c
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d=5, a=0.9
d=6, a=0.9
d=6, a=3

Counterrotating

FIG. 1 (color online). Ratio of the timelike orbital frequency � to the orbital frequency �c of corotating (left) and counterrotating
(right) null geodesics as a function of r=rc, with rc the radius of the null geodesic.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

a

0.0

1.0

2.0

3.0

λ/
Ω

c

d=4
d=5
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d=8

FIG. 2 (color online). Dimensionless instability exponents
�=�c as a function of rotation for several spacetime dimensions
d. We use units such that � ¼ 2. Solid lines refer to corotating
orbits, dashed lines to counterrotating orbits.

TABLE I. The transition point atrans. The second column refers
to the critical value of rotation a for which the corotating
Lyapunov exponent has a minimum. The third column refers
to the point at which the temperature has a minimum, an
indicator considered in [29].

d Lyapunov Temperature

6 1.15 1.37

7 0.84 1.28

8 0.64 1.22

50 0.05 1.02
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quantities are roughly consistent for small d, but not for
large d.

V. CONCLUSIONS AND FUTURE WORK

We have shown that for all spherically symmetric space-
times, in a geometrical optics approximation, QNMs can
be interpreted as particles trapped at unstable circular null
geodesics and slowly leaking out. The leaking time scale is
given by the principal Lyapunov exponent, for which we
obtained a fairly simple expression, Eq. (19), in terms of
the second derivative of the effective radial potential for
geodesic motion. This simple, intuitive relation between
QNMs and circular null geodesics is valid for all asymp-
totically flat, spherically symmetric black-hole spacetimes.

Some aspects of our investigation deserve further analy-
sis. The interpretation of QNMs in terms of unstable
circular null geodesics is valid in all generality only for
spherically symmetric, asymptotically flat spacetimes.
Once we break the azimuthal degeneracy, things get a bit
more complex. For instance, in d ¼ 4 it is known that
equatorial geodesics can account for the l ¼ jmj modes
of Kerr-Newman black holes [10,12,50], but it is unclear
whether this analogy can be extended to modes with l �
jmj. Perhaps modes with l � m can be explained in terms
of more general (e.g., nonequatorial) geodesics. Besides
improving our intuitive physical understanding of ring-
down radiation, a deeper exploration of this analogy could
have important implications for the interpretation of nu-
merical simulations of black-hole binary mergers and their
use in gravitational-wave data analysis [51–53].

Another limitation of our results concerns their exten-
sion to non-asymptotically flat (e.g., anti-de Sitter) back-
grounds. In the large damping limit, a certain class of
QNMs has been associated with radial geodesics [54–
56]. It would be very interesting to extend this analysis to
the eikonal (large-l) limit. A possible starting point could
be the 2þ 1-dimensional Bañados-Teitelboim-Zanelli
black hole [57], for which QNM frequencies are known
analytically [58]. Quite apart from the geodesic analogy,
the large-l limit is interesting per se. It turns out that the
imaginary part of Schwsarzschild-anti-de Sitter QNMs
decreases with l [56]. Thus, if excited considerably,
large-l modes could dominate the black hole’s response
to perturbations. A more thorough investigation of the
large-l limit of QNMs is necessary.

Interesting physical phenomena could occur in (hypo-
thetical) spacetimes for which timelike circular geodesics
have a frequency equal to (or larger than) the frequency of
unstable null geodesics. This would raise the interesting
possibility of exciting QNMs by orbiting particles, possi-
bly leading to instabilities of the spacetime. It would be
interesting to find general conditions under which space-
times possess stable null geodesics; stable null geodesics
may also be associated with instability (or marginal stabil-
ity) of spacetimes.
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APPENDIX A: THE INSTABILITY TIME SCALEOF
CIRCULAR GEODESICS: A SIMPLER

DERIVATION

Perhaps the simplest way to determine the instability
time scale associated with circular null geodesics is
through a consideration of the equations defining these
geodesics [5,10,11]. Indeed, this was the approach origi-
nally adopted by Ferrari and Mashhoon to compute quasi-
normal modes of Kerr-Newman black holes in the eikonal
limit [10,11]. In this appendix we will rederive the insta-
bility parameter � within their approach.
Consider small perturbations of a bundle of test null rays

in the unstable equatorial circular orbit around a black hole
described by the metric (22). First, rescale the affine pa-
rameter s so as to be the coordinate time t, and consider the
following values of the unperturbed geodesic:

t ¼ s; r ¼ rc; � ¼ �

2
; 	 ¼ �cs: (A1)

The slightly perturbed equatorial null orbit is given by

s ¼ tþ 
bðtÞ; (A2)

r ¼ rcð1þ 
hðtÞÞ; (A3)

� ¼ �=2; (A4)

	 ¼ �cðtþ 
kðtÞÞ; (A5)

where j
j � 1 denotes the dimensionless amplitude of
the perturbation. Considering the leading terms in
Eqs. (27)–(29), together with the boundary conditions
that bðtÞ, hðtÞ and kðtÞ vanish at t ¼ 0, yields
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hðtÞ ¼ sinhð�tÞ; (A6)

bðtÞ ¼ rcf
0
c

E�
ðcoshð�tÞ � 1Þ; (A7)

kðtÞ ¼ 0: (A8)

The parameter � characterizes the decay rate and is deter-
mined by

�2 ¼ f2c
2E2

V 00
r ðrcÞ ¼ r2cfc

2L2
V00
r ðrcÞ: (A9)

This result agrees with Eq. (40), obtained through the
principal Lyapunov exponent.

Finally, the instability time scale can also be derived (at
least in the usual Schwarzschild geometry) by considering
a special class of geodesics: inspiralling geodesics that
asymptote to the light ring when t ! 1. These geodesics
are considered in Chandrasekhar’s book [34], and it is
straightforward to compute how they approach the light
ring.

APPENDIX B: TIMELIKE GEODESICS IN THE
EQUATORIAL PLANE OF MYERS-PERRY

SPACETIMES

In a d-dimensional Myers-Perry black hole with only
one nonzero angular momentum parameter, the radial
equation for geodesics in the equatorial plane can be cast
in the form r4 _r2 ¼ V, with V � r4Vr as given in Eq. (72).
The first derivative of V with respect to r is given by

V0 ¼ 4r3E2 � ðd� 5Þ�r4�dðaE� LÞ2 þ 2rða2E2 � L2Þ
� �1½4r3 þ 2ra2 þ ðd� 7Þ�r6�d�: (B1)

The conditions for the existence of circular orbits are V ¼
0 and V0 ¼ 0:

0 ¼ r2E2 þ�r3�dðaE� LÞ2 þ ða2E2 � L2Þ � �1�;

(B2)

0 ¼ 4r2E2 � ðd� 5Þ�r3�dðaE� LÞ2 þ 2ða2E2 � L2Þ
� �1ð2�þ r�0Þ: (B3)

Eliminating the term a2E2 � L2 one finds

2rE2 � ðd� 3Þ�r2�dðaE� LÞ2 � �0�1 ¼ 0: (B4)

1. The instability of geodesics in the equatorial plane of
Myers-Perry spacetimes

Equations (B2) and (B4) will be used here to obtain the
values of energy E and angular momentum L associated to
circular timelike (�1 ¼ 1) geodesics. Using (B4) and in-
troducing the new quantities x ¼ L� aE and M ¼ �=2,
and the reciprocal radius u ¼ 1=r, we obtain an expression
for E2:

E2 ¼ ½1� ð5� dÞMud�3� þ ðd� 3ÞMud�1x2: (B5)

With this expression for E2, Eq. (B2) leads to

2aExu ¼ x2½ðd� 1ÞMud�3 � 1�u
� ½a2u� ðd� 3ÞMud�4�: (B6)

For d ¼ 4 spacetime dimensions, the above equations are
identical to those obtained by Chandrasekhar [34]. We can
now eliminate E in Eqs. (B5) and (B6) to obtain a quadratic
equation for x2:

0¼ x4u2½½ðd�1ÞMud�3�1�2�4a2Mðd�3Þud�1�
�2x2u½½ðd�1ÞMud�3�1�½a2u�ðd�3ÞMud�4�
�2a2u½ð5�dÞMud�3�1��þ ½a2u�ðd�3ÞMud�4�2:

(B7)

The discriminant associated to this equation is given by
16Ma2ðd� 3Þud�1�2

u, where we have introduced �u ¼
a2u2 � 2Mud�3 þ 1. In order to write the solutions of Eq.
(B7), it is convenient to consider the expression

½ðd� 1ÞMud�3 � 1�2 � 4a2Mðd� 3Þud�1 ¼ Q�Qþ;
(B8)

where

Q� ¼ 1� ðd� 1ÞMud�3 � 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� 3ÞMud�1

q
: (B9)

Then the solutions of Eq. (B7) can be written as

x2u2 ¼ Q��u �QþQ�
QþQ�

¼ 1

Q

ð�u �Q
Þ: (B10)

As an alternative, we can use the identity

�u �Q
 ¼ u½a ffiffiffi
u

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� 3ÞMud�4

q
�2 (B11)

to cast the solution for x in the simple form

x ¼ � a
ffiffiffi
u

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 3ÞMud�4
p

ffiffiffiffiffiffiffiffiffiffi
uQ


p ; (B12)

where the upper sign in the foregoing equations applies to
counterrotating orbits, while the lower sign applies to
corotating orbits. Inserting expression (B12) in Eq. (B5)
and using the relation L ¼ aEþ x, we get the following
expression for E:

E ¼ 1ffiffiffiffiffiffiffiffi
Q


p ½1� 2Mud�3 
 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� 3ÞMud�1

q
�; (B13)

and the angular momentum associated with the circular
geodesics,

L ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 3ÞMud�4

p
ffiffiffiffiffiffiffiffiffiffi
uQ


p
�
1þ a2u2 � 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mud�1

d� 3

s �
:

(B14)
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In order to investigate the stability of circular timelike
orbits we must compute the second derivative of V with
respect to r for the values of E and L specific to circular
orbits. Differentiating Eq. (B1) we find

V00 ¼ 12r2ðE2 � 1Þ þ 2ðd� 4Þðd� 5ÞMr3�dx2 � 2x2

� 4aEx� 2a2 þ 2ðd� 6Þðd� 7ÞMr5�d: (B15)

Substituting x and E from Eqs. (B12) and (B13), the above
expression for V 00 becomes

V00 ¼ 2ðd� 3ÞMud�5

Q

½2ðd� 1ÞMud�3 þ ðd� 5Þ

� 8a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� 3ÞMud�1

q
þ ðd� 1Þa2u2�: (B16)

The term within square brackets in the foregoing equation
is equal to ðd� 1Þ�u � 4Q
, so that the second derivative
of V reduces to

V 00 ¼ 2ðd� 3ÞMud�5

Q

½ðd� 1Þ�u � 4Q
�: (B17)

This expression shows an explicit dependence on the
spacetime dimensionality d. To analyze the sign of V 00 in
Eq. (B17) it will be helpful to distinguish between different
values of d. Since E, L and x ¼ L� aE must be real, the
functions �u and Q� are such that

�u � Q� � 0: (B18)

For d � 5 the above conditions lead to

ðd� 1Þ�u � 4Q
 ) V 00 � 0: (B19)

This means that there are no stable timelike circular orbits
for spacetimes with d � 5. This generalizes previous work
by Tangherlini on nonrotating higher-dimensional black
holes [26] and by Frolov and Stojkovic on five-dimensional
rotating black holes [48].

2. The orbital frequency of circular geodesics

The orbital frequency� ¼ d’=dt associated to circular
timelike geodesics is given by

� ¼ ðL� 2Mud�3xÞu2
ð1þ a2u2ÞE� 2aMud�1x

: (B20)

The foregoing expression can be simplified by considering
the following identities:

L� 2Mud�3x ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 3ÞMud�4

p
ffiffiffiffiffiffiffiffiffiffi
uQ


p �u; (B21)

ð1þ a2u2ÞE� 2aMud�1x

¼ �uffiffiffiffiffiffiffiffi
Q


p ½1
 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd� 3ÞMud�1

q
�: (B22)

Substituting (B21) and (B22) into Eq. (B20), we obtain

� ¼ 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 3ÞMud�1
p

1
 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 3ÞMud�1

p : (B23)

By considering Eq. (79) for Dc and the relation �c ¼
1=Dc, we find a similar expression for circular null geo-
desics:

�c ¼ 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 3ÞMud�1
c

p
1
 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 3ÞMud�1
c

p : (B24)

Consequently, the ratio �=�c varies with r as follows:

�

�c

¼
ffiffiffiffiffiffiffiffiffiffi
rd�1
c

p 
 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 3ÞMp

ffiffiffiffiffiffiffiffiffiffi
rd�1

p

 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd� 3ÞMp : (B25)

APPENDIX C: SCHWARZSCHILD-ANTI-
DE SITTER SPACETIMES

In this appendix we consider Schwarzschild-anti-
de Sitter spacetimes, and we show that the analogy be-
tween unstable circular orbits and black-hole QNMs is not
trivially extended to non-asymptotically flat backgrounds.
A higher-dimensional Schwarzschild-anti-de Sitter solu-
tion is a solution of

Gab þ ðd� 2Þðd� 1Þ
2Lads

gab ¼ 0; (C1)

with cosmological constant� � �ðd� 2Þðd� 1Þ=ð2LadsÞ
and typical curvature radius Lads. We consider the simplest
black-hole solution: the d-dimensional Schwarzschild-
anti-de Sitter solution. The line element is given by
Eq. (22) with

fðrÞ ¼ gðrÞ ¼
�
r2

L2
ads

þ 1� rd�3
0

rd�3

�
: (C2)

The quantity r0 is related to the mass M of the spacetime,

M ¼ ðd� 2ÞAd�2r
d�3
0

16�
; (C3)

and the horizon radius rþ is the largest real root of fðrÞ ¼
0.
For circular null geodesics, an exact solution can be

found with

rc ¼ 21=ð3�dÞ
�
ðd� 1Þ

�
1þ r2þ

L2
ads

��
1=ð3�dÞ

rþ: (C4)

Since V 00
r ðrcÞ ¼ L2ð2d� 6Þr�4

c , circular null geodesics are
unstable. The angular velocity at this radius is given by

L2
ads�

2
c ¼ 1þ ðd� 3Þ

2

�
2

d� 1

�ðd�1Þ=ðd�3Þ

�
�
1þ r2þ

L2
ads

��2=ðd�3Þ L2
ads

r2þ
(C5)

and reduces to�c � 1=Lads for large (rþ=Lads � 1) black
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holes. The calculation of the instability exponents proceeds
trivially. As in the case of higher-dimensional
Schwarzschild black holes, Eq. (50), we find

�=�c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
d� 3

p
: (C6)

If our main result, Eq. (46), were valid in asymptotically
anti-de Sitter (AdS) spacetimes, in the eikonal limit we

would get !QNM=�c ¼ l� i
ffiffiffiffiffiffiffiffiffiffiffiffi
d� 3

p ðnþ 1=2Þ. However,
according to both analytical [56] and numerical results
[59–62], the imaginary part of QNM frequencies in this
background increases monotonically with increasing rþ.
This dependence on rþ cannot be explained by the circular

null geodesic analogy. In hindsight, this failure is not too
surprising. AdS spacetimes are not globally hyperbolic;
boundary conditions at infinity must be taken into account.
On the other hand, geodesic calculations are local, and they
carry no information about spatial infinity. The available
analytical and numerical results [56,59–62] indicate that
the damping time scale is smaller than indicated by the
geodesic calculation, Eq. (62). Perhaps the disagreement
could be explained by arguing that null particles reach
spatial infinity on time scales faster than the geodesic
time scale, and therefore one would have to correct for this.
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