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GEODESIC SYMMETRIES IN SPACES WITH
SPECIAL CURVATURE TENSORS

J. E. D'ATRI & H. K. NICKERSON

In [3], the authors initiated a study of Riemannian manifolds whose local
geodesic symmetries are divergence-preserving (volume-preserving up to sign).
We found an infinite sequence of necessary conditions on the curvature tensor,
which are sufficient in the analytic case. These results extend to pseudo-
Riemannian manifolds with no essential change in proof.

In this paper, we show that the necessary conditions are satisfied in a broad
class of spaces defined by imposing a simple algebraic condition on the first
covariant derivative of the curvature tensor. This class includes naturally reduc-
tive pseudo-Riemannian spaces. We also consider a family of examples, con-
structed by N. R. Wallach [9] in another context, which shows that there exist
reductive Riemannian homogeneous spaces, whose geodesic symmetries fail to
be divergence-preserving, and others which satisfy our first necessary condition
but not the second.

In spaces which satisfy our algebraic condition, the necessary conditions
reduce to verifying an infinite sequence of combinatorial identities involving
sums over k indices, k = 1, 2, . The authors succeeded in verifying these
for k < 3, and wish to thank A. Poritz and, especially, D. Slater for assistance
in running computer programs associated with the proof of the case k = 3. A
proof for general k has now been provided by R. T. Bumby [2]. A purely
algebraic corollary guarantees the vanishing of the trace of certain recursively
defined compositions of two endomorphisms of a finite dimensional vector
space. The authors also thank N. R. Wallach for helpful conversations.

l Preliminaries

Let X denote a nonzero vector at a point 0 of a C°° pseudo-Riemanian
manifold M, and define an endomorphism Π of the tangent space Γ0(M) by

(1) Π(Y) = -R(Y,X)X, Ye Γ0(M) ,

where R denotes the curvature of the canonical torsionless metric connection F.
Let F°XΠ = Π, and define F^/Z, i = 1,2, , by first extending X to the
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velocity vector field along the geodesic through 0 determined by X and then
extending Π in accordance with (1). For later reference, we note that

(2) φxπ)γ = - (FzR)(y9 x)x.

Finally, define endomorphisms P r , r = 2, 3, , of Γ0(M) by the recurrence
formula

( 3 ) 0 + 1)P* = r(r - l)Vx~
2Π -

d

of Ledger [8]. Our necessary conditions [3] are that

( 4 ) trace P r = 0 , r = 3,5,7, ,

for all choices of 0 and X.
From the recurrence formula we find that

( 5 ) Pr = Σcrι1.. tS
iiΠo...oFiiΠ ,

where the (absolute) constants c\x...ik, defined only for r = ι\ + + ik +
2k > 2, ij >0,l<k< [r/2], are given by

( 6 ) 01 = ^ = ! ^

for k = 1 and, for k > 1, by

with qs = ix+ . . . + ij + 2/.

Details of these results are given in [3].

2. Special curvature tensor

A C°° pseudo-Riemannian manifold has a special curvature tensor in the
sense of the title of this paper, if it carries a C°° tensor T of type (1,2) (written as
TXY = T(X, Y) where Tx is viewed as an endomorphism of the tangent space)
such that

( 8 ) (FχR)(T, X)X = TXR{Y, X)X - R(TXY, X)X ,

( 9 ) (FXT)X = 0

for all vectors X and Y.
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For these spaces, the FXΠ can be computed algebraically by

do) FXΠ = (ad τxyπ ,

where (ad TX)Σ, for any endomorphism Σ of the tangent space, denotes the
endomorphism [Tx, Σ] = TXΣ — ΣTX.

In fact, for i = 1, (10) is the same as (8), by (2). For i > 1, the proof is by
induction, using the following lemma which follows from (9).

Lemma 2.1. Let Σ be a differentiable family of endomorphisms of tangent
spaces (equivalently a tensor of type (1,1)) defined along the geodesic through
0 determined by X. Then

(11) Fχ[Tx,Σ] = [TX,FXΣ] ,

where, on the left, Tx is taken along the geodesic through 0 determined by X.
Note that an alternate version of (11) is

(110 Fχ((ad TX)Σ) = (ad TX)FXΣ .

Proof. Along a geodesic, we have VXX = 0. Then (9) gives

(90 FX(TXZ) = TXVXZ

for arbitrary vector fields Z. (90 is used with Z = ΣY and Z = VXY (arbitrary
Y) to identify the first and fourth terms, respectively, in computing

{7Z\TZ,Σ\)Y - FZ{[TZ,Σ\Y) - [TX,Σ]FXY

= VX{TXΣY) - FX{ΣTXY) - TXΣFXY + ΣTXFXY ,

YTX,FXΣ]Y = TX[FXΣ)Y - (FXΣ)TXY

= TXFX{ΣY) - TXΣFXY - FX{ΣTXY) + ΣFX(TXY) .

Proof of induction step for (10), using (110:

Fψΐl = FX{FXΠ) =

= (ad TJCWAF^Π) = (ad Γx)(ad TX)Π = (ad TX)
MΠ .

For spaces which satisfy (10), a consequence of (8) and (9), the necessary
conditions (4) that geodesic symmetries be divergence-preserving follow from
certain combinatorial identities.

First note that

(12) (adτxyπ = t (-iy-*(ι)τziirz-*.
p=0 \p/

Using (10) and (12), we can write (5) as
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(13) p* = i.^i-iyiM VΛTZΠTΓ* τp^πτrPk

w w

where the summation is extended further over all pj90 < Pj < ij9 and λ =

*Ί + + h - (Pi + * * + P*)
In computing trace Pr we use the facts that trace is linear and invariant

under cyclic permutation of endomorphisms, and then group terms, within a

common value of r — 2k, when the endomorphism terms are cyclic permuta-

tions of one another, and obtain

0 + 1) trace Pr

(14) = ( - l ) ' r ! Σ ( - I ) * " 1 Σ — — ^ Γ^r^-F(σl9 ,σfe)
! ! Λ! σk !

• trace (T^ΠT^Π Γ^i7) .

The final summation is over equivalence classes σ = (σ19 -9σk) ot nonnega-
tive integers whose sum is r — 2k (equivalent if one sequence is a cyclic
permutation of another). Also, per (σ) denotes the smallest positive integer m
such that Gj = σj+m for all / satisfying 1 < / < k — m i.e., mis the number
of distinct A -tuples in the equivalence class. In obtaining (14) from (13), we
have introduced the notation

(15) σλ = ik - p k + pλ , σj = ί j . , - p ό _ , + Pj , 1 < j < k ,

used the fact that

(16) σλ+ -" + σk = h + + h = r - 2k ,

and introduced functions F(σ19 , σk) which will be described below.
Theorems 2.1 and 2.2 (below) will follow from a proof that the combi-

natorial functions F(σλ, , σk) satisfy

(17) F(σl9 , σk) = 0 if ax + + σk is odd .

For k = 1, with the value of the coefficient cr

iχ in (13) taken from (6), we
find

F(σ 1 )=

which is well known to vanish for any positive integer σx.
For general k, it is convenient to introduce new quantities
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(18) _ ( 1Vfc_ l f f . . r h + + ik + 2k + 1
— (— I) lx\ " Ίk\ Ciχ...ik — — — .

Oi + * * + h + 2k)!

Then (6) gives

(19) 6(0 = 1 ,

and (7) gives the recursion formula

Kh, i h)

(20) _*g Ki19 . 9ij) b(iJ+l9. .,ik)

y = 1 ^ + . . . + /. + 2/ + 1 iJ+1 + + ik + 2k - 2) + 1

if k > 1. Finally, define

B(il9 . . . , / * ) = fcOΊ, ••-,/») + 6(/2, , /», ΪΊ)

+ + ^ ( 4 ^ Ί , 'Jk-i)

Then

(22) Ffo, -,σ t) = Σ ( - D P l + +

where the summation is over 0 < Pj < σj9 1 < / < k with fs determined from
(15). Note that the B's, and therefore the F's, are invariant under cyclic per-
mutation of the arguments.

To derive (22), we start from (13), replace c's in terms of ft's from (18) and
write out all combinatorial coefficients in terms of factorials; then multiply
through by (<7i! <7jfe!) and divide by same, always using (15) and (16) finally
regroup the factorials into appropriate combinatorial coefficients, take trace
and compare with (14).

The authors were able to prove (17) for k = 2 (trivially) and for k = 3
(laboriously). A proof of (17) for general k has been found by R. T. Bumby
[2]. His paper takes (19), (20), (21), (22), together with the notation (15), as
definitions, and is independent of the differential geometric aspects of the
problem.

From (17), proved in [2], we obtain
Theorem 2.1. Let M be a real analytic pseudo-Riemannian manifold which

has, in a neighborhood of each point, a C°° tensor field T of type (1,2) satisfy-
ing (8) and (9). Then the geodesic symmetries are locally divergence-preserv-
ing.
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The proof obviously extends to the (possibly) larger class of manifolds for
which (10) holds locally, and to purely algebraic situations. We have

Theorem 2.2. Let T and 77 be endomorphisms of a finite-dimentίonal vector
space. Define additional endomorphisms Pr, r = 2, 3, , recursively by

(r + l)Pr = r(r - l)(ad TY~2Π - Σ

with (ad T)°Π = 77. Then trace Pr = 0 if r is odd.
This result can also be extended to operators on algebras more general than

trace whenever the operator is linear and invariant under cyclic permutation
of a product.

3. Reductive pseudo-Riemannian homogeneous spaces

For naturally reductive Riemannian homogeneous spaces, the existence of a
T satisfying conditions stronger than (8) and (9) follows from the work of
Ambrose-Singer [1] and of Kostant [7]. An explicit formula for T (valid also
in the pseudo-Riemannian case) will follow from a special case of the material
given below for reductive spaces. Since these spaces have a subordinate real
analytic structure, Theorem 2.1 yields

Theorem 3.1. In a naturally reductive pseudo-Riemannian homogeneous
space, the local geodesic symmetries are divergence-preserving.

Let G be a connected Lie group with Lie algebra g, and K a closed sub-
group with Lie algebra ϊ. Let M = G/K, and assume that G acts effectively
onM. The canonical projection π: G-+G/K = M takes e e G into 0=π(e) e M.
For any X € g, let Z * denote the global vector field induced on M by the (left)
action of the one-parameter family exp tX. Then (X*)o = π^X and [X*, Y*]
= —[X, Y]*. Identities relating G-invariant tensors hold at all points of M if
they can be verified at 0.

Now assume we have a vector space direct sum decomposition g = ϊ 0 p
such that ad(K)p C p, i.e., M is reductive. This condition ensures that the
definitions and identities below can be translated into Lie algebra statements
when 7Γ* is used to identify p with TQ(M). For X e g, we write X = Xt + Xp

to identify components under the decomposition. The canonical G-invariant
connection V is defined by

(FX*Y*)O = - [X, Y]p for X, Y e p ,

and the natural torsionless connection V by

ψΣ*Y*\ = -%[X, Y\ for X, Y ep .

Now assume given a G-invariant pseudo-Riemannian structure on M, and
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let V denote the associated torsionless metric connection. These structures are
in one-one correspondence with (ad ^-invariant nondegenerate symmetric
bilinear forms 5 o n f ) , so we have a given B. Define a G-invariant tensor field
U on M by

U(X*, Y*) = FX*Y* - FX*Y* .

Then U is symmetric since both V and V are torsionless. The pull-back to p
of U at 0 is characterized by

(23) 2B(U(X, Y), Z) = B(X, [Z, Y\) + B([Z, X]p9 Y)

for X, Y, Z e p, with £/ = 0 if and only if the structure is naturally reductive
(with respect to the choice of p). These results can be found in Chapter 10 of
[6], together with the proposition that G-invariant tensor fields are covariant-
constant with respect to F.

Finally, define a G-invariant tensor field T on M by

and note that

(24) TXY = U(X, Y) + #X, Y\

for X,Yep = T0(M). Let /? denote the curvature tensor of the torsionless
metric connection V. Then FR = 0 and FT — 0 are equivalent to

(25) (FZR)(Y,X) = -R(TZY,X) + R(TZX, Y) + [TZ,R(Y,X)] ,

(26) (FYT)X= -TTγX+[Tγ,Tx]

for allZ, Y, Z e p = T0(M).
In the naturally reductive case, U = 0 is equivalent to Γ X Z = 0 by (24) and

polarization, so that (25) and (26) imply (8) and (9) as required for Theorem
3.1.

For reductive spaces, (25) and (26) can be used to reformulate the condi-
tions (4) as Lie algebra computations. The theorem below covers only the first
two conditions, but is useful in checking concrete examples as in § 4.

Theorem 3.2. Let M be a reductive pseudo-Riemannian space such that
local geodesic symmetries are divergence-preserving. Let S denote the Ricci
curvature tensor of the torsionless metric connection. Then

(27) S(X, U(X, X)) = trace {Y -> R(Y, X)U(X, X)} = 0 ,

(28) trace {Y — R(R(Y, X)X, X) U(X, X)} = 0

for all X €p.
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Proof. For r = 3, we use (5), (6), (2), (25), and (1) to obtain

-|p3(Y) = [TX,Π]Y - R(TXX, Y)X + R(Y,X)TXX .

Then

trace — P3 = S(TXX, X) + S(X, TXX) = 2S(X9 U(X, X))

since TXX = U(X,X) by (24).
For r = 5, given trace P3 = 0 we reduce the condition trace P5 = 0 to

trace VXΠ
2 = trace (FXΠ o 77 + 77 o FX77) = 2 trace (ΓX77 o 77) = 0

(cf. [3, p. 472]). To obtain (28) we express (FxIIoΠ)Y in terms of R and T,
and then use the fact that

trace {Y -> R(Π(Y), Z)W)

is symmetric in the arguments Z and W, which can be proved easily by imi-
tating the proof that the Ricci tensor S is symmetric.

In testing Theorem 3.2 on examples, we compute U from (23) and R at the
point 0 from

Lemma 3.3. For X,Y,Ze p, we have

R(X, Y)Z = -[[X, Y]f, Z] - J[[Z, Y]p, Z\ -

+ HAT, [Y, Z]Jp + i[X, U(Y, Z)\ + U(X, U(Y, Z))

+ Jt/(Z, [Y, Z],) - i[Y, [Z, Z U - J[Y, t/(Z, Z)]p

- U(Y, U(X,Z)) -

Proof. Use the formula expressing the difference of the curvature tensors
of two connections in terms of the difference tensor T of the connections (cf.
[4, p. 398], for example), also the well-known value at 0 of the curvature ten-
sor for the canonical connection F, the fact that FT = 0, and finally (24).

4. A family of examples

Let G = SE/(3), and let K be the maximal toral subgroup. In the Lie alge-

bra Q = 3u(3) of complex skew-hermitian 3 x 3 matrices with zero trace, ϊ is

the subalgebra of diagonal matrices. Define q = ϊ 0 p by

p = Vλ Θ V2 Θ V3 ,

where
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o z 0] ] rr o o
Vi = \ \ - Z 0 ° > zeC\, V2= 0 0 θ | , z e C j ,

0 0 OJ J {[-z 0
(TO 0 0"

F 3 = 0 0 z , ze

[|θ -z 0.

Now let c1? c2, c3 be nonzero real constants, and define a G-invariant pseudo-
Riemannian structure on M = G/K by

(30) £ ( Z Y ) = ί ° ' i f Z . F , , Y β F , , / ^ / ,
\ - Q trace ZY , if Z, Y € F ί ? / = 1,2, 3 .

These spaces were introduced by N. R. Wallach [9] with nonnegative cl9 c29 c3,

who also found

(0, iίX,Y.eVt9J= 1,2,3,

(31) U(X,Y) = I c - c
-%^\X, Y], ifXeV^Ye V3, i9 /, k distinct ,

I 2ck

which follows from (23) and (30). In particular, the structure is naturally re-
ductive if and only if cλ = c2 = c3.

Define a basis {Xly Z ϊ ? Z 2, Z25 X^ X*} for p by taking z = 1, / in F 1 5 z == 1,
— i in F 2, and z = — 1, — / in F 3 . Then

if /, j, k is a cyclic permutation of 1, 2, 3. Define 1Q e t by

[Z<,Jfi] = 2K<, i = 1,2,3 .

Then

[Ki9 Xt] = 2Xi , [Ki9 ΛΓJ = ~2X, , " / = 1, 2, 3 ,

[X,, Xj] = -Xj , [X,, X}] =Xj, i ψ j .

The curvature tensor can be computed, with respect to this basis, from (29).
The nontrivial cases are

R(Xi9Xt)Xt= -4Xi, / = 1 , 2 , 3 ,

and, with /, /, k distinct,

R{XuXi)Xj = ΊRiX^X^X, = ~2R{Xι,Xj)Xi
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= / (Ck - Cj) _ (Cj - Cj - Ck)
2\χ

I Cj 4CjCk J 3

together with the formulas obtained from those above reversing the roles of
barred and unbarred indices on basis elements.

The only nontrivial terms of the Ricci tensor are

(32) S(Xi9Xi) = S(Xi9X0 = (6cjCk + c\ - c) -

where /, /', k are distinct.

When (31) and (32) are used to compute (27), we find that our first neces-
sary condition (27) is satisfied if and only if

(33) Cι ~ C<1 + c> ~ C 3 + C s ~ C l = 0 .
C 3 Cγ C2

The case where cx = c2 = 1 and c3 = 2 satisfies (27), but a lengthy argu-
ment (not given here) shows that (28) cannot be satisfied for all choices of X.

5. Appendix

N. R. Wallach has observed that the conclusion of Theorem 3.1 can be ob-
tained for a broad class of naturally reductive pseudo-Riemannian homogeneous
spaces by computing directly the action of the geodesic symmetry on the volume
element. Wallach's argument is included here with his permission.

Let M = G/K be a reductive homogeneous space, notation as in § 3, which
carries a G-invariant volume element ω. Let U be a neighborhood of zero in p
such that X e U implies - Z e ί / and also such that the map Ψ{X) = cxpX-K
is a diίfeomorphism of U onto an open neighborhood of 0 in M.

From the formula

d exp x =

(cf. [5]), one obtains

dΨx = d(exp X\o dΠe o (I - e- a d*)/(ad X) , X e p

where exp X is considered as a mapping of M. Let α) = (Ψ*ω)0 and take ώ as
a volume element on p, invariant under translation and invariant up to sign
under the map X —> — X. If P denotes the projection g -> p, then one finds

(5Γ*ω)x = det(Po(/ _ e-a

Now specialize to M such that the pseudo-Riemannian naturally reductive
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homogeneous structure is induced by restricting to p an (ad G)-invariant sym-
metric bilinear form B on q, which is nondegenerate on p and makes p and ϊ
orthogonal (compare [6, II, p. 203]). Let

Choose an orthogonal basis {Zl9 , Zn) for p so that B(ZU Zt) = et = ± 1 ,
and define a^X) by

A{X)Zt =

that is,

From the series expansion of (/ — e~ a d X)/(adX), we compute

( ^ * (adΣ

= V ( ~ 1 ) f c ^(Z^, (ad ( -

where the last step depends upon the special properties of B assumed above.
Then it follows that

(34)

and hence, a fortiori, that

detA(X) = detA(-X) .

The conclusion follows from the fact that the pullback by ¥ of the geodesic
symmetry on M around 0 is just X —> — X.

For manifolds M which can carry a special metric as assumed above, the
conclusion follows also for any other naturally reductive pseudo-Riemannian
metric compatible with the given decomposition g = ϊ 0 p. This is because
both metrics will have the same geodesic symmetry around 0 with volume ele-
ments differing by at most a multiplicative constant.

Added in proof. We can now prove (34) for all naturally reductive pseudo-
Riemannian spaces. The proof depends on an inductive argument showing that
a computation, similar to that just preceeding (34), is valid without assuming
special properties of B.
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