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GEODESICS AND BOUNDED HARMONIC FUNCTIONS
ON INFINITE PLANAR GRAPHS

S. NORTHSHIELD

(Communicated by William D. Sudderth)

Abstract. It is shown there that an infinite connected planar graph with a

uniform upper bound on vertex degree and rapidly decreasing Green's func-

tion (relative to the simple random walk) has infinitely many pairwise finitely-

intersecting geodesic rays starting at each vertex. We then demonstrate the

existence of nonconstant bounded harmonic functions on the graph.

Let g be an infinite, simple, connected, planar graph, g also denotes the

vertex set of the graph. If two vertices x and y are connected by an edge, we

write xEy. For a vertex x, the degree of x is d(x) = \{y £ g: yEx}\, and

we assume:

(1) S = sup d(x) < oo.
x£g

A finite [infinite] walk y is a sequence (y(0), ... , y(n)) [(y(0), y(l), ...)] of

elements of g such that y(k)Ey(k + 1) for all 0 < k < « - 1 [for all k > 0].

We say that y starts at y(0) and, in the first case, ends at y(n) and has length

« . Since g is connected, we may define a metric:

d(x, y) = inf{« : « is the length of a finite walk from x to y }.

A path is a walk whose vertices are distinct. A geodesic y is a path such that

d(y(m), y(n)) = \m-n\ for all possible m and « . For x € 9, T(x, «) is the

set of geodesies that have length « and start at x ; F(x) is the set of geodesies

that have infinite length and start at x .

The following propositions are useful; the first is easy to prove by a diagonal

type argument.

Proposition 1. For all x £ q, F(x) ^ 0.

Proposition 2. Given x, y £ q and y £ F(x), there exists a y £ F(y) such that

y and y  eventually coincide.
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230 S. NORTHSHIELD

Proof. Let x , y £ g, y £ F(x). By the triangle inequality, \d(y, y(n)) - n\ =

\d(y, y(n))-d(x, y(n))\ <d(x,y) and, since d(y, y(n))-n is nonincreasing,

a = limn^oo[d(y, y(n)) - «] = d(y, y(N)) - N for some N. Define a path

y' where (/(O), ... , y'(d(y, y(N)))) is a finite geodesic from y to y(N) and,

for k>d(y, y(N)), y(k) = y(k - a). Then / £ F(y).   O

Consider the transition probabilities for a Markov chain defined by:

f i/d(x)   if yEx,

I 0 otherwise.

We denote this chain by X(0), X(l), .... We let Px(-) = P(-\X(0) = x)

and Ex(-) be the associated expectation operator. Hence, p(x, y) = P(X(l) =

y\X(0) = x) = Px(X(l) = y). X(-) is called the simple random walk on g.

Let p{-"\x, y) be the «-fold convolution of p with itself, and define Green's

function as G(x, y) = ¿Z„>oP{"\x> y) ■ Probabilistically, p(n)(x, y) = Px(X(n)

= y) and G(x, y) = ExC$2n>0Xry\(X(n))) = the average number of times that

the random walk, starting at x , hits y . It is easy to see that the random walk

is transient if and only if G exists (see [2]; his proof for the case when g is a

tree applies to our case without change). By the strong Markov property,

(2) G(x, y) = Px(3n > 0: X(n) = y)G(y, y).

We assume that Green's function is rapidly decreasing in the sense that

(3) J2 n * sup{G(x,y):x,y£Q, d(x, y) = «} < oc.
n>0

Remark. It is known that the Cheeger condition

3c> 0: V finite Keg: #{edges from K to KC}/\K\ > c

implies G(x,y) < ce (for some c and e)—see [1] or [4].   Hence the

Cheeger condition implies condition (3).

Lemma 1. For any integer m > 0, there is an N(m) > 0 such that if A is the

union of m geodesies and d(x, A) > N(m), then Px(3n : X(n) £ A) < I.

Proof. For any « > 0, x € g, let S(x, n) and B(x, n) be the metric sphere

and ball respectively with centers x and radii « .   If y is a geodesic, then

|yn5(x, «)| < \yf)B(x, n)\<2n + l . Hence \A<lS(x, n)\ < (2n + l)m and
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we get

Px(3n > 0: X(n) £ A) < ^ Px(3n > 0: X(n) = y)

y€A

EG(x, y)    ,,    ,_.,-gW)  (by(2))
y€A     Ky'y>

< ^G(x,y)    (since G(y, y) > 1)

y€A

< Y,    \AnS(x,n)\-sup{G(x,y):d(x,y) = n}
n>d(x,A)

<m    ¿*2    (2n +l)-sup{G(x, y): d(x, y) = n}.
n>d(x,A)

By (3), choose N(m) so that m^2n>N{,(2n + l)-sup{G(x, y): d(x, y) = n} <

1.   D

Lemma 2. For any K c g, if infxeg Px(limsupi!_^oo(X(«) £ K)) < 1, then

supjc€g d(x,K) = oo.

Proof. By condition (1), for any y £ K and x G g,

P*(3«: X(n) £K)> Px(X(d(x, y)) = y) > (l/ôfx'y).

Thus, if supxe0^(x, K) < oo, then infx€gPx(3«: X(n) £ K) > 0 and, there-

fore, inf^P^limsup^W«) £K))=l.    D

Theorem 1. For any x £ g, í«ere are infinitely many geodesic rays yx,y2, ...

starting at x such that if i ^ j, then \yt n y.| < oo.

Proof. We construct such a family inductively. There is always one geodesic

ray starting at x (Proposition 1). Suppose y{, y2, ... ,ym£ F(x) such that if

i ^ j , then \yj n y¡\ < oo . Let dA - lj"=1 y, • By Proposition 2, it is enough

to show that there exists a geodesic ray y such that y DdA = 0. Therefore,

by the diagonal method of Proposition 1, it is enough to show that there exists

z £ g such that for all k , there exists yk£F(z ,k) so that ykndA = 0.

Let A = g \ dA and N - N(m + 2) where A^(-) is as in Lemma 1. As in the

proof of Lemma 1, J2ye9A G(x, y) < oo and so

Px ( limsup(X(K) £ dA)) = 0.

By Lemma 2, we can choose z £ A such that d(z, cM) > A7.

Suppose that there exists « such that for all y £ F(z, n), y n dA / 0. We

show that this leads to a contradiction—we show that this implies the existence

of two geodesic segments y* and y*u such that:

(a) d(z, y* \Jy*u)>N and

(b) every infinite path starting at z hits y* U y*u U dA .

By Lemma 1, condition (a) implies Pz(3j: X(j) £ y*Uy^UdA) < 1 whereas

condition (b) implies Pz(3j : X(j) £ y* U y*u U dA) = 1.
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For each y e S(z, «), choose y £ F(z, n). In addition, we choose these

geodesies so that \Jy is a tree. For any y e S(z, n), let y* = (yy(n), ... , yy(n))

where n — max{7 < «: y (j) £ dA}. Note that for any t, u £ S(z, «),

condition (a) holds. Let Z — {y £ S(z, «) : there exists an infinite path in

A, starting at z, which last hits B(z, n) at y} . Z is nonempty by choice of

N and z. For Y c Z , let C(Y) be the connected component of B(z, n) \

(dA U Uyer K) wmch contains z .

We claim that C(Z) — C({t, «}) for some t, u £ Z . If so, then condition

(b) holds for í and u. To prove this claim, it is enough to show that if t, u,

v are distinct elements of Z , then C({t, u, v}) = C({t , «'}) for some /',

u £ {t, u, v} .

Let t, u, v be distinct elements of Z , and let p, a, r be infinite paths

in A starting at z which last hit B(z, n) at /, u, v respectively. Since

dA is connected, dA is in one of the components of G \ (p U a U t) . By

planarity, without loss of generality, any path from t to dA must hit a U x.

Define p*(j) = p(j + M + 1) where M - max{/c: p(k) £ B(z, «)} . Then the

complement of dA U y* U p* contains two components, say B and C, such

that u £ B, v £ C, and, without loss of generality, z £ B. Then, any path

contained in A from z to v must hit either y* or p*. Since p*C\B(z, n) -0,

C({t,u,v}) = C({t,u}).   D

A function /: g -> R is harmonic if and only if J2y ■ yEX fW ~ d(x)f(x) for

all x. In particular, since lin\infk_too(X(k) £ A) is invariant under the Markov

shift, f(x) = Px(liminfk_toc(X(k) £ A)) = pf(x) and so / is bounded and

harmonic. We use an idea similar to one Kendall uses in the case of Brownian

motion on manifolds [3] to find a set A so that P*(liminfk_>oo(X(k) £ A)) is

nonconstant.

Theorem 2. There are nonconstant, bounded, harmonic functions on g.

Proof. Let N = N(2) where A^(-) is as in Lemma 1. Fix x € g and, by Theo-

rem 1, choose 4N rays yx, y2, ... , y4N e T(x) whose pairwise intersections are

finite. Without loss of generality, these geodesies are numbered in a clockwise

fashion (we may do this since g is planar). Let M be such that / ^ j implies

(yiC\yj)\B(x,M) = 0. Let C = yxUy2N, u = yN(M + N), v = y3N(M + N),

and A and B be the connected components of g \ C containing u and v

respectively. By Lemma 1, since d(u, C) > N and d(v, C) > N,

P" (liminf(*(K) £ A)] > P"(V;: X(j) i C) > 0
\  k—»oo /

and

Pv (limsup(*(K) £ A)\ < Pv(3j: X(j) £ C) < 1.
V   fc^oo /

By Lemma 2,

sup d(w , A) = oo .
wee
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Since, for w £ B,

Pw (liminf(X(K) £ A)\ < Pw(3j: X(j) £ C)

<2c    ^2    (2n + l)-s\xp{G(x,y): d(x,y) — n)
n>d(w ,A)

(as in the proof of Lemma 1), and since d(w, A) is unbounded,

infPw fliminf(X(«) e A)) = 0
w \  n—>oo /

and so is not constant.   □
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