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ABSTRACT

The presence of tidal charge and a cosmological constant has considerable consequences on the
spacetime geometry and its study is much important from the observational point of view. Henceforth,
we investigate their effects on particle dynamics and the shadow cast by a Randall-Sundrum
braneworld black hole with a cosmological constant. On studying the circular geodesics of timelike
particles, we have acquired the expressions of energy, angular momentum and effective potential.
We noted that the negative values of tidal charge and cosmological constant decreases the energy
of particles. In addition, the negative value of cosmological constant leads us to the stable circular
orbits, whereas its positive value destabilizes the circular orbits. Our exploration shows that the
cosmological constant diminishes the radius of the black hole shadow. In response to the dragging
effect, black hole rotation elongates its shadow toward the rotational axis. Besides, black hole spin
and positive charge distort shadow and its distortion become maximum as far as the black hole rotates
faster. We also discussed the energy emission rate by considering different cases and compared our
result with the standard Kerr black hole.
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1 Introduction

In recent years, the investigation of higher-dimensional string and M-theories got a considerable interest of many
researchers and are perhaps the aspiring approaches for the higher- dimensional gravity theories [1, 2]. They influence
the braneworld cosmological models [3, 4], where the fields of gravity enter into the spatial extra dimensions. The
existence of spatial extra dimensions can reform BH’s properties and could have bigger size as compared to the Planck
length scale (lp ∼ 10−33cm) [5], while plays a dominant role in numerous gravity theories. Among these theories,
the braneworld Randall–Sundrum (second) model is the simplest one, contains an extra spatial dimension, as well as
a negative cosmological constant [6]. As a result, such models could come up with an effective explanation of the
hierarchy problems of electroweak and quantum gravity scales, while due to the huge extra-dimensional scales they can
be of the same orders (∼ TeV). Therefore, the future experiment could be used to test the braneworld models including
the construction of hypothetical mini BHs of the TeV-energy scales [7, 8].

In the last few decades, particle dynamics around BHs have been an engaging problem in the field of astrophysics. The
geodesic structure of a BH spacetime has been widely investigated by many researchers [9, 10, 11, 12]. As they are
of great interest and could convey the eminent information and reveals the prolific structure of background geometry.
Among various kinds of geodesics, the circular one is much engaging. They are very useful for the understanding
and explaining of a BH’s quasinormal modes (QNMs) [13]. By considering the non-zero cosmological constant the
photon escape cone were successfully determined [14]. Pugliese et al. [15, 16] by examining the Reissner-Nordström
BHs conclude that the circular orbit will exist, even if the angular momentum is zero. Shaymatov et al. [17] explored
particle dynamics around a spinning BH in the Randall-Sundrum brane with a cosmological constant. It is concluded
that the Randall–Sundrum braneworld spacetimes can be stable against perturbations [18]. Recently, Khan et al [19, 20]
examined the motion of geodesics in the background of braneworld Kerr and a dyonic charged spacetimes, while a
detailed study on the cosmic repulsion and external magnetic fields on accretion disks near spinning BHs could be
found in [21]. Deng [22] explored the periodic orbits near a braneworld BH under the influence of tidal charge.

The shadow of a BH appears to be a dark region in the sky, which was for the first time introduced by Bardeen
for the Kerr BH [23]. His finding summarizes that over a background light source the radius of a BH shadow is
rshadow = 5.2M. On investigating spinning BHs many researchers found that they cast shadows of almost the same size
[24, 25, 26, 27, 28]. The theoretical exploration of a BH shadow could be described by the photons orbit and-or null
geodesics. The shadows of spherically symmetric non-rotating BHs appeared to be circular, whereas the shadows of
rotating BHs appeared in deformed shape [29]. In recent years, the astrophysical advances attract many researchers to
explore BH shadows [30, 31, 32, 33]. It is accepted that in the very near future BH shadows can directly be investigated
[34, 35, 36, 37]. As a result, the exploration of BH’s shadow would be a rewarding technique to understand the
astrophysical BHs and to compare the general theory of relativity with modern theories [38]. Khan and Ren [39]
deduced that shadow radius increases with the increase of quintessence parameter, while the charge and spin parameters
result in distortion of the BH shadow. The shadow of braneworld BH is investigated under the influence of the brane
parameter [40]. Recently with the help of Event Horizon Telescope (EHT), scientists have successfully obtained
the supermassive BH’s image at the middle of the M87 galaxy [41, 42, 43]. On considering the Randall-Sundrum
braneworld BH, it is shown that the observation of M87*’s dark shadow sets the limit `. 170AU (where ` denote the
AdS5 curvature radius) [44]. Such solid evidence about the existence of supermassive BHs exposes new ways to the
exploration of BHs.

This article explores the circular geodesic motion around a rotating braneworld BH with a cosmological constant and its
shadow. In section 2, we will briefly review the said BH and the structure of its horizons. By considering the timelike
geodesics we will discuss energy, angular momentum and the effective potential of particles in section 3. Section 4 will
provide a thorough discussion of the shadow and energy emission of the said BH. In the last section, we will thorough
discuss and summarize our obtained results.

2 Rotating braneworld black hole with a cosmological constant

This section aimed to investigate the rotating braneworld black hole with a cosmological constant, obtained by Neves
and Molina [40]. The spacetime metric of the said BH in Boyer-Lindquist coordinates (t,r,φ ,θ), simplifies to

ds2 = − 1
ρ2 (∆r−∆θ a2 sin2

θ)dt2− 2a
Ξρ2 [(a

2 + r2)∆θ −∆r]sin2
θdφdt +

ρ2

∆θ

dθ
2 +

ρ2

∆r
dr2 +

1
Ξ2ρ2 [(a

2 + r2)2
∆θ −∆ra2 sin2

θ ]sin2
θdφ

2, (1)
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Figure 1: The radial profile of BH horizons in the upper row at q = 0.4 (left) and a = 0.4 (right), while the lower row is
plotted for q =−0.5 (left) and q = 0.5 (right).

with

∆r = (a2 + r2)

(
1− r2

3
Λ4D

)
−2Mr+q, Ξ = 1+

a2

3
Λ4D,

ρ
2 = r2 +a2 cos2

θ , ∆θ = 1+
a2

3
Λ4D cos2

θ .

Here M, q and a, respectively denote mass, tidal charge and spin parameter of the BH, while Λ4D is the four-dimensional
brane cosmological constant. The above model (1), simplifies to the KN spacetime by letting Λ4D = 0 and replacing q
by Q2 (representing electric charge of the KN BH). Model (1), reduces to the RN BH if Λ4D = a = 0; to the Kerr BH
[45] if Λ4D = q = 0; and finally to the Schwarzschild BH [46] by letting Λ4D = a = q = 0. The horizons of metric (1),
can be obtained from the solution of ∆r = 0, as

(a2 + r2)

(
1− r2

3
Λ4D

)
−2Mr+q = 0. (2)

On the other hand, the ergosphere can be obtained by letting gtt = 0, as

a2 sin2
θ∆θ −∆r = 0, (3)

which represents the boundary of static limit surface (SLS), while in the absence of cosmological constant, the SLS
takes the form

rSLS± = M±
√

M2−a2 cos2 θ −q. (4)
The above Eq. (4), shows that besides other parameters the SLS also depends on θ . The numerical exploration of the
event horizon and SLS vs the radial distance r is described in Figs. 1 and 2. We noted that in case of fast-rotating BH the
area of event horizons get reduced. The negative value of tidal charge increases the event horizons as well as SLS, while
it’s positive value results in a decrease of the SLS and event horizon. On the other hand, Λ4D < 0 diminishing the event
horizon, whereas Λ4D > 0 contributes to the area of the event horizon. Moreover, the positive value of cosmological
constant increase the SLS and Λ4D < 0 results in a decrease of the SLS.
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Figure 2: The radial profile of SLS in the upper row at θ = π/2, while in the lower row at θ = π/4.

3 Circular geodesics

Test particle motion around a Randall-Sundrum braneworld BH with a cosmological constant could be outlined using
the Lagrangian equation by

L =
1
2

gµν ẋµ ẋν , (5)

in the above equation, dot represents derivative with respect to the proper time (τ) where ẋµ = dxµ/dτ , while xµ

stands for the corresponding four velocities of particle. Using BH symmetry on the equatorial plane, we can define the
following conserved quantities

−E = −ut = gtt ṫ +gtφ φ̇ , (6)

Lz = uφ = gtφ ṫ +gφφ φ̇ . (7)

Here E and L, respectively represent the total energy and angular momentum of particles. On solving the above two
equation for timelike geodesics (uµ uµ =−1), we can obtain

dt
dτ

= − 1
r2

[
a(aE −ΞL)− (a2 + r2)

∆r

(
(a2 + r2)E −ΞaL

)]
, (8)

dφ

dτ
= − 1

r2 [(aE −ΞL)− a
∆r

(
(a2 + r2)E −ΞaL)

]
. (9)

Hence, the equations of motion for a particle take the form [17]

ṙ2 =

(
dr
dτ

)2

=
1
r4

[(
(a2 + r2)E −ΞaL

)2−∆r
(
r2 +(ΞL−aE )2)] . (10)

By considering the special case of aE = ΞL, Eq. (10) simplifies to

ṙ2 = E 2− ∆r

r2 . (11)

4
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On integrating with respect to r, the above equation reduces to

τ =
∫ (

E 2− ∆r

r2

)− 1
2

dr. (12)

Next, we are interested in a general case where ΞL 6= aE , therefore, by substituting x = ΞL−aE in Eq. (10), we get

F (r) = r4ṙ2 = (a2−∆r)x2−2ar2E x+ r4E 2− r2
∆r. (13)

On taking derivative with respect to r, Eq. (13) takes the form

F ′(r) =−∆
′
rx

2−4arE x+4r3E 2−2r∆r− r2
∆
′
r. (14)

On substituting both F (r) and F ′(r) equal to zero and then by equating them, we can obtain

r4E 2− r3∆′r
2

+

(
∆r−a2− r∆′r

2

)
x2 = 0. (15)

E =
1

ar2x

((
r∆′r
4

+a2−∆r

)
x2− r2∆r

2
+

r3∆′r
4

)
. (16)

The elimination of E , from the above two equations, leads us to the following quadratic equation in x2

Ax4 +Bx2 +C = 0. (17)

Here

A = 4
(

r∆′r
4

+a2−∆r

)2

+a2(4∆r−2r∆
′
r−4a2),

B = (4a2 + r∆
′
r−4∆r)

(
r3∆′r

2
− r2

∆r

)
−2a2r3

∆
′
r,

C =

(
r3∆′r

2
− r2

∆r

)2

.

Solving Eq. (17) for x2, result in

x2 =
−B±

√
D

2A
, (18)

with

D = 16a2r4
∆

2
r

(
a2 +

r∆′r
2
−∆r

)
. (19)

Consequently, the solution of Eq. (17), can be acquired as

x =
−r√
Z∓

(
a±
√

r∆′r
2

+a2−∆r

)
, (20)

in which

Z∓ = 2(∆r−
r∆′r
4
−a2)∓a

√
2r∆′r−4(∆r−a2). (21)

The upper and lower signs respectively correspond to the counter-rotating and co-rotating orbits. Substituting the value
of x into Eq. (15), the energy of the circular orbit, can be obtained as

E =
1

r
√

Z ∓

(
∆r−a2∓a

√
r∆′r
2

+a2−∆r

)
. (22)

By utilizing the above equation, the corresponding angular momentum simplifies to

L =
1

r
√

Z ∓

(
a(∆r− r2−a2)∓ (r2 +a2)

√
r∆′r
2

+a2−∆r

)
. (23)

5
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Figure 3: Radial profile of the circular orbit’s energy E , left for prograde and right for retrogade particles at a = 0.4 and
Λ4D = 0.0001 (top row), while at a = 0.4 and q = 0.3 (bottom row).

The above Eqs. (22) and (23), respectively describe the energy and angular momentum of a particle’s circular orbit,
while the test particle’s angular velocity can be defined as

Ω∓ =
dφ

dt
=
∓
√

r∆′r
2 +a2−∆r

r2∓a
√

r∆′r
2 +a2−∆r

. (24)

In Eq. (24), the upper and lower signs respectively correspond to the counter-rotating and co-rotating orbits. Using Eqs.
(22) and (23), one can find two reality conditions on the existence of circular orbits. The first reality condition could be
expressed as

Y ≤ Ys ≡
r−4

2
(−2q+2r) . (25)

In which Y = M2Λ4D/3 and for simplicity, we take M = 1. Eq. (25), initiate the concept of "static radius" which can
be acquired from

−2q+2r = 2r4Y , (26)
while the second condition on the existence of circular orbits takes the form

2(∆r−
r∆′r
4
−a2)∓a

√
2r∆′r−4(∆r−a2)≥ 0. (27)

The radii of photon orbits can be obtained by considering the equality of Eq. (27). The radial profile of energy and
angular momentum of the circular orbits near a braneworld BH with a cosmological constant is shown in Figs. 3 and 4.
The innermost stable circular orbits can be determined by minima of the radial profile. Graph describes the affected
behaviour of E , under the influence of tidal charge q and a cosmological constant Λ4D. From where we conclude
that q < 0 contribute to the energy, while q > 0 diminishing the radial profile of E for both prograde and retrograde
particles. Similar behaviour is observed for the cosmological constant where Λ4D < 0 increase the energy, shown by
the grey dashed-dotted curves in Fig. 3, while Λ4D > 0 results in a decrease of E for both prograde and retrograde
orbits. Besides, we observed that in case of q < 0, the angular momentum increases for direct orbit, while a decrease

6
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Figure 4: Radial profile of the circular orbit’s angular momentum, left for prograde and right for retrogade particles at
a = 0.4 and Λ4D = 0.0001 (top row), while at a = q = 0.4 (bottom row).

in the case of indirect orbits and similar behaviour of the angular momentum is obtained for Λ4D < 0. On the other
hand, the negative value of Λ4D contributes to the stability of stable orbits (L > 0), while destabilizes it in the case
of counter-rotating particles (L < 0). Furthermore, the positive value of Λ4D diminishing the angular momentum of
prograde orbit and increase it in the case of retrograde particles motion at a larger radial distance r.

3.1 Effective potential

The concept of effective potential (Ue f f ) is very important in BH physics, as it can be used to determine the range
of angular momentum and to discuss the stability of circular orbits. The stable and unstable circular orbits can be
acquired with the help of maximum and minimum values of Ue f f , respectively. The radial Eq. (10), for ΞL 6= aE , can
be expressed as

1
2

ṙ2 +Ue f f (r) = 0.

Hence, for the timelike particle along geodesics, Ue f f takes the form

Ue f f =
1

2r4

(
∆r
(
r2 +(ΞL−aE )2)− ((a2 + r2)E −ΞaL

)2
)
. (28)

The initial radial acceleration, as well as the radial velocity, should be vanished for a particle in the circular orbits, i.e.,

∂Ue f f

∂ r
= 0, Ue f f = 0.

In case of the stable circular orbit, the effective potential should be minimum

∂ 2Ue f f

∂ r2 > 0.

The radial dependence of Ue f f for the test particle motion around a rotating braneworld BH with a cosmological

7
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constant is plotted in Figs. 5 and 6. The graphical behaviour shows that the negative value of cosmological constant
results in stabilizing the circular orbits. On the other hand, it can clearly be observed that Λ4D > 0, leads us to the
unstable circular orbits. Whereas, the variation of angular momentum shows that grater value of L ends up with unstable
circular orbits. The graph shows that L increases the instability of circular orbits and the orbits attain its maximum
values Ue f f ≈−0.01,0.20,0.46,0.74, at L = 3,4,5,6, respectively near r = 2. Moreover, at a smaller value of L, Ue f f
is stable but becomes unstable at a larger radial distance r. BH spin appears to increase the stability of circular orbits
but in the presence of a cosmological effect, the stable orbits become unstable at a larger radial distance r Fig. 6 (right).

4 Shadow

In general, BH’s shadow could be described as the boundary of photon capture and scattering orbits [47]. Since an
observer at a special infinity can distinguish the shadow of a BH over a bright background, as a dark region. In the
case of stationary BHs, the shadow appeared to be a perfect circular disc, whereas BH rotation cause distortion to the
shadow of rotational BHs. On considering null geodesics and by following the Hamiltonian-Jacobi approach, the radial
and azimuthal components of the geodesics equation can be obtained as [38]

R(r) =
(
(a2 + r2)E −ΞaLz

)2−∆r
(
(aE −L)2 +O

)
, (29)

Θ(θ) = −
(
aE sin2

θ −ΞL
)2

csc2
θ −∆θ

(
(aE −L)2 +O

)
. (30)

Here O = K − (aE −L)2, denotes Carter’s constant of separation. The above equations describe photon orbits of a
spinning braneworld black hole with a cosmological constant. In principle, they depend on two impact parameters
described in terms of constant of motion E and L, as ξ = L/E and η = O/E 2 [47]. In the case of photons, there exist
three types of geodesics called scattering, spherical and plumbing orbits; and in terms of ξ and η the radial Eq. (29),
could be expressed as

R(r) =
1

E 2

[(
(a2 + r2)−Ξaξ

)2−∆r
(
(a−ξ )2 +η

)]
. (31)

The effective potential of photons can be obtained from Eq. (31). As a result, the circular unstable and critical orbits
could be acquired using the maximum effective potential, obeying the following conditions

R(r) = 0 =
∂R(r)

∂ r
. (32)

Let us suppose that both observer and photons are situated at a special infinity. Henceforth, using the constraints in Eq.
(32), we can calculate the celestial coordinates (ξ , η) as

ξ =
1

a(a2Λ4D +3)(r (a2Λ4D +2r2Λ4D−3)+3M)

×[9a2(M+ r)+3a2 (a2 + r2)rΛ4D +9r(r(r−3M)+2q)], (33)

η =
1

a2 (a2Λ4D +3)2 (r (a2Λ4D +2r2Λ4D−3)+3M)2 [−81r2(4a2(q−Mr)

+(r(r−3M)+2q)2)+54a2r(2a4(M+ r)− r3(r(3M+ r)−2q)

+a2 (−3M2r+2M
(
q−2r2)+2qr+3r3))Λ4D +9a4(a4(−M2 +2Mr

+7r2)+8a2r2(r(r−2M)+q)+ r4(8q− r(12M+5r)))Λ2
4D−6a6r(

a4(M− r)+a2r2(2M+ r)+4r5
)

Λ
3
4D−a8r2 (a2 +2r2)2

Λ
4
4D]. (34)

On substituting q = Λ4D = 0, the Eqs. (33) and (34), exactly reduces to the case of Kerr BH

ξ =
a2(r+M)+ r2(r−3M)

a(M− r)
, (35)

η =−
r3
(
r(r−3M)2−4a2M

)
a2(M− r)2 . (36)

The aforementioned impact parameters are essential, as they determine the shadow boundary. The shape of shadow cast
by a BH could be ideally visualize using celestial coordinates and can be described as [25, 47]

α = lim
r0→∞

(
−r2

0 sinϑ
dφ

dr

)
, (37)

β = lim
r0→∞

(
r2

0
dφ

dr

)
. (38)
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Figure 7: Shadow cast by a rotating braneworld BH with a cosmological constant at q =−0.35 left, while at q = 0.35
right panel.

In Eqs. (37) and (38), r0 shows the distance from an observer to the BH, whereas θ represents the angle of inclination
between observer’s line of sight and BH rotational axis. Using geodesics equations, the above celestial coordinates
takes the form

α =−ξ cscϑ , (39)

β =±
√

η +a2 cos2 ϑ −ξ 2 cot2 ϑ . (40)

On considering the equatorial plane (θ = π/2), Eqs. (39) and (40) simplifies to

α =−ξ , (41)
β =±

√
η . (42)

The numerical investigation of shadow cast by a braneworld BH with a cosmological constant under the influence
of spacetime parameters is plotted in Figs. 7, 8 and 9. The graphical illustration shows that negative value of the
cosmological constant increase the radius of BH shadow, whereas its positive value results in a decrease of the shadow
radius. Similar behaviour of the apparent shadow is observed for the tidal charge q of the BH. Moreover, our finding
shows that in response to the dragging effect, BH’s rotation elongates its image towards the rotational axis, which
coincides with the earlier findings [48, 49]. While both BH rotation and positive tidal charge distorts BH shadow and
its distortion becomes maximum in case of faster rotating BHs. Fig. 9 demonstrate the apparent shape of BH shadow at
different values of the inclination angle θ .

4.1 Observables

In order to illustrate the apparent shape of a rotating braneworld BH with a cosmological constant, we introduce
two observables, Rs (shadow radius) and δs (distortion parameter) [25]. The shadow radius Rs is approximated by a
reference circle’s radius that passes through three points on shadow’s boundary, while on the other hand δs outlines the
deviation of shadow from the circle. Henceforth, Rs and δs can be described by the following expressions

Rs =
(αt −αr)

2 +β 2
t

2 | αt −αr |
, δs =

| α̃l−αl |
Rs

. (43)

Here (αt ,βt) and (αr,βr), respectively represent the topmost and rightmost points where the reference circle cut the
shadow. On the other hand (αl ,0) and (α̃l ,0), respectively denotes the locations, at which the shadow and reference
circle meets the leftmost α axes.
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Figure 8: Shadow of the said BH, in the top row at q = 0 (left) and q = 0.36 (right), whereas in the bottom row left
channel is plotted for Λ4D =−0.01 and the right one is for Λ4D = 0.01.
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Figure 9: Shadow cast for different values of the inclination angles θ , at Λ4D = 0.01 (left) and Λ4D =−0.015 (right).

4.2 Energy Emission

According to our assumption, for a distant observer at infinity BH’s shadow reaches the high energy absorption
cross-section of the BH [50, 54]. In case of a spherical symmetric BH, the limiting constant value of the absorption
cross-section can be defined as

σilm ≈ πR2
s .

Thus the energy emission rate can be computed by making use of the limiting constant value as,

d2E(w)
dwdt

=
2π2R2

s

expw/T−1 . (44)

Here w denote photon’s frequency, while T is the Hawking temperature of the BH at the event horizon, which can be
defined as

T (r+) = lim
θ→0,r→r+

∂ r
√

gtt

2π
√

grr
(45)

= −
3a2M+3r+(q−Mr+)+ r+

(
a2 + r2

+

)2
Λ4D

6π
(
a2 + r2

+

)2 . (46)

In the above equation, r+ denotes the event horizon. The Figs. 10 and 11, describe graphical illustration of the energy
emission rate of rotating braneworld BH both with and without a cosmological constant. The graphical behaviour
reflects that positive value of the cosmological constant diminishing the rate of energy emission, whereas its negative
value results in an increase of the energy emission. On the other hand, both BH spin and brane parameter considerable
decreases the rate of energy emission in the presence, as well as in the absence of a cosmological constant. Moreover,
we observed that both static and chargeless BHs have more energy emission rate in comparison with spinning and
charged BHs.

5 Conclusion

In this article, we have studied the circular geodesics and shadow cast by a rotating BH in Randall-Sundrum brane with
a cosmological constant. In fact, our primary goal was to establish a theoretical exploration for the possible optical
properties of the said BH, that can be used for the future observational investigation, especially for the upcoming EHT
observations. We revisited the spacetime geometry of a 4-dimensional braneworld BH with a cosmological constant
and explored the structure of its horizons under the influence of spacetime parameters. It is observed that as far as
the BH rotates faster the area of its event horizons become smaller. The negative value of tidal charge increases the
event horizons as well as SLS, while its positive value results in a decrease of the SLS and event horizon. On the other
hand, Λ4D > 0 diminishing the event horizon whereas Λ4D > 0 contributes to the area of the event horizon. Besides, the
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Figure 10: The plotted behaviour of energy emission in the upper row at a = q = 0 left panel and a = q = 0.5 right
panel. The lower row left panel is plotted for q = 0.5, while the right one is for a = 0.6.
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Figure 11: The plotted behavior of energy emission rate for Λ = 0, at q = 0.5 left panel and at a = 0.6 right panel.
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positive value of Λ4D0 increases the SLS. Furthermore, in comparison with the standard Kerr BH, the braneworld BH
with a cosmological constant have a larger area of the event horizon.

To have information on the circular motion, we have considered the timelike geodesics and calculated the expressions
for energy, angular momentum and effective potential of particles. From the numerical investigation, we have observed
that Λ4D < 0 increases the energy, while Λ4D > 0 diminishing the energy of both co-rotating and counter-rotating
particles. In addition, the circular orbits have more energy in the absence of a cosmological constant as compared to
the circular orbits with a positive cosmological constant. Our result in the absence of cosmological constant shows
considerable resemblance with the acquired results of the regular rotating BH [52]. We have observed that Λ4D < 0
results in stabilizing the circular orbits, while Λ4D > 0, leads us to the unstable circular orbits. Our findings describe
that L increases the instability of circular orbits and attains its maximum values Ue f f ≈ −0.01,0.20,0.46,0.74, at
L = 3,4,5,6, respectively near r = 2. For the variation of L, the shape of Ue f f is analogous to the results of rotating
Ayón-Beato-García BHs [53]. Moreover, for the smaller value of L, Ue f f is stable but becomes unstable at a larger
distance r. BH spin appears to increase the stability of circular orbits but in the presence of a cosmological effect, the
stable orbits become unstable at a larger radial distance r.

By making use of the Hamiltonian-Jacobi approach, we have obtained the mathematical expressions of celestial
coordinates for the shadow cast by a rotating BH in Randall-Sundrum brane with a cosmological constant. On
substituting q = Λ4D = 0, the celestial coordinates reduce to the case of Kerr BH, which validates our analytical
expressions [54]. Besides, the BH spin our aim was to explore the effects of tidal charge and cosmological constant on
BH’s shadow. From the numerical investigation, we have observed that in response to the dragging effect, BH’s rotation
elongates its image toward the rotational axis. While the negative value of tidal charge and cosmological constant
contributes to the shadow area, which is consistent with the exploration of Oliveira [55]. On the other hand, their
positive values result in diminishing the shadow radius analogously to the findings of Banerjee et. al [56]. Interestingly,
effects of the cosmological constant are indistinguishable to the effect of quintessence parameter on BH’s shadow
presented in our earlier work [39]. We have also shown that at different inclination angles observer observes disparate
shapes of the BH shadow.

Furthermore, our numerical investigation reflects that the positive value of Λ4D behaves like the deviation parameter
[57] and results in diminishing the rate of energy emission, while its negative value contributes to the energy emission.
Besides, both BH spin and tidal charge considerably decrease the rate of energy emission. In addition, we noted that
both static, as well as chargeless BHs, have grater energy emission rate in comparison with spinning and charged BHs
(see Figs. 10 and 11).
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