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Abstract: Recently, the current authors have formulated and extensively explored a rather novel
Painlevé–Gullstrand variant of the slow-rotation Lense–Thirring spacetime, a variant which has
particularly elegant features—including unit lapse, intrinsically flat spatial 3-slices, and a separable
Klein–Gordon equation (wave operator). This spacetime also possesses a non-trivial Killing tensor,
implying separability of the Hamilton–Jacobi equation, the existence of a Carter constant, and
complete formal integrability of the geodesic equations. Herein, we investigate the geodesics in some
detail, in the general situation demonstrating the occurrence of “ultra-elliptic” integrals. Only in
certain special cases can the complete geodesic integrability be explicitly cast in terms of elementary
functions. The model is potentially of astrophysical interest both in the asymptotic large-distance
limit and as an example of a “black hole mimic”, a controlled deformation of the Kerr spacetime that
can be contrasted with ongoing astronomical observations.

Keywords: Painlevé–Gullstrand metrics; Lense–Thirring metric; Killing tensor; Carter constant;
integrability; geodesics

1. Introduction

Recently, the current authors have introduced and extensively explored a specific
new variant of the slow-rotation Lense–Thirring spacetime [1,2], described by the explicit
line element

ds2 = −dt2 +

{
dr +

√
2m
r

dt

}2

+ r2

{
dθ2 + sin2 θ

(
dφ− 2J

r3 dt
)2
}

. (1)

We shall now extend the physical and mathematical analysis of this spacetime, paying
particular attention to the geodesics. We first unavoidably need to provide a brief summary
of the key results derived in references [1,2].

In this variant of the Lense–Thirring spacetime the metric possesses both unit lapse [3],
and also exhibits a flat spatial 3-metric. That is, the spacetime metric is presented in so-
called Painlevé–Gullstrand form [4–7], (sometimes called Gullstrand–Painlevé form [8]),
with a relatively simple globally defined tetrad [1,2]. (For a textbook-level physically
motivated discussion of the tetrad formalism see, for instance, reference [9].) These purely
mathematical observations make this spacetime of particular theoretical interest [10,11].
We point out that, while the nomenclature “lapse function” is borrowed from the ADM
foliation formalism [12,13], beyond this purely kinematic adaptation of the terminology, no
direct use of the ADM formalism is made in this article.

We emphasize that there is no Birkhoff-like theorem for axisymmetric spacetimes in
(3 + 1) dimensions [14–19]. The Kerr solution need not, (and typically will not), perfectly
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model rotating horizonless astrophysical sources, such as stars and planets, due to the
nontrivial mass multipole moments that such objects typically possess. Instead, the Kerr
solution will only model the gravitational field in the asymptotic large-distance regime,
a region where the Lense–Thirring spacetime serves as a perfectly valid approximation to
Kerr. For a historical background on the Lense–Thirring spacetime, see references [20–22].
For a historical background on the Kerr spacetime, see references [23–26]. For a selection
of textbook discussions of the Kerr spacetime, see references [9,27–33]. For a selection
of expository articles on the Kerr spacetime, see references [8,34–38]. Given that this
variant of the Lense–Thirring metric is a valid approximation for the gravitational fields of
rotating stars and planets in the same regime that the Kerr solution is appropriate, there is
a compelling physics argument to use the Painlevé–Gullstrand form of Lense–Thirring to
model various astrophysically interesting cases [39–45].

From a purely theoretical perspective, the Lense–Thirring metric is algebraically much
simpler than the Kerr metric, making most calculations significantly easier to conduct,
and the Lense–Thirring metric can be recast into Painlevé–Gullstrand form, while the Kerr
metric cannot [46–49]. This spacetime exhibits a separable Klein–Gordon equation (wave
operator) [2] and also possesses a non-trivial Killing tensor, thereby implying separability
and complete (formal) integrability of the Hamilton–Jacobi equations for geodesic mo-
tion [2]. Below, we shall discuss two particularly interesting classes of geodesics; the generic
case involving ultra-elliptic integrals, and the case of vanishing Carter constant where the
analysis can be completely performed in terms of elementary functions. This should be
compared to what can and cannot be performed for the usual Kerr spacetime [50–67].

Observationally, apart from its interest in the large-distance asymptotic regime, this
Lense–Thirring variant may also be viewed as a “black hole mimic” that can be contrasted
with ongoing astronomical observations of various black hole candidates [39,68–72].

We note that a competing slow-rotation model has recently been discussed in refer-
ences [73,74]. The trade-off made therein was to improve the integrability properties (the
“hidden symmetries”) at the cost of sacrificing the global Painlevé–Gullstrand form of
the metric.

2. Killing Tensor and Carter constant

Based on the algorithm presented in two recent papers by Papadopoulos and Kokko-
tas [75,76], which are, in turn, based on considerably older results by Benenti and Francav-
iglia [77], in reference [2] we found the non-trivial Killing tensor:

Kab dxa dxb = r4

{
dθ2 + sin2 θ

(
dφ− 2J

r3 dt
)2
}

. (2)

Explicitly, we wrote the metric as [1,2]:

gab =


−1 + 2m

r + 4J2 sin2 θ
r4

√
2m
r 0 − 2J sin2 θ

r√
2m
r 1 0 0

0 0 r2 0

− 2J sin2 θ
r 0 0 r2 sin2 θ


ab

. (3)

Then det(gab) = −r4 sin2 θ, and for the inverse metric we have [1,2]:

gab =


−1

√
2m
r 0 − 2J

r3√
2m
r 1− 2m

r 0
√

2m
r

2J
r3

0 0 1
r2 0

− 2J
r3

√
2m
r

2J
r3 0 1

r2 sin2 θ
− 4J2

r6



ab

. (4)
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The (contravariant) non-trivial Killing tensor is [2]:

Kab =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

sin2 θ


ab

. (5)

Following the analysis of reference [2], the corresponding covariant form of the Killing
tensor, Kab = gac Kcd gdb, is then explicitly given by:

Kab =


4J2 sin2 θ

r2 0 0 −2Jr sin2 θ

0 0 0 0
0 0 r4 0

−2Jr sin2 θ 0 0 r4 sin2 θ


ab

. (6)

One can easily explicitly check (e.g., Maple) that ∇(cKab) = K(ab;c) = 0.
For any affine parameter λ, the (generalized) Carter constant is now [2]:

C = Kab
dxa

dλ

dxb

dλ
= r4

[(
dθ

dλ

)2
+ sin2 θ

(
dφ

dλ
− 2J

r3
dt
dλ

)2
]

. (7)

Without any loss of generality we may choose λ be future-directed, (so dλ/dt > 0).
Note that by construction, since it is a sum of squares, C ≥ 0. (For additional recent
discussion on general Killing tensors see [78,79].)

3. Conservation Laws
3.1. Four Conserved Quantities

In addition to the Carter constant (7), in this spacetime geometry we have three other
conserved quantities [2]. Two of these come from the time-translation and axial Killing
vectors, ξa = (1; 0, 0, 0)a and ψa = (0; 0, 0, 1)a, respectively: These two conserved quantities
are the energy

E = −ξa
dxa

dλ
=

(
1− 2m

r
− 4J2 sin2 θ

r4

)
dt
dλ
−
√

2m
r

dr
dλ

+
2J sin2 θ

r
dφ

dλ
; (8)

and the azimuthal component of angular momentum

L = ψa
dxa

dλ
= r2 sin2 θ

dφ

dλ
− 2J sin2 θ

r
dt
dλ

. (9)

The final conserved quantity, ε, is the “mass-shell constraint”, with ε ∈ {0,−1} for
null and timelike geodesics, respectively. This mass-shell constraint comes from the trivial
Killing tensor (the metric gab):

ε = gab
dxa

dλ

dxb

dλ
=−

(
dt
dλ

)2
+

(
dr
dλ

+

√
2m
r

dt
dλ

)2

+ r2

[(
dθ

dλ

)2
+ sin2 θ

(
dφ

dλ
− 2J

r3
dt
dλ

)2
]

.

(10)

3.2. Simplified Conservation Laws

We can greatly simplify these four conserved quantities by rewriting them as [2]:

L = r2 sin2 θ

(
dφ

dλ
− 2J

r3
dt
dλ

)
; (11)
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C = r4
(

dθ

dλ

)2
+

L2

sin2 θ
; (12)

ε = −
(

dt
dλ

)2
+

(
dr
dλ

+

√
2m
r

dt
dλ

)2

+
C
r2 ; (13)

E =

(
1− 2m

r

)
dt
dλ
−
√

2m
r

dr
dλ

+
2J
r3 L . (14)

Notice that, by construction, C ≥ L2 ≥ 0, and that (dt/dλ)2 + ε ≥ 0.
If ε = 0 then, without loss of generality, we can rescale the affine parameter λ to set

one of the constants {C, E, L} → 1. It is perhaps most intuitive to set E→ 1.
In contrast if ε = −1 then λ = τ is the proper time and there is no further freedom to

rescale the affine parameter. E then has real physical meaning and the qualitative behaviour
is governed by the sign of E2 + ε. Concretely, at least in the case of Carter constant zero,
one asks:

• Is E < 1? (Bound orbits);
• Is E = 1? (Marginal orbits);
• Or is E > 1? (Unbound orbits).

3.3. Forbidden Declination Range

The form of the Carter constant, Equation (12), since it is a positive semi-definite sum
of squares, implicitly gives a range of forbidden declination angles for any given, non-zero
values of C and L. We require that dθ/dλ be real, and from Equation (12) this implies the
following requirement:(

r2 dθ

dλ

)2
= C − L2

sin2 θ
≥ 0 =⇒ sin2 θ ≥ L2

C . (15)

Then, provided C ≥ L2, which is automatic in view of (12), we can define a critical
angle θ∗ ∈ [0, π/2] by setting

θ∗ = sin−1(|L|/
√
C) . (16)

Then, the allowed range for θ is the equatorial band:

θ ∈
[
θ∗, π − θ∗

]
. (17)

• For L2 = C we have θ = π/2; the motion is restricted to the equatorial plane;
• For L = 0 with C > 0 the range of θ is a priori unconstrained; θ ∈ [0, π];
• For L = 0 with C = 0 the declination is fixed, θ(λ) = θ0, and the motion is restricted

to a constant declination conical surface.

This completes the qualitative assessment of the geodesics, and we can now turn to a
more detailed quantitative analysis.

4. General Geodesics—Explicit Quantitative Analysis

Using Equations (11)–(14), we can explicitly and analytically solve for the four un-
known functions dt/dλ, dr/dλ, dθ/dλ and dφ/dλ as explicit functions of r and θ, param-
eterized by the four conserved quantities C, E, L, and ε, as well as the quantities m and J
characterizing mass and angular momentum of the central object.

In solving for these unknown functions, one encounters three independent sign choices.
(Note dt/dλ is always taken to be positive.) Consequently, it is useful to define the
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following quantities (the subsequent physical interpretations are chosen from context for
each equation):

Sr =

{
+1 outgoing geodesic
−1 ingoing geodesic

; (18)

Sθ =

{
+1 increasing declination geodesic
−1 decreasing declination geodesic

; (19)

Sφ =

{
+1 prograde geodesic
−1 retrograde geodesic

. (20)

4.1. Trajectories

For the geodesic trajectories we find the four equations:

dr
dλ

= Sr

√
X(r) ; (21)

dt
dλ

=
E− 2JL/r3 + Sr

√
(2m/r)X(r)

(1− 2m/r)
; (22)

dθ

dλ
= Sθ

√
C − L2/ sin2 θ

r2 ; (23)

dφ

dλ
=

L
r2 sin2 θ

+ 2J
E− 2JL/r3 + Sφ

√
(2m/r)X(r)

r3(1− 2m/r)
. (24)

Here, X(r) is the sextic Laurent polynomial

X(r) =
(

E− 2JL
r3

)2
−
(

1− 2m
r

)(
−ε +

C
r2

)
. (25)

We note
lim
r→∞

X(r) = E2 + ε . (26)

In terms of the roots of this polynomial in the generic case, we can write

X(r) =
E2 + ε

r6

6

∏
i=1

(r− ri) . (27)

In the special case E2 + ε = 0, corresponding to a marginally bound timelike geodesic,
the sextic degenerates to a quintic

X(r) =
2m
r5

5

∏
i=1

(r− ri) . (28)

Qualitatively, the radial motion can be bounded (if one is trapped between two real
roots), or diverge to spatial infinity (if one is trapped above the outermost real root), or be a
plunge to r = 0 (if one is trapped below the innermost positive real root). In the immediate
vicinity of any real root ri the behaviour will depend on the multiplicity mi of that root.
Approximately, one has

dr
dλ
≈ ±2Ki

√
|r− ri|mi . (29)

If the root is multiplicity 1, (the generic situation) one has a “bounce” at the turning
point (perinegricon or aponegricon—periapsis or apoapsis) at some finite value of the
affine parameter:

|r− ri| ≈ K2
i (λ− λ0)

2 . (30)
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If the root is multiplicity 2, (a somewhat rarer situation), one has an exponential
approach to the root:

|r− ri| ≈ Ci exp(±2Ki λ). (31)

If the root is multiplicity 3 or higher, (an unusual situation; for instance take ε → 0
and C → 0), one has a very slow polynomial approach to the root as |λ| → ∞:

|r− ri| ≈
∣∣∣Ki(mi − 2)(λ− λ0)

∣∣∣ 2
2−mi . (32)

4.2. Integrating the Affine Parameter

From Equation (21), we find

λ(r) = λ0 + Sr

∫ r

r0

dr̄√
X(r̄)

= λ0 +
∫ r

r0

|dr̄|√
X(r̄)

. (33)

This can also be re-expressed as follows:

• Outgoing geodesic =⇒ Sr = +1 ∩ r0 < r, hence λ(r) = λ0 +
∫ r

r0
dr̄√
X(r̄)

;

• Ingoing geodesic =⇒ Sr = −1 ∩ r0 > r, hence λ(r) = λ0 +
∫ r0

r
dr̄√
X(r̄)

.

Integrals of this type are known as ultra-elliptic integrals [80,81], and date back (at
least) to work by Weierstrass and Kovalevskaya in the second half of the 19th century.

If X(r) were to be cubic or quartic, this would be an ordinary elliptic integral [82].
If X(r) is quintic or sextic, as above, this is an ultra-elliptic integral. More generally,
for polynomials of arbitrary order, these would be called hyper-elliptic integrals. Even more
generally, these integrals are a sub-class of the so-called Abelian integrals [83]. Generically,
Equation (33) cannot be explicitly integrated in closed form using only elementary functions,
hence we cannot analytically invert this relation to find r(λ). However, there is no obstacle,
in principle, to numerical integration to explicitly find the affine parameter λ(r). (Even for
the exact Kerr solution one rapidly finds that use of some level of numerical integration is
almost unavoidable [84–86]).

Note that if one is trapped (above or below) any real root of the polynomial X(r)
of multiplicity 1, then every time one “bounces” off the root the quantity Sr will flip
sign, and λ(r) will be double-valued though the inverse function r(λ) will always be
single-valued. This is as it should be to guarantee that the affine parameter λ is always
continuously increasing with time.

Note that if one is trapped between two real roots of the polynomial X(r), say rmin
and rmax, both of multiplicity 1, then each bounce from rmin to rmax, or from rmax to rmin,
will advance the affine parameter by some finite amount (the appropriate “period” of the
ultra-elliptic integral, now typically called a complete ultra-elliptic integral):

∆λ =
∫ rmax

rmin

dr̄√
X(r̄)

. (34)

Then, λ(r) will be multi-valued though the inverse function r(λ) will always be
single-valued. Furthermore, r(λ), while analytically intractable, will at least be known
to be periodic, with known periodicity 2 ∆λ. If, instead, one is approaching a real root of
multiplicity 2 or higher, then λ(r) will diverge—one will not actually reach the root for
any finite amount of affine parameter lapse—that is r(λ) will asymptote to that higher
multiplicity root.

4.3. Integrating the Epoch

Using Equations (21) and (22), we find
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dt
dr

=

√
2mr

r− 2m
+ Sr

E− 2JL/r3

(1− 2m/r)
√

X(r)
, (35)

so

t(r) = t0 +
∫ r

r0

( √
2mr̄

r̄− 2m
+ Sr

E− 2JL/r̄3

(1− 2m/r̄)
√

X(r̄)

)
dr̄ , (36)

where now Sr = sign(r− r0).
It is straightforward to integrate the first term in the integrand, yielding

t(r) = t0 + 2
√

2m(
√

r−
√

r0) + 2m ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+Sr

∫ r

r0

E− 2JL/r̄3

(1− 2m/r̄)
√

X(r̄)
dr̄ . (37)

As before, the remaining integral is an ultra-elliptic integral [80,81], now a different
ultra-elliptic integral, and this equation cannot be explicitly integrated in closed form.

Note that if one is trapped between two real roots of the polynomial X(r), say r1 and
r2, both of multiplicity 1, and both outside the horizon at r = 2m, then each bounce from r1
to r2 will advance the Killing time by some finite amount

T(r1, r2) =
∫ r2

r1

( √
2mr̄

r̄− 2m
+ Sr

E− 2JL/r̄3

(1− 2m/r̄)
√

X(r̄)

)
dr̄ , (38)

where now Sr = sign(r2 − r1).
Specifically, if rmax = max{r1, r2} and rmin = min{r1, r2}, then on the upswing from

rmin to rmax one has

Tup =
∫ rmax

rmin

( √
2mr̄

r̄− 2m
+

E− 2JL/r̄3

(1− 2m/r̄)
√

X(r̄)

)
dr̄ . (39)

In contrast on the downswing from rmax to rmin one has

Tdown =
∫ rmin

rmax

( √
2mr̄

r̄− 2m
− E− 2JL/r̄3

(1− 2m/r̄)
√

X(r̄)

)
dr̄ . (40)

That is

Tdown =
∫ rmax

rmin

(
−
√

2mr̄
r̄− 2m

+
E− 2JL/r̄3

(1− 2m/r̄)
√

X(r̄)

)
dr̄ . (41)

The total period is, therefore,

T = Tup + Tdown = 2
∫ rmax

rmin

E− 2JL/r̄3

(1− 2m/r̄)
√

X(r̄)
dr̄ . (42)

This is again a complete ultra-elliptic integral, now a different complete ultra-elliptic integral.
In this situation t(r) will be multi-valued while the inverse function r(t) will be

single valued. Although analytically intractable, r(t) will at least be known to be periodic,
with known periodicity 2 T. If instead one is approaching a real root of multiplicity 2 or
higher, then t(r) will diverge—one will not actually reach the root for any finite amount of
Killing time.
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4.4. Integrating the Declination

As for our equation involving the declination angle θ, first recall the definition of the
critical angle θ∗ as θ∗ = sin−1

(
|L|/
√
C
)

. Then, from Equation (23), we find

d cos θ

dλ
= −Sθ

√
C sin2 θ − L2

r2

= −Sθ

√
C

r2

√
sin2 θ − sin2 θ∗

= −Sθ

√
C

r2

√
cos2 θ∗ − cos2 θ , (43)

implying

d cos θ√
cos2 θ∗ − cos2 θ

= −Sθ

√
C

r2 dλ =

(
−Sθ

√
C

r2

)(
Sr

dr√
X(r)

)
. (44)

From this we see

d cos−1
(

cos θ

cos θ∗

)
= SθSr

√
C

r2
dr√
X(r)

, (45)

that is

cos−1
(

cos θ

cos θ∗

)
= cos−1

(
cos θ0

cos θ∗

)
+ SθSr

√
C
∫ r

r0

dr̄
r̄2
√

X(r̄)
. (46)

Without loss of generality we may allow the geodesic to reach the critical angle θ∗ at
some radius r∗, and then use that as our new initial data.

This effectively sets θ0 = θ∗, and gives us the following simplified result:

cos−1
(

cos θ

cos θ∗

)
= SθSr

√
C
∫ r

r∗

dr̄
r̄2
√

X(r̄)
. (47)

Thence

cos θ = cos θ∗ cos

(
SθSr
√
C
∫ r

r∗

dr̄
r̄2
√

X(r̄)

)
= cos θ∗ cos

(
√
C
∫ r

r∗

Sr dr̄
r̄2
√

X(r̄)

)
,

with the last step coming from the fact that cos(· · · ) is an even function of its argument.
That is

cos θ = cos θ∗ cos

(
√
C
∫ r

r∗

|dr̄|
r̄2
√

X(r̄)

)
, (48)

where the phase

(phase) =
√
C
∫ r

r∗

|dr̄|
r̄2
√

X(r̄)
(49)

is monotone increasing.
One is, again, reduced to investigating yet another ultra-elliptic integral [80,81],

with the declination angle θ oscillating periodically as a function of this phase with pe-
riod 2π, and with each “bounce” from rmin to rmax advancing the phase of the cosine by
an amount

∆(phase) =
√
C
∫ rmax

rmin

dr̄
r̄2
√

X(r̄)
. (50)

As before, this equation cannot be explicitly integrated in closed form.
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4.5. Integrating the Azimuth

We now finally consider the ODE for the evolution of the azimuthal angle: dφ/dλ.
(This particular sub-case is considerably messier than the previous ones.) Using
Equations (21) and (24) we find

dφ

dr
= SrSφ

[
2J

√
2mr

r3(r− 2m)

]
+ Sr

[
L

r2 sin2 θ
√

X(r)
+ 2J

E− 2JL/r3

r3(1− 2m/r)
√

X(r)

]
. (51)

Consequently,

φ(r) = φ0 + SrSφ

{
2J
∫ r

r0

√
2mr̄

r̄3(r̄− 2m)
dr̄

}

+Sr

∫ r

r0

(
L

r̄2 sin2[θ(r̄)]
√

X(r̄)
+

2J(E− 2JL/r̄3)

r̄3(1− 2m/r̄)
√

X(r̄)

)
dr̄ , (52)

where as per our previous discussion we have Sr = sign(r− r0). The last term appearing
here is again an ultra-elliptic integral [80,81]. In contrast, the penultimate term is somewhat
worse, because the integrand contains θ(r̄), the overall integral is an iteration of an ultra-
elliptic integral.

We can explicitly integrate the first integral in closed form:

2J
∫ r

r0

√
2mr̄

r̄3(r̄− 2m)
dr̄ = 2J

√
2
m

[
1√
r

(
1
3r

+
1

2m

)
− 1√

r0

(
1

3r0
+

1
2m

)]

+
J

2m2 ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]
. (53)

Thence, in general

φ(r) = φ0 + SrSφ

{
J

2m2 ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+2J

√
2
m

[
1√
r

(
1
3r

+
1

2m

)
− 1√

r0

(
1

3r0
+

1
2m

)]}

+Sr

∫ r

r0

(
L

r̄2 sin2[θ(r̄)]
√

X(r̄)
+

2J(E− 2JL/r̄3)

r̄3(1− 2m/r̄)
√

X(r̄)

)
dr̄ . (54)

As before, this equation being ultra-elliptic means it cannot be explicitly integrated in
closed fully analytic form, at least not in terms of elementary functions.

4.6. Summary of Generic Geodesic Evolution

Overall, while these generic geodesic equations cannot be integrated in closed and
fully analytic form, they are still integrable in the formal technical sense. In terms of
complete ultra-elliptic integrals some of the key quantities of interest (both mathematically
and physically) are the “periods”:∫ rmax

rmin

dr̄√
X(r̄)

;
∫ rmax

rmin

dr̄
r̄2
√

X(r̄)
; (55)

and ∫ rmax

rmin

E− 2JL/r̄3

(1− 2m/r̄)
√

X(r̄)
dr̄;

∫ rmax

rmin

E− 2JL/r̄3

r̄3(1− 2m/r̄)
√

X(r̄)
dr̄; (56)
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and the iterated integral ∫ rmax

rmin

L
r̄2 sin2[θ(r̄)]

√
X(r̄)

dr̄ . (57)

Taylor expanding (1− 2m/r)−1 focusses attention on the quantities∫ rmax

rmin

dr̄
r̄n
√

X(r̄)
; (n ∈ N). (58)

Typically, the “periods” of these ultra-elliptic integrals will be incommensurate.
If further specific constraints are now imposed, then these equations can indeed be inte-

grated in closed form. In the next section, we explicate both the null and timelike geodesics
for when C = 0 in closed fully analytic form. We are able to recover the “rain” geodesics
from [1], as well as present a simple derivation of both the “drip” and “hail” geodesics.

5. Geodesics with Carter Constant Zero

If the Carter constant is zero then the geodesic equations simplify radically. Firstly,
if C = 0 then from the manifest positivity of

C =
(

r2 dθ

dλ

)2
+

(
L

sin θ

)2
, (59)

we see that we must have both L = 0 and dθ/dλ ≡ 0. The condition that L = 0 physically
constrains the geodesics to the trajectories of zero angular momentum observers (ZAMOs),
whilst dθ/dλ = 0 =⇒ θ(r) = θ0; some constant θ0.

Furthermore, our expression for X(r) significantly simplifies since now:

X(r) = E2 + ε

(
1− 2m

r

)
. (60)

We find that the four trajectory equations reduce to:

dr
dλ

= Sr

√
X(r) ; (61)

dt
dλ

=
E + Sr

√
(2m/r)X(r)

1− 2m/r
; (62)

dθ

dλ
= 0 ; (63)

dφ

dλ
=

2J
r3

(
E + Sφ

√
(2m/r)X(r)

1− 2m/r

)
. (64)

The form of these equations suggests it would be particularly useful to separate our
analysis of null geodesics (photons) from timelike geodesics (massive particles).

5.1. Null Geodesics (Photons) with Carter Constant Zero

For null geodesics (photons) with Carter constant zero, we have the following conditions:

C = 0 ; L = 0 ; θ(r) = θ0 ; X(r) = E2 . (65)

Furthermore, without loss of generality, we can rescale the affine parameter to set
E→ 1, so that X(r)→ 1. From Equation (33), we now find

λ(r) = λ0 + Sr

∫ r

r0

dr̄√
X(r̄)

= λ0 + Sr

∫ r

r0

dr̄ = λ0 + Sr(r− r0) . (66)
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That is, we find the simple linear relation

r(λ) = Sr(λ− λ0) + r0 . (67)

Thus, in this particular situation, r is an affine parameter. Ingoing geodesics will
crash into the central singularity in finite affine time, whereas outgoing geodesics can
emerge from the horizon (r = 2m) at finite affine time (which we shall soon see corre-
sponds to minus infinity in Killing time). The apparent asymmetry between ingoing and
outgoing null geodesics is a side-effect of the initial choices made in setting up the Painlevé–
Gullstrand coordinate system. (Did one choose an ingoing or outgoing Painlevé–Gullstrand
coordinate system?)

Furthermore, Equation (37) for t(r) now reduces to

t(r) = t0 + 2
√

2m(
√

r−
√

r0) + 2m ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+Sr

∫ r

r0

r̄
r̄− 2m

dr̄ . (68)

This integrates explicitly to

t(r) = t0 + 2
√

2m(
√

r−
√

r0) + 2m ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+Sr

[
r− r0 + 2m ln

(
r− 2m
r0 − 2m

)]
. (69)

This can also be rewritten as

t(r) = t0 + 2
√

2m(
√

r−
√

r0) + |r− r0|

+2m

{
Sr ln

[
r + 2m− 2 Sr

√
2mr

r0 + 2m− 2 Sr
√

2mr0

]}
, (70)

or even

t(r) = t0 + 2
√

2m(
√

r−
√

r0) + |r− r0|+ 4m

{
Sr ln

[ √
r− Sr

√
2m

√
r0 − Sr

√
2m

]}
.

Which form one uses is really a matter of taste.
Finally, from Equation (54) we also have

φ(r) = φ0 + SrSφ

{
J

2m2 ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+2J

√
2
m

[
1√
r

(
1
3r

+
1

2m

)
− 1√

r0

(
1

3r0
+

1
2m

)]}

+2J Sr

∫ r

r0

dr̄
r̄3(1− 2m/r̄)

. (71)
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This integrates explicitly to

φ(r) = φ0 + SrSφ

{
J

2m2 ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+2J

√
2
m

[
1√
r

(
1
3r

+
1

2m

)
− 1√

r0

(
1

3r0
+

1
2m

)]}

+Sr
J
m

{
1
r
− 1

r0
+

1
2m

ln
[
(1− 2m/r)
(1− 2m/r0)

]}
. (72)

Notice that while these equations are rather complicated, they are all fully explicit and
given in terms of elementary functions. We also note that these equations have sensible
limiting behaviour; as r → r0, we have that λ(r), t(r), φ(r)→ λ0, t0, φ0, respectively.

5.2. Timelike Geodesics (Massive Particles) with Carter Constant Zero

For timelike geodesics (massive particles) with Carter constant zero, we have the
following conditions:

C = 0 ; L = 0 ; θ(r) = θ0 ; X(r) = E2 − 1 +
2m
r

. (73)

The form of the polynomial X(r) suggests that we should split our analysis into
three cases. For the first case we set E = 1 (since in this case X(r) reduces significantly;
X(r) → 2m/r), for the second case we set E > 1, and for the third case we set E < 1.
Physically, geodesics with E = 1 represent particles that have zero radial velocity at spatial
infinity (these are marginally bound geodesics). Geodesics with E > 1 represent particles
that have non-zero velocity at spatial infinity (these are unbound geodesics). Geodesics with
E < 1 represent particles that are in bound orbits, and so never escape to spatial infinity.
For ingoing geodesics, these correspond to the “rain” (E = 1), “hail” (E > 1), and “drip”
(E < 1) geodesics.

5.2.1. Marginal Geodesics E = 1

Setting E = 1, our conditions reduce to:

C = 0 ; L = 0 ; θ(r) = θ0 ; X(r) =
2m
r

. (74)

So, for our expression for λ(r) we find

λ(r) = λ0 + Sr

∫ r

r0

dr̄√
X(r̄)

= λ0 + Sr

∫ r

r0

dr̄√
2m/r̄

= λ0 + Sr

√
2
m

 r
3
2 − r

3
2
0

3

 . (75)

Hence,

r(λ) =

{
3
√

2m
2

[Sr(λ− λ0)] + r
3
2
0

} 2
3

. (76)

Our general expression (37) for t(r) reduces to
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t(r) = t0 + 2
√

2m
(√

r−
√

r0
)

+ 2m ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+ Sr

∫ r

r0

dr̄
(1− 2m/r̄)

√
2m/r̄

. (77)

We may now compute the somewhat unwieldy integral

∫ r

r0

dr̄
(1− 2m/r̄)

√
2m/r̄

= 2
√

2m(
√

r−
√

r0) +

√
2
m

 r
3
2 − r

3
2
0

3


+2m ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]
, (78)

giving the following explicit form for t(r)

t(r) = t0 + 2
√

2m(
√

r−
√

r0) + 2m ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+Sr

{
2
√

2m(
√

r−
√

r0) +

√
2
m

 r
3
2 − r

3
2
0

3


+2m ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]}
. (79)

It is worth noting that for Sr = −1 (corresponding to ingoing geodesics) we find the
particularly simple result

t(r) = t0 −
√

2
m

 r
3
2 − r

3
2
0

3

 , (80)

whilst for Sr = +1 (corresponding to outgoing geodesics), we obtain

t(r) = t0 +

√
2
m

 r
3
2 − r

3
2
0

3

+ 4
√

2m
(√

r−
√

r0
)

+4m ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]
. (81)

The apparent asymmetry between ingoing and outgoing timelike geodesics is a side-
effect of the choices made in setting up the Painlevé–Gullstrand coordinate system. Note
that in this situation the formulae for t(r) are J-independent, so this apparent asymmetry is
already present for Schwarzschild spacetime in Painlevé–Gullstrand coordinates. The usual
choices allow ingoing geodesics to penetrate the horizon and crash into the central singu-
larity in finite Killing time, while outgoing geodesics need an infinite amount of Killing
time to escape from the horizon at r = 2m and so become ‘stuck’.
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Our general expression (54) for φ(r) reduces to

φ(r) = φ0 + SrSφ

{
J

2m2 ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+2J

√
2
m

[
1√
r

(
1
3r

+
1

2m

)
− 1√

r0

(
1

3r0
+

1
2m

)]}

+2J Sr

∫ r

r0

dr̄
r̄3(1− 2m/r̄)

√
2m/r̄

. (82)

We may integrate the remaining integral in closed form∫ r

r0

dr̄
r̄3(1− 2m/r̄)

√
2m/r̄

=
1

m
√

2m

(
1√
r
− 1√

r0

)

+
1

4m2 ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]
. (83)

This gives the fully explicit form for φ(r) as:

φ(r) = φ0 + SrSφ

{
J

2m2 ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+2J

√
2
m

[
1√
r

(
1
3r

+
1

2m

)
− 1√

r0

(
1

3r0
+

1
2m

)]}

+Sr

{
2J

m
√

2m

(
1√
r
− 1√

r0

)
+

J
2m2 ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]}
. (84)

It is now straightforward to recover the “rain” geodesics explored in [1], which model
a ZAMO dropped from spatial infinity with zero initial radial velocity. This physical
scenario requires C = 0, L = 0, ε = −1, and E = 1, as above, and, furthermore, is an
ingoing retrograde geodesic (corresponding mathematically to fixing Sr = Sφ = −1). These
geodesics are retrograde since we must give them an initial nonzero angular velocity in
the retrograde direction at spatial infinity in order for L = 0 to hold along the length of the
geodesic. From Equations (80) and (84), we find the explicit “rain” geodesics:

t(r) = t0 −
√

2
m

 r
3
2 − r

3
2
0

3

 , (85)

which we may re-phrase (defining tcrash to be the amount of elapsed Killing time for an
ingoing geodesic to crash into the central singularity) as

train(r) = tcrash −
√

2
m

r
3
2

3
. (86)

Similarly,

φ(r) = φ0 +
2J
3

√
2
m

 1

r
3
2
− 1

r
3
2
0

 , (87)
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which we may rephrase as

φrain(r) = φ∞ +
2J
3

√
2
m

1

r
3
2

. (88)

If we differentiate with respect to r, we find

dt
dr

= −
√

r
2m

, and
dφ

dr
= − 2J√

2m
r−5/2 , (89)

which are exactly the equations defining the rain geodesics as given in reference [1].

5.2.2. Unbound Geodesics E > 1

For E > 1, let us first restore the full list of conditions from Equation (73):

C = 0 ; L = 0 ; θ(r) = θ0 ; X(r) = E2 − 1 +
2m
r

. (90)

Notice that for E > 1, r is a priori unconstrained; r ∈ (0,+∞).
From our general result (33) for λ(r), we have

λ(r) = λ0 + Sr

∫ r

r0

dr̄√
X(r̄)

= λ0 + Sr

∫ r

r0

dr̄√
E2 − 1 + 2m/r̄

= λ0 +
Sr

E2 − 1

{
r
√

E2 − 1 + 2m/r− r0
√

E2 − 1 + 2m/r0

+
m√

E2 − 1

[
ln

r0

r
+ 2 ln

∣∣∣∣∣
√

E2 − 1 +
√

E2 − 1 + 2m/r0√
E2 − 1 +

√
E2 − 1 + 2m/r

∣∣∣∣∣
]}

.

(91)

Conducting a Taylor series expansion around E = 1, we find

λ(r) = λ0 + Sr

√
2
m

(
r3/2 − r3/2

0
3

)
+O(E− 1) . (92)

In the limit where E → 1, we see that our expression for λ(r) simplifies to (75),
as expected.

The unwieldy integral in our general expression (37) for t(r) now becomes∫ r

r0

E
(1− 2m/r̄)

√
E2 − 1 + 2m/r̄

dr̄

=
E

E2 − 1

(
r
√

E2 − 1 + 2m/r− r0
√

E2 − 1 + 2m/r0

)
− 2m ln

 (2m− r0)
(

r− 2m− 2Er
(

E +
√

E2 − 1 + 2m/r
))

(2m− r)
(

r0 − 2m− 2Er0

(
E +

√
E2 − 1 + 2m/r0

))


+
Em(2E2 − 3)
(E2 − 1)3/2 ln

[
m− r + E2r + r

√
(E2 − 1)(E2 − 1 + 2m/r)

m− r0 + E2r0 + r0
√
(E2 − 1)(E2 − 1 + 2m/r0)

]
.

(93)

This yields the following fully explicit result for t(r)
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t(r) = t0 + 2
√

2m
(√

r−
√

r0
)
+ 2m ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+Sr

{
E

E2 − 1

(
r
√

E2 − 1 + 2m/r− r0
√

E2 − 1 + 2m/r0

)

−2m ln

 (2m− r0)
(

r− 2m− 2Er
(

E +
√

E2 − 1 + 2m/r
))

(2m− r)
(

r0 − 2m− 2Er0

(
E +

√
E2 − 1 + 2m/r0

))


+
Em(2E2 − 3)
(E2 − 1)3/2 ln

[
m− r + E2r + r

√
(E2 − 1)(E2 − 1 + 2m/r)

m− r0 + E2r0 + r0
√
(E2 − 1)(E2 − 1 + 2m/r0)

]}
. (94)

Conducting a Taylor series expansion around E = 1 gives

t(r) = t0 + 2
√

2m(
√

r−
√

r0) + 2m ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+Sr

{
2
√

2m(
√

r−
√

r0) +

√
2
m

 r
3
2 − r

3
2
0

3


+2m ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]}
+O(E− 1) .

(95)

Hence, in the limit E→ 1, we have

t(r) = t0 + 2
√

2m(
√

r−
√

r0) + 2m ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+Sr

{
2
√

2m(
√

r−
√

r0) +

√
2
m

 r
3
2 − r

3
2
0

3


+2m ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]}
, (96)

which is just Equation (79), as expected.
Lastly, the somewhat unwieldy integral in our general expression (52) for φ(r) is now

given by∫ r

r0

2EJ
r̄3(1− 2m/r̄)

√
E2 − 1 + 2m/r̄

dr̄

=
EJ
m2

(√
E2 − 1 + 2m/r−

√
E2 − 1 + 2m/r0

)

− J
2m2

{
ln
[

1− 2m/r0

1− 2m/r

]
+ ln

[
2E(E +

√
E2 − 1 + 2m/r)− (1− 2m/r)

2E(E +
√

E2 − 1 + 2m/r0)− (1− 2m/r0)

]}
, (97)

so we find that φ(r) reduces to
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φ(r) = φ0 − SrSφ

{
J

2m2 ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+2J

√
2
m

[
1√
r

(
1
3r

+
1

2m

)
− 1√

r0

(
1

3r0
+

1
2m

)]}

+Sr

{
EJ
m2

(√
E2 − 1 + 2m/r−

√
E2 − 1 + 2m/r0

)

− J
2m2

[
ln
(

1− 2m/r0

1− 2m/r

)
+ ln

(
2E(E +

√
E2 − 1 + 2m/r)− (1− 2m/r)

2E(E +
√

E2 − 1 + 2m/r0)− (1− 2m/r0)

)]}
. (98)

If we now make the direct substitution E = 1, we find

φ(r) = φ0 − SrSφ

{
J

2m2 ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+2J

√
2
m

[
1√
r

(
1
3r

+
1

2m

)
− 1√

r0

(
1

3r0
+

1
2m

)]}

+Sr

{
2J

m
√

2m

(
1√
r
− 1√

r0

)
+

J
2m2 ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]}
, (99)

which is just Equation (84), as expected.
Overall, while these equations of motion are rather long, they are fully explicit and

have appropriate limits when E→ 1.
In all generality, geodesics with E > 1 are unbound geodesics. When (as herein) the

Carter constant is zero, the ingoing geodesics are the so-called “hail” geodesics, modelling
a ZAMO fired in from spatial infinity with a nonzero initial velocity. These geodesics are
ingoing retrograde, and are, hence, given by

dt
dr

=

√
2mr

r− 2m
− E

(1− 2m/r)
√

E2 − 1 + 2m/r
, (100)

and
dφ

dr
= − 2J

√
2mr

r3(r− 2m)
− 2EJ

r3(1− 2m/r)
√

E2 − 1 + 2m/r
. (101)

5.2.3. Bound Geodesics E < 1

Once again we repeat the full list of conditions from Equation (73):

C = 0 ; L = 0 ; θ(r) = θ0 ; X(r) = E2 − 1 +
2m
r

. (102)

If we let E < 1, then X(r) = 0 has a unique root at r = 2m
1−E2 , and in order to keep√

X(r) real, we see that we have the constraint that r ∈ (0, 2m
1−E2 ]. In particular, r ≤ 2m/(1−

E2). Physically, geodesics with E < 1 are gravitationally bound (and, because C = L = 0,
must eventually crash into the central singularity). These particular bound geodesics are
the so-called “drip” geodesics, corresponding to a ZAMO being dropped from some finite
r∗ with zero initial velocity.
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For λ(r) we have

λ(r) = λ0 + Sr

∫ r

r0

dr̄√
E2 − 1 + 2m/r̄

. (103)

Explicitly, a brief computation yields

λ(r) = λ0 + Sr

 r
√

E2 − 1 + 2m/r
1− E2 +

m sin−1
(

1 + E2r
m −

r
m

)
(1− E2)3/2


−Sr

 r0
√

E2 − 1 + 2m/r0

1− E2 +
m sin−1

(
1 + E2r0

m − r0
m

)
(1− E2)3/2

 . (104)

At intermediate stages of the computation it is useful to use the identity

ln(x + iy) =
1
2

ln(x2 + y2) + i cos−1

(
x√

x2 + y2

)
. (105)

For Sr = +1 these drip geodesics will crash into the central singularity r = 0 in finite
affine time

λcrash = λ0 +
mπ

2(1− E2)3/2 −

 r0
√

E2 − 1 + 2m/r0

1− E2 +
m sin−1

(
1 + E2r0

m − r0
m

)
(1− E2)3/2

 . (106)

These “drip” geodesics are qualitatively (not quantitatively) somewhat similar to the
“rain” geodesics given by Equations (85) and (87).

When it comes to evaluating t(r) the result (94) still formally holds, but with the
understanding that for E < 1 the trailing term in (94) becomes

1
(E2 − 1)3/2 ln

[
m− r + E2r + r

√
(E2 − 1)(E2 − 1 + 2m/r)

m− r0 + E2r0 + r0
√
(E2 − 1)(E2 − 1 + 2m/r0)

]

=
1

i3(1− E2)3/2 ln

[
m− r + E2r + ir

√
(1− E2)(E2 − 1 + 2m/r)

m− r0 + E2r0 + ir0
√
(1− E2)(E2 − 1 + 2m/r0)

]

= − 1
(1− E2)3/2

{
sin−1

(
r
m

√
(1− E2)(E2 − 1 + 2m/r)

)

− sin−1
(

r0

m

√
(1− E2)(E2 − 1 + 2m/r0)

)}
. (107)

At intermediate stages of the computation it is now useful to use the slightly differ-
ent identity

ln(x + iy) =
1
2

ln(x2 + y2) + i sin−1

(
y√

x2 + y2

)
. (108)

This now enforces manifest reality of t(r) for E < 1 and, in all its glory, we have
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t(r) = t0 + 2
√

2m
(√

r−
√

r0
)
+ 2m ln

[
(
√

r−
√

2m)(
√

r0 +
√

2m)

(
√

r0 −
√

2m)(
√

r +
√

2m)

]

+Sr

{
E

E2 − 1

(
r
√

E2 − 1 + 2m/r− r0
√

E2 − 1 + 2m/r0

)

−2m ln

 (2m− r0)
(

r− 2m− 2Er
(

E +
√

E2 − 1 + 2m/r
))

(2m− r)
(

r0 − 2m− 2Er0

(
E +

√
E2 − 1 + 2m/r0

))


+
Em(3− 2E2)

(1− E2)3/2

[
sin−1

(
r
m

√
(1− E2)(E2 − 1 + 2m/r)

)

− sin−1
(

r0

m

√
(1− E2)(E2 − 1 + 2m/r0)

)]}
. (109)

Ingoing geodesics Sr = −1 (in this context the “drip” geodesics) will crash into the
central singularity in finite Killing time

tcrash = t0 + 2
√

2mr0 + 2m ln

[
(
√

r0 +
√

2m)

(
√

r0 −
√

2m)

]
+

{
−Er0

1− E2

(√
E2 − 1 + 2m/r0

)

+2m ln

 (r0 − 2m)(
r0 − 2m− 2Er0

(
E +

√
E2 − 1 + 2m/r0

))
} . (110)

There are of course many other ways of rearranging this result.
Finally for φ(r) the result (98) can be extended to the region E < 1 without alteration.

6. Conclusions

From this discussion we have seen that, once given the non-trivial Killing tensor
for the Lense–Thirring spacetime, we can extract the Carter constant; the fourth constant
of the motion. Then, the geodesic equations become integrable, at least in principle (in
terms of ultra-elliptic integrals). This allows us to formally solve for myriads of general
geodesics. However, we saw that in full generality, we could not explicitly integrate the
equations of motion in closed form, the ultra-elliptic integrals are not “elementary”. Only
when imposing further conditions, such as Carter constant zero, could we then explicitly
integrate the equations of motion in an algebraically closed form.

The explicit geodesics given in this discussion are quite tractable and can be applied
to a number of astrophysically interesting cases. For example, the Carter constant zero
geodesics with E < 1 are the “drip” geodesics of the spacetime, while the Carter constant
zero geodesics with E = 1 are the “rain” geodesics, and the Carter constant zero geodesics
with E > 1 are the “hail” geodesics of the spacetime.
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