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ABSTRACT. A simplicial complex M is metrized by assigning to each
simplex a € M a linear simplex a* in some Euclidean space RX so that face
relations correspond to isometries. An equivalence class of metrized complexes
under the relation generated by subdivisions and isometries is called a metric
complex; it consists primarily of a polyhedron M with an intrinsic metric o).
This paper studies geodesics in metric complexes. Let P € M; then the tangent
space Tp(M) is canonically isometric to an orthogonal product of cones from
P, R* x vp(M); once k is as large as possible. vp(M) is called the normal geo-
metry at P in M. Let PX be a tangent direction at P in vp(M). I define num-
bers k4 (PX) and x_(PX), called the maximum and minimum curvatures at P
in the direction PX. THEOREM. Let M be a complete, simply-connected
metric complex which is a p.L n-manifold without boundary. Assume K+(P}?)
< 0 for all P € M and all PX C vp(M). Then M is p.l. isomorphic to RP.

This is analogous to a well-known theorem for smooth manifolds by E. Cartan
and J. Hadamard. THEOREM (RGUGHLY). Let M be a complete metric
complex which is a p.L. n-manifold without boundary. Assume (1) there is a
number k 7 0 such that k{PX) > k whenever P is in the (n — 2)-skeleton of
M and whenever PX C vp(M); (2) the simplexes of M are bounded in size and
Shape. Then M is compact. This is analogous to a weak form of a well-known
theorem of S. B. Myers for smooth manifolds.

1. Introduction. I have been studying geodesics on manifolds with piece-
wise-linear (abbreviated to p.l.) metrics, trying to relate the global topology of
such a manifold to its local geometry. In §2 I shall lead up to the definition, for
any point P of a p.1. manifold M, and for any tangent direction PX at P which
lies in the “normal geometry” v,(M) at P in M, of numbers «, (PX) and k_(PX),
with k  (PX) > k_(PX). They are called the “maximum and minimum curvatures”
of M at P in the direction PX. There seems to be an analogy between k_(PX)
and, in the smooth case, the minimum sectional curvature at a point of two-planes
containing a fixed tangent vector at that point; likewise between & +(P)?) and the
maximum such sectional curvature. To support this intuition I offer the following
results:

Received by the editors August 7, 1973 and, in revised form, November 8, 1974.

AMS (MOS) subject classifications (1970). Primary 53C20, 53C70, 57C99; Secondary
57D70, 53C45.

(1)1 am glad to thank publicly some of those who helped me: T. Akiba, B. Sanderson

and E. Stone; also the National Science Foundation for Grants P22927 and P029431000.
1 Copyright © 1976, American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2 D. A. STONE

THEOREM 1. Let M be a simply-connected, complete metric complex which
is a p.l. n-manifold without boundary. If x_,_(Pf) < 0 for each P € M and for
each tangent direction PX C vp(M), then M is p.l. isomorphic to Euclidean space
R".

(This theorem is slightly stronger than the corresponding one announced in
[13].) Theorem 1 is analogous to a theorem proved for smooth manifolds by
E. Cartan [3] and J. Hadamard [5] under the hypothesis that every sectional
curvature be <0.

THEOREM 2. Let M be a complete metric complex which is an n-manifold
without boundary. Assume that whenever a is an (n — 2)-simplex, P € int a and
PX C vp(M), then k_(PX) > 0. Then:

(i) M has positive curvature “everywhere”: k_(PX) 0 for all PX Crvp(M),
provided that P is in the (n — 2)-skeleton of M;
(ii) if n is even and M orientable, then M is simply-connected;
(iii) if n is odd, then M is orientable.

In the smooth case a theorem analogous to (ii), was proved by J. Synge [14]
under the assumption that all sectional curvatures are 2 0; the smooth analogue
of (iii) is an elementary consequence of his method observed by A. Preissmann [9].

THEOREM 3. Let M be a complete metric complex which is an n-manifold
without boundary. Assume

(1) there is a number k 0 such that whenever a is an (n — 2)~simplex, P €
int @ and PX C vp(M), then k_(PX) > k;

(2) there is a number p such that whenever a is an n-simplex of M and is
represented as a linear simplex in R", then the (n — 1)-sphere circumscribed about
a has radius <p.

Then

(i) M has positive curvature “everywhere”, as in Theorem 2(i);

(ii) M is compact (I shall give an estimate for the diameter of M).

Theorem 3 is a weak analogue of a theorem proved for smooth manifolds
by S. Myers [7] under the hypothesis that the Ricci curvature be everywhere
bounded above 0. I have no idea what notion of pl. Ricci curvature would imply
the “right™ analogue of Myers’ theorem, but I do believe that some such notion
exists.

An amusing consequence of Theorem 3 is

THEOREM 4. Let K be a simplicial 3-manifold without boundary. Assume
that every 1-simplex is a face of at most five 3-simplexes. Then K is finite.
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GEODESICS IN PIECEWISE LINEAR MANIFOLDS 3

A. Philllps has pointed out that R? can be triangulated so that every 1-sim-
plex is a face of at most six 3-simplexes. The proof of the theorem is to give K
a metric by making all the tetrahedra regular, of side-length 1, and then verifying
that the hypotheses of Theorem 3 hold. I should be most interested to know of
a combinatorial proof of Theorem 4; the more so because I have been able to
prove by combinatorial means a general finiteness theorem for simplicial manifolds,(*)
but Theorem 4 is a “limiting case” and I cannot prove it by these methods.

For 2-dimensional manifolds—topological and pJl.—the theory of curvature
is well established (see Aleksandroff and Zalgaller [1] or W. Rinow [10]), and
Theorems 1, 2 and 3, though perhaps new, are simply exercises. The present
work is independent of both T. Banchoff’s work [2] on the Gauss-Bonnet theorem
for polyhedra and of H. Osborn’s work [8] on deRham theory for pl. manifolds.
I have benefitted greatly from H. Gluck’s foundational work on the intrinsic
geometry of polyhedra; much of §2 is based on his notes [4].

2. Foundations. First, some abbreviations, symbols and conventions.

In general, bold-face letters such as X, M will denote both topological spaces
and simplicial complexes. I shall make no distinction in notation between an
abstract simplicial complex M, a particular realization of M (such as a metric com-
plex, to be defined) and the underlying topological space of a realization of M.
Lower-case letters @, b will refer to simplexes, and v, w to vertices, of a simplicial
complex. Capitals such as P, Q will refer to points in topological spaces. Thus in
the statements “¢ EM”, “PEM”, “PE€a”, a and M are a simplex and a simplicial
complex in the first statement, and topological spaces in the other two.

The dimension of a simplicial complex or simplex will be written dim M or
dim a. The notation b < ¢ will mean that b is a face of a. Ifb,,...,b, are
faces of a, then their span b, . . ., b is the smallest face of @ which contains
them all.

R will denote the real line, I the unit interval [0, 1]. R™ will denote Euclid-
ean n-space; thus R! is not quite the same as R. By a sphere S”, I shall mean the
locus of a point in R"*! at fixed distance from a fixed point. If X C R", then
the affine space generated by X, denoted [X], is defined to be the smallest affine
space in R"” which contains X. If X, Y C R", then their join X » Y is defined as
{straight-line segments from X to ¥, for X € X, Y € Y}. If X, Y C §” and if
no point of X is antipodal to any point of Y, then X % Y is defined in the same
way, but with “straight-line segments” replaced by “shortest geodesic segments”.

If X CY, then int X, bdy X and cI[X] will denote the interior, boundary
and closure of X in Y. If X is a manifold, then bdy X will refer to its boundary.
The diameter of a metric space X will be written diam X. If f: X— Rand r €
R, then f7 will denote {X € X such that f(X) <r}.

(2)Added in proof. I retract this statement.
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4 D. A. STONE

I shall abbreviate piecewise linear to p.J. and piecewise differentiable to p.d.

Let M be a connected, locally-finite, finite-dimensional simplicial complex.
M is metrized by giving, for each @ € M, a linear simplex a* in some Euclidean
space and a simplicial isomorphism f,: @ — a* such that whenever b <a, then
the induced simplicial isomorphism b* — f (b) is an isometry. (A map between
linear simplexes in Euclidean spaces is an isometry if it extends to an isometry
between the affine spaces generated by the simplexes.) If L is a subdivision of
M, then L can be metrized in a natural way. Let M’ be another complex, met-
rized by {f,;}. M and M’ are isometric if they have subdivisions L and L' and if
there is a simplicial isomorphism s: L — L' such that for every a € L, h is an
isometry between a and h(z) (more precisely, if f,:(a) °ho( fa)'lz a* — (h(a))*
is an isometry, as just defined). An entity associated to a metrized complex M
is intrinsic if it depends only on the isometry class of M. The most important
such entity is the “intrinsic metric”, which I now describe, following Gluck [4].

Let M be a metrized complex, let P, @ € M and let J be a closed interval
[s, t] CR. A path from P to Q in M is a continuous map a: J —> M such that
a(s) = P, at) = Q. Unless otherwise stated, every path will have domain I. The
space of paths in M can be given the C° topology; so when one path is said to be
“close” to another, it will always mean “pointwise close”.

Let « be a pl. path in M. Let I' be a subdivision of I such that & maps
each 1-simplex of I' linearly into some simplex of M. For each 1-simplex ¢ €I',
let L(a I c) be the length of f,(a(c)), where a € M contains a(c); then L(a I ¢)
does not depend on the choice of 4. The length of a, denoted L(a), is defined to
be Z{L(a ! ¢) for all 1-simplexes ¢ € I'}; this does not depend on the choice of
I'. Gluck shows how to define the length of a continuous path a in M by ap-
proximating a by p.l. paths. The precise definition is not important for the
purposes of this paper, because from Proposition 2.1 onward I shall use only pl.
paths. The intrinsic metric on M, denoted p or, when necessary, py,, is defined
thus: for any P, Q €M, p(P, Q) = glb.{L(a) for all paths a from P to Q}; since
M was assumed to be connected, this definition makes sense.

A path o from P to Q is minimal if it is parametrized proportionally to
arc-length and if L(a) = p(P, Q)—so that « is as short as possible. Such a path
is clearly one-to-one. I shall often refer to im « as a “minimal path”; if a is
assumed to have domain I, then « is uniquely determined by its image and a
choice of initial endpoint, so I doubt that this usage will cause serious ambiguity.
A geodesic is a path o which is locally minimal; that is, every ¢ € I has a neigh-
bourhood [s, ] C I'such that a } [s, 4] is a minimal path. (It follows that a is
parametrized proportionally to arc-length.)

Gluck proves these facts:
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GEODESICS IN PIECEWISE LINEAR MANIFOLDS 5

ProrosiTioN 2.1. (1) If im « is not a subpolyhedron of M, then a can be
approximated arbitrarily closely by p.l. paths § with the same endpoints, such
that L) s L(a).

(2) If im a is p.l. but « is not p.L, then o can be approximated arbitrarily
closely by p.l. paths (8 with the same endpoints, such that § is a re-parametrization
of a (soim f =im a)and L(B) < L(w).

(3) There is a subdivision L of M such that whenever P, Q lie in a simplex
a € L, then the straight-line segment in the simplex between them is the unique
minimal path from P to Q.

(4) If M is complete with respect to p, in particular if M is a finite complex,
then there is at least one minimal path between any two points of M.

The proposition shows that p can be defined using only pJl. paths, and
hence p is indeed intrinsic. Therefore the property of completeness is intrinsic.
A metrized complex in which assertion (3) holds will be called a metric complex.
Henceforth I shall use only complete metric complexes. When a minimal path
from P to Q lies in a simplex, I shall often denote it P—Q. The proposition also
shows that minimal paths, and hence geodesics, are pl. Thus to study the intrin-
sic metric and geodesics one need normally use only pl. paths; henceforth paths
will be pl. unless otherwise stated.

Among p.l. paths, geodesics can be characterized in terms of the “energy
function”: if a is pl., let [(«, £) be the arc-length function along ¢; that is,

L(a, ) = L(a ! [0, £]); and define the energy of a by

E) = _[ol [(% L(a, t)]2 dt;

the derivative here is defined for almost all £. Then F(a) > [L(e)]?, and equality
holds if and only if a is parametrized proportionally to arc-length. So minimal
paths from P to Q are those among p.l. paths from P to Q which minimize energy,
and geodesics are paths which do so locally.

I now define “spherical metric complexes”™, still following Gluck [4]. I am
not interested in them for their own sake, but they are useful in studying metric
complexes. I offer three reasons. First, many results will be proved by induction
on dimension. The natural application of an inductive hypothesis is to the link
of a point. But the simplicial link has little relationship to any metric hypotheses.
It is more natural to use as the link of a point a sphere of suitably small radius
about that point; this sphere is a spherical metric complex. Second, the simplest
way to get at the “angle” between two tangent directions at a point seems to be
by measuring the distance between their intersections with some spherical link,
using the intrinsic metric of this link. The third, and perhaps most interesting,
reason [ shall save until after the definitions.
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6 D. A. STONE

Let S be a sphere of radius p in R**?. Let Vos + « s Vi, with k < n, be
points which lie in an open hemisphere, and let a be the convex hull in S of
Vo> -+, Vi. If the V; are in general position, that is, if ¢ is k-dimensional, then
a is, by definition, a p-spherical k-simplex. The V; are its vertices, and every sub-
set of the V; generates a p-spherical simplex which is a face of 2. In hopes of
reducing confusion between the prefixes I shall always use a bold-face letter for
the radius. Observe that if P, Q € g, then there is a unique minimal path in S
from P to Q, and it lies in a; if P and Q are in a face of a, then so is the minimal
path.

If a is a p-spherical k-simplex in S”, then [a] is an affine (k + 1)-space in
R™*! which passes through the centre of S. A map f: a — 4’ between p-spher-
ical simplexes is an isometry if it extends to an isometry [a] — [a']. An abstract
simplicial complex M is given a p-spherical metrization by assigning to each g €
M a p-spherical simplex a* in some Euclidean space and a simplicial isomorphism
f;+ @ — a* such that whenever b <a, then the induced (abstract) simplicial
isomorphism b* — f,(b) can be realized by an isometry of p-spherical simplexes.

A path a: I — M is piecewise geodesic if there is a subdivision I' of I such
that for every 1-simplex ¢ €I, a(c) is contained in a single simplex of M and
a | ¢ is geodesic in that simplex. As before, one can use piecewise geodesic
paths to define the intrinsic metric on M. One can prove an analogue of Proposi-
tion 2.1; hence every geodesic is piecewise geodesic, and if M is complete, then
between any two points there is at least one minimal path. And I map speak of
p-spherical metric complexes.

For many purposes metric complexes can be included among p-spherical
metric complexes, and so it is convenient to allow p to take the value o, The
phrase “a spherical metric complex” will stand for: “a p-spherical metric complex,
for some value of p”; thus spherical metric complexes include metric complexes.
To distinguish metric complexes from p-spherical ones I shall always specify of
the latter that p is finite, and the former I shall call Jinear metric complexes.

The third reason for introducing spherical metric complexes of finite radius
is that in the linear case there are only finitely many minimal paths between two
points (this can be inferred from Proposition 3.4); of course this is not true in
the spherical case. Thus in p-spherical metric complexes of finite radius the cal-
culus of variations can be used to a limited extent. This is the nub of the proof
of Theorem 3. To use the calculus of variations directly in the linear case one
would have to redefine concepts as basic as “conjugacy” and the “index” of a
geodesic. The proof of Theorem 1 avoids this issue because it deals with a situa-
tion in which one can be sure that “conjugate points”—whatever they are—do not
occur.

As I mentioned before, one of the reasons for defining spherical metric
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GEODESICS IN PIECEWISE LINEAR MANIFOLDS 7

complexes is to be able to discuss the link of a point in a linear metric complex.
Let M be a p-spherical metric complex and let P € M. The ball of radius r about
P is defined to be Bp(r, M) = {X € M such that p(P, X) <r}. Its boundary is
Sp(r, M), the sphere of radius r about P. If r < p(P, link(P, M)), then Bp(r, M)
and Sp(, M) are indeed a topological ball and sphere, though for large r this
need not be the case. Assuming this inequality satisfied, let me abbreviate B,(r, M)
and Sp(r, M) to B and S. Then S has a natural simplicial structure isomorphic
to link(P, M), which is given by a radial projection from P denoted y: star(P, M)
— {P} — S. It follows that S is a q-spherical metric complex, where q =-

p sin(r/p) if p is finite and ¢ = r if p = . Let p, p’ and p" be the intrinsic
metrics on M, star(?, M) and S respectively. The connection between them is

LeEMMA 2.2. Assume that r < %p(P, link(P, M)). Then forall X, Y €EB
different from P:

M) pX, V) =p'(X, Y).

(2) The segments X—P-Y constitute the only minimal path from X to Y
in star(P, M) « p"(U(X), Y(¥)) > nq.

B3) If " (WX, Y(Y)) < nq, then there is a bijection

: {minimal paths from X to Y in B}

—> {minimal paths from y(X) to Y(Y) in S}
such that im ¥(a) = Y(im a).

ProoF. The first assertion is elementary and I omit its proof.

Let ¢': star(P, M) — {P} — link(P, M) denote radial projection from P.
Let « be a one-to-one piecewise geodesic path in S from Y(X) to Y(¥). Then ¢’
carries « into a path in link(P, M) which can be re-parametrized as a pJ. path o'.
Let K be the join P » a'; then K is a p-spherical metric 2-disk, and ima =K N S.
Say p(P, X) = s, p(P, Y) = t, and let 8 be the angle of K at P, so § = [(a)/q.
Since r < 7/2, P « « is convex in K, so the minimal path in K from X to Y lies
in P x a. In fact (see Diagram 1) there is a unique such path, say f(c).

(%) f(a) consists of the segments X—P-Y « 6 > «, and then L(f(a)) =
s+t

(#+) P& f(a) # 6 < m; and then

cos(L(f(e))/p) = cos(s/p) cos(t/p) + sin(s/p) sin(#/p) cos(L(®)/qQ)
if p is finite, and
(L(f(@))? = s® + 2 — 25t cos(L(a)/r), if p = .
It follows that if @ is a minimal path in S, then f(e) is a minimal path in star(P, M)

(observe that X—P-Y is the shortest of the paths from X to Y which pass
through P). This proves assertion (2).
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8 D. A. STONE

If 8 is a minimal path in star(P, M) from X to Y which does not pass
through P, then y(f) is defined and can be re-parametrized as a piecewise geodesic
path in S; by definition, this is ¥(8). Clearly f(¥(8)) = B. (%x) shows that ¥(B)
is a minimal path in S of length s<nq. Hence ¥ is defined, with inverse f; and
assertion (3) follows.

Let M be a spherical metric complex. A subset X C M is convex if any
minimal path a whose endpoints are in X itself lies in X.

link (P, M)

fo o« K “)

p:oo

M is a single 3-simplex

DIAGRAM 1

If in addition im(a 1 (0, 1)) C int X for every such a, then X is strictly convex.
X is weakly convex if for any two points of X there is a path between them in
X which is a geodesic in M. A function f: M — R is convex, strictly convex or
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GEODESICS IN PIECEWISE LINEAR MANIFOLDS 9

weakly convex if for every r € R the set f”, defined as {X € M such that f(X) <
r}, is convex, strictly convex or weakly convex respectively.

CoroLLARY 2.3. If r < %p(P, link(P, M)), then Bp(r, M) is strictly convex
in M, and p' is just the restriction of p to B.

The metric geometry of a neighbourhood of a point P in a metric complex
is determined by the metric geometry of a spherical link of P. Lemma 2.2 says
roughly that if one is to be told only the structure of geodesics and not the
whole intrinsic metric, then it is more valuable to know about geodesics in a link
than in a neighbourhood B of P; for one does not lose track of geodesics in B
which do not pass through P when examining a link of P and one has extra infor-
mation about geodesics in B which do pass through P.

Let 2 C R¥ and b C R’ be linear simplexes. Give a x b the metric in which
its factors are orthogonal, so that

Paxs (X1, Y1), (X3, Y12 = [p,(Xy, Xp)12 + [0, (Y, Y,)13.

Then @ x b is a convex linear cell in R¥*!, and after subdivision can be regarded
as a metric complex. Now let M and N be linear metric complexes. The linear
metric complex M x N, called the orthogonal product of M and N, is defined by
metrizing some simplicial subdivision of the cell complex M x N so that for every
a €M and b €N, a x b is given the orthogonal product metric. That this met-
rization of M x N is indeed a metric complex follows from this lemma, whose
proof I omit:

LEMMA 2.4. A4 path in M x N is minimal (or is a geodesic) < its projections
into M and N are both minimal (or both geodesics).

It is clear how to generalize the foregoing discussion and Lemma 2.4 to the
orthogonal product of any finite number of linear metric complexes.

Let S’ be a sphere of radius p in R'*1, let a be a p-spherical simplex in S,
and let PE€ 4. For each geodesic a from P in g, let Dp() be its tangent vector
at P. The tangent cone of g at P is defined to be Typ(a) = {J{Dp(a) for all such
a}; then T'p(a) is an unbounded convex linear cone with vertex P lying in the
tangent space Tp(S) of S at P. Let b be the face of a such that P € int b; then
Tp(b) = [b], the affine space in R'™*1! generated by b. Tp(b) is called the base
or flat part of Tp(a); it can be characterized as {X € Tp(a) such that Tp(a) is a
cone with vertex X}.

Now let M be a spherical metric complex and let P€ M. For eacha € M
such that P € a I have Tp(a) (or more precisely, Ty py(a*), where f: a — a* is
given by a metrization of M). The tangent space Tp(M) to M at P is formed from
the disjoint union {J {T'p(a) for all @ containing P} by making identifications
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10 D. A. STONE

according to the natural embeddings Tp(b) < Tp(a) whenever PE b and b <a.
Tp(M) can be given the structure of a linear metric complex. It is intrinsic to
M in the sense that any isometry h: M — M’ induces a natural isometry Tp(M)
= Typy(M).

If X # P is in star(P, M), then Tp(P—-X) is an infinite ray from P. It will
be denoted PX and called a fangent direction to M at P. Since Tp(Tp(M)) can be
identified with T5(M), I shall also speak of the tangent direction PX when X # P
isin Tp(M). If « is a path from P in either M or Tp(M), then Pa will denote
PX where P-X is an initial segment of « in star(P, M) or Tp(M). Similarly if a
is a path through P, then P&, and Pa_ will denote the tangent directions to « at
P in the directions of increasing and decreasing parameter respectively.

Let Sp(M) be the unit sphere about P in Tp(M), and let pg be the intrinsic
metric on Sp(M). Let PX, PY C Tp(M), and set X' = PX N Sp(M), Y' = PY N
Sp(M). The angle between PX and PY is defined to be L XPY = pg(X', Y'). If
N is a subcone of Tp(M), then its orthogonal complement is defined to be Uy
such that L XPY = /2 for all PX C N}.

For example if r < ¥%p(P, link(P, M)) and if @ € Sy(r, M), then
TQ(SP(r, M)) can be naturally identified with the orthogonal complement of QP
in TQ(M). (This is clearly true when M is a single simplex; one need only add
that in general the natural identifications defined for each simplex of star(P, M)
respect the combinatorial structure of M.)

To connect properties of geodesics in Tp(M) with those of geodesics in M
near P, I now introduce the “exponential map” at P. Let r be a number such that
0 < 7 < py, (P, link(P, M)). Say M is a p-spherical metric complex. For each
@ € M such that P € g, think of z as a simplex in a p-sphere 8! C R'*1. Then
the standard exponential map expp: Tp(S) —> S restricts to a homeomorphism
exp(@)p: Bp(r, Tp(a)) — Bp(r, a). The exponential map at P, expp: Bp(r, Tp(M))
—> Bp(r, M) is defined to be | J{exp(a)p for all a containing P}. Of course if M
is a linear metric complex, then expp is an isometry; the purpose of the next
lemma is to show that even if p is finite, expp is still “approximately” an isometry.

Let B(r), B(r) denote Bp(r, M) and Bp(r, Tp(M)) respectively, and let
S(r) and S,(r) be defined similarly. Let y: B(r) — {P} —> S(r) and y1: B1(r) -
{P} — S,(r) denote radial projection from P.

LEMMA 2.5. Let r < %p(P, link(P, M)). Then

(1) expp: S7(r) — S(r) gives a bijection between minimal paths (and hence
between geodesics), and preserves angles.

(2) expp: Bp(r) —> B(r) preserves the structure of geodesics near P in the
sense that for any Q, R # P in B4(r):

(i) The minimal path from Q to R is Q-P—R « that from expp(Q) to
expp(R) is expp(Q)—P—expp(R); in this case expp takes one minimal path into

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GEODESICS IN PIECEWISE LINEAR MANIFOLDS 11

the other and they have the same length,

(ii) If minimal paths from Q to R do not pass through P, then there is a
bijection E: {minimal paths v, from Q to R} — {minimal paths from expp(Q)
to expp(R)} such that im Y(E(yr)) = expp(im ¥ 1(v7)); in this case L(’}T) =
LEGL) + 0¢?).

Proor. For linear metric complexes the lemma is trivial, so I assume M is
p-spherical with p finite. For any s > 0 define the dilation s,: Tp(M) — Tp(M)
with factor s by: s,(P) = P, and for X # P, s,(X) € PX at distance sp(P, X)
from P. Clearly s, preserves minimal paths and angles, and multiplies distances
by s. Hence s, induces a map s": S5.(r') — S,(s') for any . s” also multiplies
lengths by s, and so preserves geodesics. I claim that s” preserves angles. For if
Qe ST(r'), then TQ(ST(r')) can be identified with the orthogonal complement
N of QP in T,(Tp(M)), and the tangent map Ds": Tp(S7(r)) — Ty, 0y(S(sr"))
with the restriction of the tangent map Ds,: Ny — N;_ 5. But since Tp(M)
is a linear metric complex, Ds, can be identified with s, in a neighbourhood of
Q. Now s, preserves angles in N; hence s” does so at Q.

Set 7’ = p sin(r/p) and s = r/r'. Then expp © s": S(+') — S(r) is an isometry.
Since expp: S(r) —> S(r) can be written as (expp © s") © (1/s)", assertion (1)
follows.

In fact this argument shows also that expp: S;(r) — S(r) multiplies all
distances by 1/s. Part (i) of assertion (2) now follows from Lemma 2.2. That
lemma also implies that either both ¥ applied to expp(Q) and expp(R), and the
analogous ¥, applied in Tp(M) to Q and R, are defined, or else neither is defined.
Note that expp(¥ (@) = ¥(expp(Q)) and similarly for R. So E can be defined,
under the hypotheses of (ii), as the composition

{minimal paths from Q to R}
—G-; {minimal paths from ¥ (@) to ¥ 1(R) in S(r)}

_ex—p—; {minimal paths from Y (expp(Q)) to Y(expp(R)) in S()}

T“—) {minimal paths from Q to R in B(r)}.

The comparison of L(y) to L(E(yy)) follows from equation (x+) of Lemma 2.2
applied in B(r) and B(r), and the fact that s = 1 + O(r®). This completes the

proof of Lemma 2.5.
For example, a geodesic in M can now be characterized as a path a para-

metrized proportionally to arc-length such that La"o(t)a, =7 forall ¢t € (0, 1).
So far the train of thought runs thus: to study the nature of minimal paths
near a point P in a metric complex M it suffices to study minimal paths in
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12 D. A. STONE

Sp(r, M) (Lemma 2.2), or even better, in Sp(M) (Lemma 2.5). But this is still
not good enough, for the following reason: Let ¢ be the simplex of M such that
P€Eint c and let N be the orthogonal complement of Tp(c) in Tp(M). Then Tp(M)
is the orthogonal product Tp(c) x N, and since Tp(c) is the flat part of Tp(M), all
the interesting geometry of M near P is captured by N. However, assume now that
dim ¢ > 1, so that Sp(c) C Sp(M) is nonempty. Then for any X, Y € N N S,(M)
there is a path from X to Y in Sp(M) of length m; namely, connect X and Y to a
point of Sp(c). It follows that S,(M) has diameter <, and this for a reason
which has nothing to do with N. One is in fact sacrificing the extra information
about geodesics through P in M that was gained in Lemma 2.2.

It is perhaps tempting to disregard T'p(c) and work only with N. But N is
not intrinsic to M at P, since ¢ was not intrinsically chosen. To rectify this, con-
sider all possible isometries between Tp(M) and the orthogonal product of a
Euclidean space and a cone with vertex P, such as h: R¥ x N(k) — Tp(M).
Choose 4 so that & is as large as possible; of course dim ¢ < k¥ < dim M. Then
the image ¢p(M) = h(R¥ x P) is called the base or flat part of Tp(M), and the
image vp(M) = #(0 x N(h)) is called the normal geometry of P in M. The base
¢p(M) is intrinsic to M, for it can be characterized as {Q € Tp(M) such that
Tp(M) is a cone with Q as vertex}. Now vp(M) can be intrinsically defined as the
orthogonal complement of ¢p(M) in Tp(M). Let 6p(M) be the unit sphere in
vp(M) about P, and let p, be the intrinsic metric on 0p(M); then p (X, Y) =
L XPY. Information about geodesics in M near P is best summarized by informa-
tion about geodesics in op(M).

Let X, Y € p(M). Then PY is in the open cut locus of PX, denoted
C°(PX), if there are two or more minimal paths from X to Y in op(M). The cut
locus C(PX) of PX is defined to be cl[CO(PX)]. It will follow from Lemma 2.8
that if M is a manifold without boundary and if vp(M) # {P}, then CPH+o
for any PX C vp(M). Assuming that C(PX) # &, the maximum and minimum
curvatures of M at P in the direction PX C vp(M) are defined by:

k. (PX) = 2r — 2 min {LXPY for PY C C(PX)};
k_(PX) = 2n — 2 max{L XPZ for PZ C C(PX)}.

If C(PX) = &8, I set k (PX) = k_(PX) = 0.

ExampLES. 1. Let M be a linear 2-manifold without boundary. If P is
other than a vertex of nonzero curvature, then M is flat near P; that is, pp(M) =
Tp(M) and vp(M) = {P}, so M is locally isometric to R2. Diagram 2 shows points
of positive and negative curvature. Geodesics from a point Q near P, as seen from
above, look roughly as in Diagram 3. To determine geodesics from Q exactly it is
best to develop the two cones in the plane by cutting each of them open along
the ray PX “opposite” to PQ; then in the resulting planar nets, geodesics will be
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GEODESICS IN PIECEWISE LINEAR MANIFOLDS 13

straight lines wherever possible (see Diagram 4). Observe that FX is just the cut
locus of PQ (once M is identified with Tp(M) near P). In this example «  (PQ)
= k_(PQ) = 27 — 2 L QPX, which is indeed the usual 2-dimensional curvature of
M at P. In this case the curvature does not depend on PQ, only on P.

2. The proof of Theorem 4 hinges on this example: let M be a simplicial
3-disk triangulated as the join of a 1-simplex ¢ to a pentagon N, so M consists of
five 3-simplexes about a 1-simplex. M is metrized by making all the 1-simplexes
have length 1. M is actually a metric complex because it can be linearly embedded
in R*. Let P be the midpoint of ¢. Then ¢p(M) is essentially ¢ and v,(M)
essentially P « N (at least in a neighbourhood of P). The total angle of P « N
at Pis s 2m. Again (PX) = k_(PX) = 27 — (total angle of P * N at P) does
not depend on the choice of PX C vp(M), and the curvature at P is & 0.

3. More generally if M is a metric complex (linear or spherical) which is an
n-manifold without boundary, then k_ (PX) = k_(PX) = 0 whenever P € int a
with dima > n — 1. If dim ¢ = n — 2, then either vp(M) = {P}, in which case
M is flat near P, or else dim vp(M) = 2. In this case k (PX) = k_(PX) and the
curvature is independent of the direction PX C vp(M).

Negative
Curvature

Positive curvature

DiAGrRAM 2
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14 D. A. STONE

DIAGRAM 4

4. Here is an example in which the curvature at some points does depend
on which direction one chooses. Let U be the (closed) exterior of a unit cube
in R? with boundary C, and let V be a copy of U. Form M from the disjoint
union U U V by identifying bdy U to bdy V in the obvious way. Clearly the
geometry is interesting only at the edges and vertices of C. If ¢ is an edge of C
and P € int ¢, then vp(M) is 2-dimensional, so the curvatures at P are equal and
do not depend on the direction used. In fact k  (PX) = k_(PX) =~ in all
directions. However, the situation is different if P is a vertex of C. Now ¢p(M)
= {P} and vp(M) = Tp(M). Let PX be the axis of symmetry of U at P, and PY
the corresponding direction in V. Then P¥Y C C(PX) and maximizes L XPY.
It follows that k_(PX) = 4 tan™(2%) - 27 < 0. Also k. (PX) = 0. These state-
ments are easy to verify once one knows what geodesics from X in Sp(M) look
like. They are drawn (not very accurately) in Diagram 5. First I have split
Sp(M) into Sp(U) and Sp(V); each is the complement in the 2-sphere Sp(R?) of
the spherical triangle E,E,E3 = Sp (unit cube). Then I have projected Sp(U)
into R? stereographically from the antipode X' of X in Sp(R3), and treated
Sp(V) similarly. Geodesics from X are suggested by dashed lines, which of course
continue from one half of the picture into the other. The region E,E,X ;'
represents a spherical triangle such that XE,E, U E,E X ;’ is isometric to a por-
tion of a 2-sphere in which X and X are antipodal and XE, X, and XE, X/ are
great semicircles. In this region geodesics from X all converge to X ;'. The region
X X,E, is isometric to half of a polar cap about E; in a 2-sphere. In this region
geodesics from X consist of the geodesic X—E, in Sp(U) followed by geodesics
from E,. The region X[ X, X3 represents the points distant more than  from X.
C(PX) is the infinite cone from P on U{Y-X] for i =1, 2, 3}. Geodesics from
X in the region YX X are the continuations of geodesics from £;.

On the other hand Tp(C) is geodesically closed in Tp(U) and T'»(V), and
hence in Tp(M). Thus if Q is the midpoint of E,~E; in Sp(M), then PQ =
C(PE; in Tp(C)). Let E, be antipodal to E, in Sp(R?). It is not hard to see that
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E,
P
£, U
£,
P
v E, X
E,
4 Sp(U)
. N X El X
_ projected
from X'

Sp(V)

projected from Y’

DIAGRAM 5

C (PE; in Tp(U)) is the infinite cone from P on Q—E;. It follows that k_(PE;) =
O and k +(PE‘_l ) = /2. Thus the curvature hypothesis of Theorem 1 js not satis-
fied by M; which is just as well, since M is homeomorphic to §2 x R?.

I shall say that a spherical metric complex M has unique minimal paths near
P if P has a neighbourhood B in M which is convex and such that for every X, Y
€ B there is a unique minimal path from X to Y in B. M has unique minimal
paths locally if this is true for every P € M. If for every X, Y € M there is a
unique minimal path (or geodesic) from X to Y, then M has unique minimal paths

(or geodesics).
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16 D. A. STONE

LEMMA 2.6. Let M be p-spherical and let P € M. Then these conditions
are equivalent:

(1) k. (PX) < 0 for all PX C vp(M);

(2) M has unique minimal paths near P,

(3) if r < %p(P, link(P, M)) and if q = p sin(r/p), then whenever X, Y €
Sp(r, M) with pg(X, Y) << mq, there is a unique minimal path from X to Y in S.

Proor. Condition (1) holds ¢ vp(M) has unique minimal paths (by Lemma
2.2) ¢ Tp(M) does so (by Lemma 2.4) ¢ Bp(r, Tp(M)) does so (by Corollary 2.3)
© Bp(r, M) does so (by Lemma 2.5); and this is just condition (2). Conditions
(2) and (3) are equivalent by Lemma 2.2 again.

LeEMMA 2.7. Let X and Y be subsets of a spherical metric complex M.
Assume that for every X € X and Y € Y there is a unique minimal path in M
from X to Y. Then these minimal paths vary continuously (pointwise) with their
endpoints.

ProoF. Let ¢; be the minimal path from X; € X to Y; € Y, where X; —
X€X,Y,— YEY,and let a be the minimal path from X to Y. The o; are
eventually all contained in some compact set (for example, B, (2o(X, Y), M)).
Hence the o; have (pointwise) convergent subsequences. The limit of any such
subsequence is a path from X to Y whose length is p(X, Y); that is, the limit
path is a minimal path from X to Y; it must therefore be «. This proves the
lemma.

LemMa 2.8. Let vp(M) be the normal geometry of P in a spherical metric
complex M which is a manifold without boundary. Assume vp(M) # {P}. Let
PX C vp(M), and let PY C vp(M) be such that L XPY is as large as possible.
Then PY C C(PX).

ProoF. Say PX and PY meet gp(M) in X and Y. Suppose PY ¢ C(PX).
Set B = By(r, 0p(M)) and S = bdy B. Then for some 7 > 0 there is a unique
minimal path a, from each point Z € B to X. By Lemma 2.7 a, varies contin-
uously in Z. So |J{a,} defines a map f: X * B —> 0p(M), a homotopy of B

down to X. But for Z € S, a, does not pass through Y. So Y & f(X  S); this
is a contradiction, and the lemma is proved.

COROLLARY 29. k_(PX) > 0 for all PX C vp(M) « diam g,(M) < 7.

These conditions are also equivalent, as will be shown in Lemma 5.1, to
saying that if a geodesic & passes through P, then Pa_ and Pa_ lie in ¢p(M).

3. The hypothesis of unique minimal paths. This section is given to the
proof of some results needed in §4, which is about metric complexes of negative
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curvature. Throughout this section, unless otherwise stated, I shall hypothesize
of any p-spherical metric complex M that whenever @, R € M with p(Q, R) <
7p, there is a unique minimal path from @ to R. The main examples used in §4
are these: Let M’ be a spherical metric complex and let P € M be such that
k. (PX) < 0 for all PX C vp(M). Then, for any r < %p(P, link(P, M)), Bp(r, M)
and Sp(r, M) satisfy the above hypothesis, by Lemma 2.5.

Propositions 3.1 to 3.5 are the results from this section which will be quoted
in §4; they are stated directly below. The reader who accepts their proof may
proceed directly to §4.

ProrosiTiON 3.1. Let M be a linear metric complex, and let o and {3 be
minimal paths. Then for all t € [0, 1],

p(a®), B(@®)) < (1 — D)p(a(0), BO)) + tp(a(1), B(1)).
PrRoPOSITION 3.2. Any geodesic of length <np is a minimal path.

ProrosiTioN 3.3. Let P, Q, R € M be such that p(P, Q), p(P, R) < np/2.
Then the minimal path vy from Q to R satisfies: p(P, y(t)) < (1 - HpoP, Q) +
to(P, R), and equality holds only if t = Q or 1, 0r if P, Q and R lie on a minimal
path.

PROPOSITION 3.4. Let M be a p-spherical metric complex, not necessarily
having unique minimal paths. Let o be a geodesic from P to Q of length <7p.
Then there is an € Z O such that whenever B is a path from P to Q pointwise
closer than € to o and im § # im «, then L(§) > L().

ProrosiTION 3.5. Let P €M and let g < np/2. Then for any simplex a,
Bp(q, M) N a is either empty, a single point, or a smooth, strictly convex body
with nonempty interior in a.

I first give a rough outline of the proof of Proposition 3.1 as typical of the
methods of this section. It suffices to prove the proposition in case a(0) = §(0)
=P, say (Lemma 3.9). Let y be the minimal path from Q = (1) to R = f(1),
and for each ¢ let a, be the minimal path from P to y(f). The paths a, vary
continuously in #, so their union forms a sort of “triangle” PQR in M. This
“triangle” is not necessarily polyhedral, but it can be sufficiently well approxi-
mated by a polyhedron, so let me assume that PQR is itself one. To prove the
proposition one may consider only PQR with its intrinsic metric. I distinguish
three cases. The proof is simplest in Case I: POR has no interior points of
curvature and v is a straight-line segment. The “sides” PQ and PR of PQR need
not be straight, but they can have only reflex angles. In this case PQR can be
constructed in R (Lemma 3.6) and the required inequality can now be easily
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proved. In Case II, PQR still has no interior points of curvature, but vy is not
straight. Then the angle at a vertex Z of vy is reflex. Cutting PQR along the a,’s
from P to the various Z’s decomposes PQR into “triangles” in Case I, and the
required inequality follows. In Case III, the general case, PQR may have interior
points of curvature, Y. They all have negative curvature; in fact, cutting PQR
along the «,’s from P through the Y’s decomposes PQR into “triangles” in Case
II (Lemma 3.8), and the proposition follows.

Now the points Y arise (roughly speaking) in this way: A generic a, passes
through the interiors of simplexes a, (), b,(?), a,(t), . . . , by_;(¥), a,(¢), in that
order, with dimensions alternately n, n — 1, n, . . ., n (assuming that v is also
generic). The exceptional &,’s pass through (n — 2)-simplexes, generically
speaking; these a,’s are isolated and meet the (n — 2)-simplexes in isolated points,
which are the ¥’s. Thus Case I arises when examining “short™ paths v such that
the sequence a,(?), . . . , ,(¢) is the same for all ¢. The generic case is not the
general case, however; and in general one cannot assume that the a,(f) and b(t)
have dimensions n and n — 1 respectively, even for most values of £. Lemma 3.7
shows that, nonetheless, for short segments of v, Case I does apply. To analyze
Case I, and also to construct a p.l. approximation to PQR, I first fix a sequence
of the form a,(?), . . . , @,(¢) and examine paths which yield this sequence.

Let M be a spherical metric complex, and let P, Q € M. A chain from P
to Q is a sequence C = (@, . . ., a;) of simplexes of M such that P€a,,Q €
a; and b; = a; Na;,, is nonempty, fori=1,...,k—1 (if K =1 this condition
shall be void). A path a from P to Q lies within C if there are x;, ... ,x,_; €1
(which need not be distinct) such that a(x;) = b; and such that (setting x4 = 0,
x; = 1) amaps [x;, x;,,] intoa;,; and a } [x;, x;, ;] is a geodesic, fori = 0,

.,k — 1. The development of C is a spherical metric complex C* defined thus:
take disjoint simplexes a;* isometric to a;, and identify, fori=1,...,%k — 1, the
faces corresponding to b, in a; and a;, ,. Then C* has its intrinsic metric p.«;
however I shall usually write p, for p.+, and call p, a “metric” on C, to save
explicit mention of C*.

If P€a; and Q € a;, then any geodesic from P to Q in the metric P isa
path within C. On the other hand, every geodesic from P to Q in M lies within
some chain. For many purposes, including that of looking for minimal paths in
M, it would make sense to lay down as an axiom of chains that the simplexes of
a chain be distinct; but in the proof of Proposition 3.4 it will be useful to allow
chains to have repeated simplexes.

Let paths a and 8 from P to Q and R within C be determined by points
X, and Y; of b; respectively, fori=1, ...,k — 1; assume Q and R are both in
a,. Then I can form these 2-simplexes (some of which may be degenerate):
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(P, X,,Y))Cay,

X p Y b Y X, X, Y Cap fori=2,...,k-1,

and
(X,, Y, O (X, Q, R) Ca.

The metric 2-complex formed by the union of these simplexes, K, is called the
span of o and B. Topologically K looks like a finite sequence of 2-disks with
consecutive ones either touching at boundary points or being joined by an arc
between boundary points.

The next lemma shows that if « and g are geodesics and are not too long,
then K is either an arc, a disk, or at most an arc followed by a disk; that is,
once o and § separate they cannot again converge. In the outline of the proof of
Proposition 3.1, K is the polyhedron that approximates, in Case I, the “triangle”
of minimal paths from P to Q-R.

LEMMA 3.6. In the previous notation assume that « and § are geodesics
of length <mp/2. Then K is isometric to a metric complex L in a p-spherical
2-sphere S of this form:

(DL =L, UL,, where L, is a polygonal region and L, an arc;

(2) the boundary of L, is a simple, closed curve made of geodesic segments
with vertices W, U,, U,, ..., U,, V,, ..., V, in that order;

LU, ...,LU, LV, _ys...,LV, (measured within L) are Zm;

(4) the length of U,,,~V,, is <mp;

(5) L, Cint By, (np/2, S);

(6) L, is a geodesic segment W—-X;

ML, NL, =W.

(See Diagram 6.) Under this isometry P, Q and R correspond to X, U,and V,
respectively, a to X—-W-U,— -+~ U, and  to X—-W-V,— -+ ~V,. Thus
X—W represents whatever initial portion im « and im § have in common;, of course
ifimaNim B =P, then X = W and L, is degenerate. L, can also be degenerate.

ProOOF. Lete,,..., ¢ in this order be the 2-simplexes (some of which
may be degenerate) used to define K. By discarding for now an initial portion
common to « and 8, I may assume c, is nondegenerate. The proof is by induc-
tiononj=1,..., the inductive hypothesis is that ¢, U - - - U ¢ has been
embedded in S and that its image, which I call by the same name, lies in the non-
degenerate, convex, spherical triangle clf =Pxd; (whered; =¢; N¢;,, for
j=1,...,1-1).

The initial case is trivial. Now let j = 2. Consider first the possibility that
¢, is degenerate. It suffices to show that d, is not degenerate. If this did happen,
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say d; = (wj, wy)and d, = w{ (observe that d; N d,, can never be empty),
then w"; would be an interior vertex of either a or §, say of §, and ¢, would be

a neighbourhood of w% in K. But /_wf (in K) <7 (since ¢, is a convex triangle
in S); this would imply that 8 is not a geodesic in K at w}, a fortiori not in M,
contrary to hypothesis. Now assume c, is nondegenerate. I can embed ¢, in S
so that a neighbourhood of d; in ¢; U ¢, is embedded. The vertices of ¢, are
distant s<<7p/2 from P in K, and hence in 8, since L(a) and L(8) < 7p/2. So c,
lies in the convex set

X

DIAGRAM 6

int Bp(np/Z S), and it follows that ¢, U ¢, is embedded. Say d, = (w}, wd),
and say wl is a vertex of 8. For B to be a geodesic in M, and hence in K, Lwl
(in K) must be >7. Hence ¢, Uc, CP »d,. So ¢} is 2-dimensional and thus
nondegenerate; it is convex because L(d,) < 7p and its other two sides have
length <np/2. This finishes the case j = 2.

For the general step I apply the same argument to cj' and ¢; 1 with these
modlﬁcatlons ey, is degenerate let d; = (w}, wj) then Lw’ (inc, V

G < Lw (in ¢ ) sn (since cI is convex), and it follows that d;, cannot be

degenerate Ifc +1 is nondegenerate, say d;, ; = (w wi +1) then Lw (in
cj Ueiy) = Lwl (in K) > 7, and as before ¢jUciyy CPrdjy,y Thrs com-
pletes the inductive step.

At the end of the induction L, has been constructed but for labelling its
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vertices. W is the image of P, Uy, . .., U, are, in order, the distinct images of
those X; such that LX; (inK) > m;and V,, ..., V, are defined similarly. I
have hitherto assumed im « and im § have no common initial portion, but the
general case presents no further difficulty. This completes the proof of Lemma
3.6.

The next two lemmas enable one to generalize from Case II situations to
Case III ones.

LEMMA 3.7. Let M be a p-spherical metric complex, not necessarily having
unique minimal paths. Let a be a geodesic. Then there is an € Z Q such that
whenever § is a path pointwise closer than € to a, there is a chain B satisfying:

(1) a is within B,

(2) B is a path in B; more strictly, B can be lifted to a path in the develop-
ment of B.

ProoF. For each t €1 let {a(f)) be the simplex such that a(¢) € int {a()).
There is a minimal subdivision 0 = £, < ¢; - - - < ¢, = 1 of I such that {a(z)}
is the same simplex ¢; forall r € (¢t;_, ¢),i=1,...,k Set b, = {a(t)) so
b;=a;Na; . Then C=(ay,...,a,)isachain. Set X, =P, X, =Q, X; =
imanp;fori=1,...,k—1,and say that X; = a(y;). Choose numbers
Vo=0,v,,;=1,andy;fori=1,...,ksothat u;, | S<v; Ku,; and set
Y;=a),fori=1,...,k Note that Y;E€intge;and X;Eint b; fori=1,

.,k — 1. Choose € so small that for each i =0, ...,k the set N, =
U {By(yy(€, M) for t € [v;, v;, (1} is contained in int star(X;, M). (See Diagram
7)

Let 8 be a path from P to @, pointwise closer than € to a. Let B =
(¢y» - - - 5 ¢,) be the chain analogous to C defined for B. Then f is a path in
B (though not within B) in the sense of assertion (2). I have to show a is
within B. Now im g C U{N;} = U{int star(b,;, M)}. Hence every {f() has at
least one b; as face. For eachi=1, ...,k —2 define the set T to be {t €
[v;, v;4 4] such that b,_, is not a face of (§(¢))}. To check that T; # &, I now
show that v;, , € T;: for f(v;, ) is within distance € of Y;, ,, and hence f(v;,,)
€ int(star(X;, M) N star(X;, ;, M)) = int star(a;, ,, M). So g, <{B ). If
b;_, were also <{B(v;,,)), this would say that & took two simplexes—q; and
a;, ,—where one would do—(f(v;, ,) in other words, @ would not be a geodesic.
Hence v;, ; € T;. Moreover f(v;) € int star(X,_,, M) = int star(b;_, , M) again by
choice of €, so v; & T;. It follows that gl.b. (T}) is one of the #; call it #;;.

X Now X; € djy = (B(tj»))>- Forj@) <j<jli+1), v, <;<vy s
ence

B(¢;) € int(star(X;, M) U star(X,, ,, M)).
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DIAGRAM 7

By choice of j(i + 1), (t;) € int star(X;, M). That is, X; € d; for j()) <j <
j(i +1). Any ¢; is spanned by d;_, and d;, so ¢;(;, 1) contains X; and X, ,.
Thus « is the path within B determined by the points Z; € d; defined by Z; = X;

for j(i) <j < j(i + 1). This completes the proof of Lemma 3.7.

LeEmMA 38. Let P, Q, R €M. Let vy be a path from Q to R, and for each
t let a, be the minimal path from P to (t). Then there is a subdivision 0 = ¢,
St; < St =1o0f such that foreachi =0, . .. ,k—l,az,‘.ana’ot,,.+1
lie within the same chain.

ProoF. Recall (Lemma 2.7) that o, varies (pointwise) continuously in £
Let T C I be the set of ¢ for which there exists a subdivision 0 = ¢y < * "< ¢
=t (which may vary with #) of [0, ¢] such that &, and &y, , lie within the
same chain. Applying Lemma 3.7 to a = o, and § = e, as ¢ approaches 0 from
above shows that T# @ (because in this case 8, being a minimal path, is within
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the chain B of that lemma). Let t* = Lub. (7). Applying Lemma 3.7 as ¢
approaches t* from below shows that t* € T; applying the lemma once more as
t approaches t* from above would show there are ¢ € T which are Z r*—unless
t* = 1, which must therefore be the case. This proves Lemma 3.8.

Proposition 3.1 follows from:

LeMMA 3.9. Let M be a linear metric complex, P € M, a and § minimal
paths from P.  Then p(e(t), B(1)) < tp(a(1), B(1))-

Proor oF PRoPOSITION 3.1. Let 7y be the minimal path from a(0) to (1),
and apply Lemma 39 first to « and 7, and then to 7 and 8.

Proor oF LEMMA 3.9. The proof distinguishes three cases; most of the
work is done in the first one.

Case 1. « and f are within the same chain C, and Q and R are in the same
simplex. Let K be the span of a and 8. If K degenerates to an arc, the required
inequality is easily proved. Otherwise, K is isometric to a complex L C R? of
this form: L = L, U L,, where L, satisfies the hypotheses of Lemma 3.6. Ex-
tend the lines U, _,-U,,_4,..., W-U;, W-V,, ..., V,_»—V,_, past their
second endpoints till they meet U,,—V,,,sayin Y;,..., Y, r=m+n-2).
Set Y, = Q, Y,., =R, and let 1, be the geodesic in L from W' to ¥;. It suffices
to show that p; (n,(9), m;4. () < to (Y, Yy (), fori=0,...,r. Inother
words the lemma is reduced to the case that m =n = 1.

Now L=(U, V, W)U(W, X). Seta(t)=U'and () =V'. If U' and V'
both lie in « or in B, the required inequality is trivial, so I assume U’ € W-U,

V' € W-V. Taking polar coordinates at W, let U~V have equation r = r(6).
Let X—W have length ¢. Then U'—¥" is no longer than the smooth curve v from
U' to V' defined by r = () = tr(8) = (1 — t)c. Let ds and ds’ denote arc-length
along U~V and 4. Then dr’ = tdr; hence

@s')? = ()*@0)* + @'y < ()*(d0)* + (tdr)* = *(ds)*.
So ds' < tds, and hence L(U'-V") < L(y) < tL(U-V). The lemma is proved in
Case I.

Case I1. o and § are within the same chain C. Say @ € 4; and R € a;, with
I<k. Let the minimal path from Q to R be determined by Z; € b;, fori =,
c.. k=1, 8etZ, , =0, Z, =R, and let {;be the geodesic from P to Z,,
fori=I-1,...,k Foreachi=1I-1,...,k=1,0,6(0), 1, @) <
tpC(Zi, Z;, ) by Case I. Adding these inequalities for all i,

Pc(g'z—](t), S'k(t)) < ch(fi(t), §1+1(t)) < tz PC(Z,', ZH-l) = tp(Q, R);

which proves Case II.
Case 1II. « and B general. Let 7y be the minimal path from Q to R. By
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Lemma 3.8 there is a subdivision 0 = ¢, < ¢; < - - < t;, =1 of I such that for
eachi=0,...,k~1 the minimal paths ¢; and ;. , from P to y(t;) and (¢, ()
lie within some chain; of course oy = a and o, = §. I apply Case II to each
consecutive pair of &;’s and add the resulting inequalities; as in the proof of Case
II this proves the lemma in general.

Lemmas 3.10 to 3.12 are the heart of the proofs of the other propositions.
I shall prove first Lemma 3.10 in Case I, then part of Lemma 3.11, then Lemmas
3.10, 3.11 in full, and finally Lemma 3.12.

LemMMA 3.10. Let P, Q, R be such that p(P, Q), p(P, R) = np/2. Assume
there exists a geodesic v in M from Q to R which lies in int Bp(np/2, M). Then
PP, () < (1 —p(®, Q) + to(P, R) for all t € 1, with equality only ift =0
or 1,0r if P, Q and R lie on a minimal path.

LEMMA 3.11. Let a be a minimal path from Q to P of length <np[2. Let
v: [0, €] — M parametrize a short geodesic segment from Q by arc-length. Then for
¢ sufficiently small (but nonzero):

(1) LaQ7 € 7/2 © p(P, ¥(1)) is strictly decreasing on some nondegenerate
subinterval [0, 8];

(2) LaQ7 = n/2 © p(P, ¥(t)) is strictly increasing on [0, €].

ProoF oF LEMMA 3.10, CASE I. Assume the minimal paths « and § from
P to Q and R lie in the same chain C, Q and R are in the same simplex, and
v = @-R. Ishall not assume 7y C int Bp(mp/2, M) (this is implied by the inequal-
ity to be proved).

Let K be the span of @ and § . By Lemma 3.6 K is isometric to a metric
complex L in a p-spherical 2-sphere S, L satisfying the assertions of that lemma.
It suffices to prove the inequality with py; replaced by p” = p; and with L,
degenerate. Thus I assume L is a polygonal figure with vertices W, Uy, ..., Uy,
V,s ..., Vy; 1 have to show that if Z divides U, —V,, in the ratio 1 —#: ¢, then
p"W, Z)< (1 -0p"(W, U,) + tp"(W, V,,). This is proved by induction on
m + n. Let w denote the length of U,,—V,, u,, 4,, . . . , 4, the lengths of
W-U,, Uy=Up oo oy Upy_y—Uppand let u =uy +uy + - - +u, = L(@).
Let v be defined similarly. Let z = p"(W, Z).

Initial step. m =n = 1. 1 first prove the inequality for the midpoint Z,
of U,,~V,. Let the rotation of S through 7 about the axis through Z, carry W
into W'; U and V are of course interchanged. Then W~Z,—W' is a geodesic of
length 2z,,. It is the unique minimal geodesic from W to W' because u, v < mp/2
and By,/(g, S) is convex whenever q < 7p/2, so that zy = np/2. The path W-U-
W' has length u + v and U does not lie on W-Z,—W' (or (U, ¥, W) would not
be a 2-simplex). Hence 2z < u + v, as required.
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By repeating this argument the strict inequality is shown whenever ¢ is a
dyadic fraction, not 0 or 1. Since z varies continuously with ¢, the weak inequal-
ity is shown. But now any position of Z other than U, V or Z, lies between Z,,
and one of the others—say U. Then Z divides U~-Z,, in the ratio 2(1 —): 2t — 1.
Soz<2-Nu+2(1-t)zgx@-1Nu+A-)u+v)=m+1-1wand
the strict inequality is proved if 0 < # < %. A similar argument applies if ¥ < ¢
< 1; and the initial step of Case I of Lemma 3.10 is proved.

Inductive step. Now assume that m (say) is #1. L can be obtained from
the convex triangle (U,,,, V,,, W) by deleting the convex polygons H, = WU, U,
*++ U, and Hy, = WV, V, - - - V,. Within By, (np/2, §), if W-U, is extended
beyond U, it cannot meet H, after leaving U, nor can it meet H, after leaving
W. 1t follows that the extension of W—U, meets bdy L in just one point Z,
which lies in U,,~V,, and is not U,, or V,,.

Let W—Z, have length z,. Say Z, divides U,,—V,, in the ratio 1 =, :¢,;
then by the initial step since ¢y #0 or 1,2y K topg(W, U,,,) + (1 —ty)og(W, V,,)
Ktou+(1-1,)v. Now W-Z, divides L into two regions: L', with boundary
U, U,Z,,and L", with boundary WZ,¥,, - -+ V;. Both L' and L" satisfy
the hypotheses of this lemma and both have fewer vertices than L, so by induc-
tive hypothesis I may assume the lemma holds for L' and L".

Let Z divide U,,,~V,, in the ratio 1 —¢:¢ with t <¢,. Then Z€ L" and
pL(W, Z) = py «(W, X). Z divides Zy—V,, in the ratio 1 — (#/ty) :t/ty, 50 2 <
(t/tg)zg + (1 — (t/te)v < tu + (1 — ), with equality only if # = 0.

If t > ty, then Z € L' and divides U,,,—V,, in the ratio (1 — £)/(1 = #,):
t/(1 = ty). Any minimal path from Z to W in L must lie in L' and consist of a
minimal path from Z to U, in L' followed by U;—W. Hence z <u, +
@/ =t ) u—uy)+ (A -0/ -t )Nz —u,) < tu + (1 = Hv again, with equality
only if £ = 1. This completes the inductive proof of Case I of Lemma 3.10.

PART OF PROOF OF LEMMA 3.11. I now prove: If there are ¢* arbitrarily
close to O such that p(P, v(t*)) < L(c), then LaQ¥ < n/2.

Choose such a #* so small that a and the minimal path § from P to R =
7¥(t*) lie within a common chain C. Let K be the span of @ and 8. I may assume
im a and im 8 have no common initial portion; in particular if K degenerates to
an arc, then im  C im @ and L&Qy = 0. So K is isometric to a polygonal region
L, satisfying the assertions of Lemma 3.6. If ¢ 2 0 is close enough to 0, then
the minimal path in K from P to y(f) corresponds to the path W-U,— -+ - -U,,_,
—Z(t), where Z(¢) is the image of 4(¢). By Case I of Lemma 3.10 this path is
strictly shorter than a. Hence L(U,,_,~-Z(t)) < L(U,,_,-U,,), and this must be
true for all small enough 7. () of Lemma 2.2 shows that L U, of triangle
Upp—1U,, Z(¢) must be <n/2. That is, LaQ7 (in K) < 7/2; a fortiori LGQY (in
M) <7/2.
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ProoF oF LEMMA 3.10. By Lemma 3.8 there is a subdivision 0 = ¢, <<
t, < st = 1of Isuch that foreachi=0, ...,k — 1 the minimal paths
from P to (z;) and 7(t;, ,) lie within a common chain. I use induction on &.
The initial case, when k = 1, is just Case I of this lemma.

Now say k = 2. Set Z = y(¢,) and let { be the minimal path from P to Z.
Let K' be the span of « and ¢ in some common chain, and K" the span of { and
B in some chain. K'is isometric to L' = L} U L, satisfying the assertions of
Lemma 3.6; so L) has vertices W'U; « - - U, /¥ -~ V;;and L, is a
geodesic segment W'-X', with L} N L, = {W'}. Here X'-W'-U;— -+ U,
corresponds to a, X'—W'—=V;~ -+ ~V, to §, and X'~W' to whatever initial
portion « and ¢ have in common; of course X' may equal W'. Similarly K" is
isometric to a complex L” C S, with L" = L] U L, where L] has vertices

W'U{ -« UpnVpw+++ Vy,and Ly = W'-X", such that X"-W"-Uj- « -« -
U,,» corresponds to § and X"—W"-V{~ + -+ =V, v to B. (See Diagram 8.) Set

u=L@),v=LE), k= L(y)and z = L}). Say Z = y(u), so that U, -~V
has length ph and U,, »—V,» length M, where A = 1 — p. By Case I of this
lemma it suffices—in this case, X = 2—to show that z < Au + pv, with equality
only under the given circumstances.

If either K' or K" degenerates into an arc, the required inequality follows
from Case I of Lemma 3.10. So I now assume neither is degenerate. Let Z,
and Z, divide V,,—U,,- and U, »—V,~ in the ratio ¢: 1 —¢. For ¢ sufficiently
small, the minimal path from X' to Z; in L' consists of the segments X'—W'—
Vi— -+ ~Vy_,—Z;,and the minimal path from X" to Z; in L" consists of the
segments X"—W"-U;— - * - —=U,,»_;—Z,. Say these paths have lengths u, and
V;. An elementary calculation shows that it suffices to prove z < \u, + uv,.

Now up to first order in ¢,

6] z=u, + tuh cos(L V1) + O(t?),
2 z =, + N cos(L U,,») + O(t?).

Since A + u = 1, A(1) + u(2) gives
z =, + v, + Nath [eos(L V) + cos(L Up,»)] + O(t?)
= N, + v, + 2Nuth cosB(L Ve + L Up) cos (L Vyyr = L Upyw) + O(22).
The point is that since 7y is a geodesic, L V,',' +L U,';, » 2 m, so that the third term
on the right-hand side is <0. Thus, for ¢ small enough, z < Au, + v, unless
LV, +LU,»=m. In this case, consider the figure formed by joining the 2-
simplexes {Z;, Vpr_y, Vyry and (Z/, Uy »_,, U, ) along their common portion

of ¢. The argument used in Case I applies to this figure, and the desired inequal-
ity follows.
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in C
(simplexes
of C
not shown)

DiAGRAM 8

In general there is more than one Z; between @ and R. Let Z; and Z; be
the last distinct ones before R. By inductive hypothesis one can write down an
inequality for p. (P, Z;) in terms of oo, Q) and pc(P, Z;). By the argument
above one has an inequality for p, (7, Z;) in terms of p, (P, Z;) and o B, R).
Combining these inequalities yields the desired result for Z;. By inductive hypoth-
esis the desired inequality holds for all the Z’s, and hence also for points between
them, by Case I. This completes the proof of Lemma 3.10.

ProoF oF LEmMMa 3.11. Choose e < ¥%p(Q, link(Q, M)) (cf. Lemma 2.2);
then y and a I [0, €] are straight-line segments. It follows from Lemma 3.10
that there is a unique § € [0, €] at which p(P, ¥(z)) takes on its minimum value;
also that p(P, () is strictly increasing on [0, €] ¢ § = 0, and strictly decreasing
on [0, 8] if & # 0. So it suffices to show that § # 0 « LaQ¥ < n/2.

The part of the proof of this lemma already given shows that if 5 # 0,
then £ @QB < n/2. Now assume that L G0 < n/2. Then for any ¢ € [0, €] the
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minimal path 8, from o(€) to 7(¢) has length given by (x*) of Lemma 2.2:
cos(L(B,/p)) = cos(e/p) cos(t/p) + sin(e/p) sin(t/p) cos(L aQ7),

if p is finite, and
(LB))? = € + 12 - 2et cos(LaQy), if p = oo
In either case, L(,) < € if ¢ is small enough. For such ¢,
PP, Y1) < p(P, afe)) + p(ale), (1)) = (L(e) —€) + LBy < L(@)-
Hence § # 0. This completes the proof of Lemma 3.11.

LEMMA 3.12. Let P, P €M, let q, ¢’ < np/2 and assume that p(P, P') <
q +q'. Then By(q, M) N Bpi(q', M) is weakly convex in M; in fact any minimal
path in Bp N Bp is a geodesic in M.

Proor. Let @, R € Bp N Bpr and let ¥ be a minimal path from Q to R in
Bp N Bp:; such a path exists because B, N Bp: is compact. Since Bp N Bp:
is not a metric complex, ¥ need not a priori be pl.

Pick € so that 0 < e < min(mp/2 —¢q, 71p/2 ~q'). Let 0=t  <¢t; <***
s t, = 1 be a subdivision of I such that pp(v(¢)), 7(t;4,)) <€ fori=0,...,
k—1. Set X;=y(t)fori=0,...,k so X, =@, X; =R. Then the minimal
path in M from X; to X, , lies in int Bp(np/2, M) N int Bp/(np/2, M). By
Lemma 3.10 this minimal path lies in B, N Bp; hence y I [¢;, ¢;,.,] must be
this minimal path. This shows that v is p.l. Moreover Lemma 3.10 shows that
Y(t;s t;4.4) C int Bp N int Bpr. So ¥(0, 1) C int Bp N int By,

Foreacht #0or 1, T, 4(Bp N Bp) = T, (,)(M). Thus the criteria for y
to be a geodesic in M and in Bp N B, coincide. So 7 is a geodesic in M and the
lemma is proved.

ProOF OF PROPOSITION 3.2. Let « be a geodesic from P to Q and § the
minimal path from P to Q, and assume that [ (a) < p. Suppose that a(}) #
B(%%). Pick g so that [(a) < 2¢g < mp. Let y be a minimal path from (%) to
B(%) in Bp(q, M) N BQ(q, M). Then 7 is a geodesic in M by Lemma 3.12. Since
L(a) = L(p) it follows from Lemma 3.10 that p(P, y(#)) is decreasing in ¢ for ¢
sufficiently close to 0. By the first part of the proof of Lemma 3.11, L ya(%4)a_
< 7/2. Similarly Lya(%)a, < m/2. But then La_(*%)a; < m, contradicting the
hypothesis that « is a geodesic. So a(}%4) = f(}4). The same argument shows that
a('s) = B(%) and so on, till a(r) = B(¢) whenever ¢ is a dyadic fraction. By con-
tinuity a(t) = B(¢) for all ¢, which proves the proposition.

PROOF OF PROPOSITION 3.3. In view of Lemma 3.10 it suffices to prove
that the minimal path y from Q to R lies in int Bp(mp/2, M). Pick g so that
P, Q), p(P, R) < q < mp/2. Let 7" be a minimal path in Bp(g, M) from Q to
R. By Lemma 3.12, 7" is a geodesic in M. Since L(y") <2¢ <7p,7" =7 by
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Proposition 3.2. This proves Proposition 3.3.

ProOF OF ProPOSITION 3.4. By Lemma 3.7 € can be chosen so that when-
ever § is a path from P to Q pointwise closer than € to a, there is a chain B such
that 8 is a path in B and a is within B. Assume that [(8) < L(«); I have to show
that im 8 = im . The proof is a modification of the proof of Proposition 3.2:
one replaces M by B and uses Case I of Lemma 3.10 instead of the full version.

PrROOF OF ProposiTiON 3.5. It follows from Lemma 3.10 that Bp(q, M)

N g is either empty, a single point or a strictly convex body with nonempty
interior in 4. Lemma 3.12 shows that at each point of (bdy Bp) N a there is a
unique supporting hyperplane in a; and it follows that B, N g is smooth.

4. Negative curvature. In this section I shall prove:

THEOREM 1. Let M be a complete, simply-connected linear metric complex
which is an n-manifold without boundary. Assume that +(P)?) <0 forall
PEMand all PX C vp(M). Then M is p.l isomorphic to R".

For smooth manifolds the proof of the Cartan-Hadamard theorem falls into
two parts (see J. Milnor [6]). First one shows, using the calculus of variations,
that if V is complete, simply-connected and has everywhere nonpositive sectional
curvature, then V has globally unique geodesics. It then follows that at any P €
V, the map expp: Tp(V) — V is everywhere nonsingular and is therefore a dif-
feomorphism. I shall follow this plan as best I can. Let me deal with the second
part of the proof first, where I shall have to modify most the argument outlined
above. This part of the proof will take us up to Corollary 4.6.

As Diagram 3 of §2 shows, it is not at all clear how to define a global map
“expp”: Tp(M) — M, far less how to show it a homeomorphism. I shall replace
the proof used in the smooth case by a “critical point” argument. Let p: M —
R be defined by p(X) = pp (P, X). The main step is to show that the only
“critical point” of p on M is P. This requires induction on n, the dimension of
M.

For any a €M, p t a takes on its minimum value at just one point @ € a
(Proposition 3.5). Starring M at all the @, in order of decreasing dimension, gives
a subdivision, which I call M again, such that if v and w are vertices which span
a lsimplex, then p is strictly monotone on v—w. Lemma 4.4 will show that the
vertices are the only possible “critical points” of p, and Lemma 4.5, which makes
use of the inductive hypothesis, will show that the vertices are not in fact
*“critical points” either.

I must first make a detour to discuss p.d. regular neighbourhoods. I do not
know whether a general theory has been established for them, so I shall give an
account which will suffice for the purposes of this paper.

Let f: M — R be a function such that for each a €M, f | a is strictly
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convex, has smooth level surfaces and takes its minimum value at a vertex of a.
In the paragraph before last, p is a function of this type, once M has been sub-
divided. Let ¢ be a number such that bdy f° contains no vertices of M. (Recall
that f€ is, by definition, {X € M such that f(X) < c}.) Define the subcomplex
K C M by K = {a such that f(v) < ¢ for all vertices v <a}. Then K is a full
subcomplex of M. If b € M meets K but is not in K, then b can be uniquely
expressed as a’ « b', where ¢’ €K, ' NK =&. f€ N b is a smooth, strictly
convex neighbourhood of @’ in » which does not meet »'. Hence f¢ is a p.d.
regular neighbourhood of K in M; it is the only type of p.d. regular neighbourhood
which I shall use in this paper. For example, let M be a p-spherical metric com-
plex which satisfies the condition of §3 that whenever Q, R € M with p(Q, R)
< 7p, then there is a unique minimal path from Q to R. Fix PEM, and let
p: M — R denote the function distance-from-P. Then p€ is a p.d. regular neigh-
bourhood of some subcomplex of M, as above, provided that ¢ < np/2, by
Proposition 3.5. This type of example lends itself to inductive arguments; for if
M is such a metric complex, let r < %p(P, link(P, M)), let P* € Sp(r, M) and let
p*: Sp — R denote the function distance-from-P* (in Sp); then p*° is also a
p.d. regular neighbourhood in Sp, provided ¢ < mp sin(r/p)/2, by Lemma 2.6
and Proposition 3.5.

To prove a uniqueness theorem for such regular neighbourhoods, the idea
is to “linearize” M and f, so that the standard theorem for pl. regular neighbour-
hoods can be applied (see for example Rourke and Sanderson [11]).

First let M be a p-spherical metric complex, with p finite. I now construct
a metrization M" of M as a linear metric complex, together with a p.d. isomorphism
A: M — M". The reverse of this construction—giving a linear metric complex a
spherical metrization—will be used in §5. For each 2 € M, think of ¢ as a sim-
plex in a p-sphere ' C R™*1. Say § has centre C and let a have vertices v,

., V. Let a" be the linear simplex (v, . . . , v, C R, Since C ¢ [a],

the affine space generated by g, radial projection from C gives a diffeomorphism
A,: a—>a". Up to isometry, a" and A, depend only on a. In particular if b <a,
then there is a natural isometry between b" and A (b) <a" such that X\, corre-
sponds to A, I b. Hence the linear metric complex M" can be defined as {a"}
with incidence relations induced from those of M, and the natural map A = J{A, }:
M — M’ is a simplicial isomorphism and is smooth on every simplex. A is called
the linearization of M.

For use in §5 I give the condition necessary for a linear metric complex M"
to accept a p-spherical metrization. Let " € M" be a k-simplex, and think of a”
as a linear simplex in R'* 1. Let the (k — 1)-sphere circumscribed about " in [a"]
have radius p(¢”). Let S be a sphere with radius p and centre C circumscribing
a"; then p must be >p(a"). If p > p(a"), then C & [2"], and radial projection
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from C carries 2" onto a p-spherical k-simplex  C S. If p 2 p(@") for all " € M",
then following the previous construction I obtain a p-spherical metric complex M
and a homeomorphism A": M — M” which is a simplicial isomorphism and is
smooth on every simplex. A" will be called the p-spherical approximation to M".
The second hypothesis of Theorem 3 is made to ensure that such a number p
exists.

Let M be a p-spherical metric complex, with p finite, and let A: M — M"
be its linearization. Set f” = fo X™! (f as in the antepenultimate paragraph);
then for each " € M", f" 1 a" is strictly convex, has smooth level surfaces and
takes its minimum value at a vertex of @". So f"° is a p.d. regular neighbourhood
of K" = \(K) in M". Define the linearization f*: M" — R of f by f*(v) = f(v)
for every vertex, and f* is linear on every simplex. Then f*¢ is a p.l. regular
neighbourhood of K" in M".

LEMMA 4.1. Let M be a linear metric complex, let f€ be a p.d. regular
neighbourhood of K, and let f*¢ be the linearization of f¢. Then there is a p.d.
isomorphism h: M — M such that:

h(f%) = f*;

h(a) = a for every a €M, and h | a is smooth;

h taistheidentityifa€KorifaNnK=4g.

ProOF. Let N =J {int b such that 5 N K #& but b ¢ K}. Then bdy f*°
C N. Let X €bdy f*; say X € int b, and write b as a’ » b’, with ' €K and
b' N K =g . There are unique points Y €4’ and Z, € b’ such that X € Yy—Z;
and then Yy—Z, N bdy f* = {X}. As X varies in bdy f*°, the int(Yy-Zy)
are disjoint and vary continuously, in fact smoothly in every simplex. Since N =
Ulint(Yy—Z,) for X € bdy f*}, it follows that N is a fibre bundle over bdy f *¢
with fibre (0, 1). The hypotheses on f imply that bdy f¢ meets each fibre just
once, and so can be regarded as a section g of N. It is now straightforward to
define a p.d. isomorphism A#: ¢! N — ¢l N such that:

h preserves the fibres of N;

(Y x—X) = Yx—g(X);

on Yy—Zy, h is the identity near Y, and Zy;

h is smooth on every simplex.
Extend & over all of M by the identity on those simplexes of M which are con-
tained in or disjoint from K. Then # satisfies the requirements of the lemma.

I now return to the proof of Theorem 1. In view of Lemma 4.1 it suffices
to work with the linearization p" of p instead of with p.

ProrosITION 4.2. Let M be a p-spherical metric complex which is an
n-manifold. Assume there are P € M and a finite number q < np/2 such that:
(1) Bp(q, M) has a unique minimal paths and is disjoint from bdy M;
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(2) for each a € M which meets Bp(q, M), p | a takes on its minimum value
at a vertex of a;

(3) Sp(q, M) contains no vertices of M.
Then p"? is a p.l. n-disk.

ProoOF. The proof is by induction on n. It includes Lemmas 4.3 and 44,
and Corollary 4.5.

Consider {p(v) for v a vertex lying in Bp(q, M)} C R, and write these num-
bers in strictly increasing order, say d,, . .., d;.. Since M is complete and ¢
finite, there are only finitely many d;.

LemMMA 4.3. If di sKc<esx dj+ 1» then there is a p.l. isomorphism h: M
—> M" such that:

h(p"e) =p"%

h(a) = a for every a €M";

h Y ais the identity ifa C p" orifa N p" =g&.
In other words, the vertices of M" are the only possible “critical points” of p" up
to level q.

ProOF. Let K" = {2 € M" such that p"(v) < d; for all vertices v < a}.
Then K" is a full subcomplex of M", and p"¢ and p"¢ are both first-derived neigh-
bourhoods of K”. The lemma is now a standard result; see for example Rourke
and Sanderson [11, 3.6]. The proof is analogous to that of Lemma 4.2, but not
the same because the construction there is not p.l.

LeMMA 4.4. Assume Proposition 4.2 in dimensions <n — 1. Let v be a
vertex of M", and say p"(v) = d Let ¢, e be numbers such that d, i1 scs d
<e<d,. Thenthereisa pl isomorphism h: star(v, M") — star(v, M") such
that:

h(a) = a for all a € link(v, M");

h t ais the identity if a € link(v, M") is contained in or is disjoint from p"¢.

PROOF. Set N¢ = p"¢ N star(u, M"), N¢ = p" N star(v, M") and L¢ = p"¢
N link(u, M"). On link(v, M"), & can be constructed by Lemma 4.3. Let K =
{a € link(v, M) such that p(w) < d,_, for all vertices w <a}. Let :: M — M"
be the linearization of M, and let K” = A(K). Then N¢ and N¢ are first-derived
neighbourhoods in star(u, M") of K" and v + K" respectively. I shall use the
inductive hypothesis of Proposition 4.2 to show that L€ is an (n — 1)-disk. An
elementary argument in regular neighbourhood theory then shows that N° and
N€ are both n-disks which meet link(v, M") in (n — 1)-disks, and the desired ex-
tension of h over star(v, M") can easily be made.

Recall that there is a natural simplicial isomorphism g: link(v, M) — S,(M).
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By virtue of the way in which M was subdivided, g(K) can be characterized as

{a € 5,(M) such that Lwv < /2 for all vertices w < a}, where a is the minimal
path from v to P. Say va meets S (M) in P*, and let pg denote the function
distance-from-P* on S, (M). There is some number 7 < /2 such that g(K) C

int p5. Then p is a p.d. regular neighbourhood of g(K) in S,(M). By Lemma
2.6 and Proposition 3.3 p§ has unique minimal paths. Let Ag be the linearization
of S,(M) and let p* be the linearization of pg. By inductive hypothesis p*" is a
pl. (n — 1)disk. Applying the simplicial isomorphism A o g~ o )\gl , this

says that K" has a regular neighbourhood in link(v, M") which is a p1. (n — 1)-
disk. Hence L°, which is another such regular neighbourhood, is also an (n — 1)-
disk, which is what remained to be proved.

COROLLARY 4.5. Assume Proposition 4.2 in dimensions <n —1. Ifd._,
KcE di Ses di+1’ then there is a p.l. isomorphism h: M — M such that:

h(pne) — pnc;

h }ais the identity if a Cint p" or ifa N p™ =g.

PROOF. Let vy, ...,y be the vertices of M" such that p"(v;) = d;. Then
the int star(u;, M") are pairwise disjoint. Let N = {J{int b such that b N p" #
@,b ¢ p" and none of the v; is a vertex of b}. Define / on N by the method
of Lemma 4.3. In view of the second requirement on A, it remains only to define
h on U{star(v;, M")}; and Lemma 4.4 shows how to define % on each star(v;, M").

PROOF OF PROPOSITION 4.2 IN DIMENSION 7, ASSUMING ITS TRUTH IN
DIMENSIONS <n — 1. Choose numbers <> forj=1,...,kso that ¢; = q and
di<c=xdyforj=1,...,k~1. Nowd, =0,since P has become a vertex
of M. Hence p"°1 is a convex neighbourhood of P contained in star(P, M") and
so is a p.J. n-disk. By induction on j, using Corollary 4.5 at each step, it follows
that p"? is a pl. n-disk, which is what was to be proved.

COROLLARY 4.6. Let M be a linear metric complex which is an n-manifold
without boundary. Assume that M has unique geodesics to P. Then M is p.l. iso-
morphic to R".

ProoF. Assume M subdivided so that for every a €M, p 1 @ takes its
minimum value at a vertex of a. Letd,, ..., d,, ... be defined as before.
This time the d;, form an infinite sequence, but since M is complete, they have no
cluster point in R. Choose numbers c; as before, interpolated between the d,;
then lim ¢, = . By Proposition 4.2, each p"°* is a pl. n-disk, and M = |J {p"%
fork=1,...}. By atheorem of J. Stallings [12] M is p.. isomorphic to R”.

REMARK. By analysing p.d. regular neighbourhoods more thoroughly one
could prove Lemma 4.4 even in case d; = e. This would mean that the third
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hypothesis of Proposition 4.2 could be eliminated. As an addition to Theorem 1
one would have: for any P € M and any finite number ¢ > 0, Bp(g, M) is a p.d.
n-disk.

It remains to prove the first part of Theorem 1, which is implied by:

ProrosiTION 4.7. Let M be a complete, connected linear metric complex
such that +(PX;) < 0 for all P € M and for all PX C vp(M). Then for any P, Q
€ M, there is just one geodesic in each homotopy class of continuous paths from
Pto Q.

Proor. The proof will take up the rest of §4. The method of proof is
closely analogous to that used by Milnor [6] in the smooth case. Let £ be the
space of p.l. paths from P to Q, with the C° topology. There is an energy func-
tion E:  — R, defined in §2. I shall construct a family of finite-dimensional
approximations Q9 to Q. Analysing the “critical points” of E I 9 as in the
proof of Proposition 4.2 will show that £7 can be deformed within itself onto a
discrete set; the paths in M corresponding to points of this set are geodesics from
P to 0. Homotopy-theoretic considerations will show that as the 9 approximate
, the corresponding discrete sets approximate the set of homotopy classes of
paths from P to Q.

Let a: I — M be a path. Recall that for each ¢t €I, L(a, #) denotes the
length of « } [0, ], and the energy E(c) is defined to be [ [d L(a, #)/d¢] 2 It
is easily checked that E: § — R is continuous. Also E(a) = L(a))?, and equality
holds only when « is parametrized proportionally to arc-length. By Proposition
3.4, the local minima of E are isolated points of £ and represent exactly the
geodesics in M from P to Q. The main step in proving Proposition 4.7 is to show
that  can be deformed onto the set of local minima of E.

Let g be a positive number. Then £¥ = {a € Q such that E(a) < g} is
contained in BP(q%, M) which is compact. Hence there is a finite collection of
balls B,(s;, M),i =1, ..., 1 such that: im a C U{int B,(s;, M)} foralla €
E?; B,i(2s;, M) C star(X", M), is strictly convex and has unique geodesics. Set
s = min{s;}. There is an € > 0 such that e < s and whenever X, Y € Bp(q, M)
and p(X, Y) < ¢, then X and Y lie in some int B (s;, M), and so there is a unique
geodesic from X to Y in M. Set § = ¢2/q. Whenever a € £9 and ¢, £’ € I with
[t -t 18, then p(a(f), a(t")) < e. Choose a subdivision 0 = t, & ¢t, €+ * &
4, = lsuchthatt, , —¢,<8,fori=0,...,k Define QI(t;,...,8)=
{a € E? such that & } [t;, #;, ] is a geodesic, for i =0, . . ., k}; then
Q9(t,, . . ., t), which I shall usually abbreviate to Q9, is the type of approxi-
mation to § that will be used. I shall first prove that Q7 can be deformed onto
the set of local minima of E 1 9, and then discuss how various of the
Q9(t,, ..., t) (for increasing g and k) approximate 2.
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LemMA 48. QUt,, ..., t;) is naturally homeomorphic to a compact
subset of M¥, the k-fold product of M.

PrOOF. Define f: Q7 — M* by f(a) = (a(t,), . . . , o(t;)); then [ is the
required homeomorphism. The proof is quite similar to that of [6, 16.1]. The
only extra detail is to show that f~! is continuous. Let §' <& and let 8 € Q9
be such that p((t,), a(t)) <&  fori=1,...,k Thenforeachi=0,...,
k+1,a(t), at;y 1), B(z) and B(¢;,. ) all lie in some B,, j(2s;, M). This ball has
unique geodesics in M, so by Proposition 3.1, p(8(f), a(t)) < (g8")" for all t €
[t;, 2,4 ,]. Hence g is pointwise closer then (g8")" to a. Thus f~1: im f — Q9
is continuous, and the lemma is proved.

Henceforth I shall suppress f and identify Q9 with its image. In this con-
text E: @9 — R can be defined thus: if Z = (Z,, ..., Z,) € 9, then setting
Zo=P 24, =0

E2) = 2 {lom(@Z; 2 Nty —t) fori=0, ..., k.

E can be defined by this formula over all of M*. Ford <gq, (E } Q)¢ = {Z
such that E(Z) < d} can be identified with Q%(¢,, . . ., #,); this I shall do.

Let B C M* be a k-fold product of independently chosen B, i(s;; M). Index
the various such sets Bas B,, ..., B, (so % =1I¥). Then Q7 C {J{int B},
and by Lemma 2.4 each B; is convex in M* and has unique geodesics.

LEMMA 4.9. Let B be one of the B;. Then E is strictly convex on B.

ProOF. LetY=(Y,,..., Y )andZ=(Z,,..., Z;)bein B. Set
Yo=2y=Pand Y, =2,y =Q Thenforeachi=0,...,k+1,7;
and Z; are both in some BX,(s,-, M); hence fori=0,...,k Y, Y, {,Z; and
Z;y are all in BX,-(2si, M), which is strictly convex and has unique geodesics in
M.

Let f be the geodesic in M* from Y to Z. Projecting § into the ith factor
M; gives the geodesic §; from Y, to Z,. By Propositions 3.1 and 3.3,

P BN < -0p@ Yy) + tpP, Z,);
) PG®, Q)< (A -0p(Yy, Q) + tp(Zy, O);

PB), By 1) <A =Yy, Yyp )+ 1021 21y y) fori=1,...,k~1.
The first two inequalities are strict unless P, Y, and Z,, or Q, Y, and Z,, lie on
a geodesic. Now squaring an inequality among nonnegative numbers of the form
x<(1-1t)y + tz gives x> < (1 - ) y? + 122, with equality only if:

(1) the original inequality is an equality, and

(2) either t =0or l,0ry =z
It follows from the inequalities (x) that E(B()) < (1 — HE(Y) + tE(2), with
equality only if = 0 or 1, or if:
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(1) the paths in M determined by Y and Z have the same image, and

QDY Y )=02;, 2, ) fori=0,...,k
These two conditions imply that Y = Z, which proves the lemma.

I now proceed, as in the proof of Proposition 4.2, to analyse the “critical
points” of E on 9. Let M* be a subdivision of M¥ such that:

(1) for every vertex v € M* which lies in 9, star(v, M*) is contained in
some int B;;

(2) for every a € M* which meets Q9, E |' 4 takes on its minimum at a
vertex of a.
Let E*: M* — R be the linearization of E (recall that M* is a linear metric
complex). For every 2 € M* which meets 9, E I' g is strictly convex. Hence
E* C E9 whenever d <q.

LEMMA 4.10. For any d < q there is a deformation retraction of Q2 onto
E*.

Proor. The proof is very close to that of Lemma 4.2, and I omit it.

Letd,, ..., d, be the distinct elements, arranged in increasing order, of
{E(v) for v € Q9 and v a vertex of M*}; since 7 is compact, there are only
finitely many such v.

LeMMmA 4.11. If dj Kc<es di+ 1» then there is a deformation retraction
h, of E*® onto E*© such that h(a N E*®) C a for every a which meets E*¢.

PROOF. As in the proof of Lemma 4.3, E*® and E* are both first-derived
neighbourhoods of a subcomplex of M*. Since E*° C int E*¢, the lemma follows
from Rourke and Sanderson [11, 3.18].

LemMma 4.12. Letd; , Sc¢<d;<e<d;, ,and let v be a vertex of M*
such that E(v) = d;. Assume that E*® N star(v, M*) # &. Then there is a de-
formation retraction of E*¢ U (E*¢ N star(v, M*)) onto E¥°.

ProoF. Let N° = E*¢ N star(v, M*), L° = E*¢ N link(v, M*) and J° =
cl[bdy N° = L°]. Let N, L® and J¢ be defined similarly. Set H = cl[N® — N°]
and G = cl[L® - L°].

H is a cone from v to J* U G U J°, and so can be deformed onto v *

(G U J°). The proof of Lemma 4.11 gives a deformation retraction of L® onto
L°. Hence G U J€ has J¢ as deformation retract, and so v # (G U J°) can be
deformed onto v # J°. Now star(v, M*) is contained in some convex B C M* in
which geodesics are unique, and therefore vary continuously with their endpoints
(Lemma 2.7). Pick a point W € E*¢ N B and let « be the geodesic from v to W.
For each Z € J¢ and each ¢ €1, let B} be the geodesic from a(f) to Z. Then
v*J= U{ﬁg for Z € J°}. Define a homotopy f, of v » J° by f,([i%(u)) =
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B5(u). Since Q° N B is convex, by Lemma 4.9, f,(v » J) C Q°. By Lemma
4.10, v » J° can be further deformed into E*°. This completes the proof of
Lemma 4.12.

COROLLARY 4.13. Letd, ; <c<d;<e<d;, . Then E* has as de-
formation retract E*¢ U {v € M* such that E(v) = d; and v is a local minimum

of E}.
ProoF. The proof is similar to that of Corollary 4.5.

COROLLARY 4.14. Q9 has as deformation retract the discrete set of local
minima of E. This discrete set can be identified with the set m,(Q°) of compon-
ents of §¥F.

The rest of the proof of Proposition 4.7 connects the topology of 7 to
that of M. As in Milnor [6, 16.2] one can show that there is a deformation
retraction of E? onto Q7. The local minima of E I' E? correspond to geodesics
in M from P to Q of length <q%, and hence these local minima are in Q2 all
along. Thus each component of £? has exactly one local minimum of E. Hence
whenever g <7, the inclusion E? C E" induces a one-to-one map m,(E%) C
Mo(E"). Now Q is the direct limit of {E? for ¢ € R}; and it is easily seen that
() = IH mo(E?). Hence there is exactly one geodesic from P to @ in each
component of . But m,(2) represents the set of homotopy classes of continu-
ous paths from P to 0, by the simplicial approximation theorem. This proves
Proposition 4.7, and with it Theorem 1.

5. Positive curvature. The bulk of this section—up to Lemma 5.5—is
devoted to proving Theorem 3; the techniques of its proof will give Theorem 2
as a by-product.

THEOREM 3. Let M be a complete, linear metric complex which is an n-
manifold without boundary. Assume:

(1) there is a number k 2 0 such that whenever a is an (n — 2)-simplex, P
€ int a and PX C vp(M), then k_(PX) > k;

(2) there is a number p such that whenever a is an n-simplex of M and is
represented as a linear simplex in R", then the (n — 1)-sphere circumscribed
about a has radius <p.

Then

(@) k_(PX) > 0 for all PX C vp(M), provided that P is in the (n — 2)-skeleton
of M;

(ii) M is compact; diam M < 27p if k > (2 — 2%)1 and diam M <
apdn®/[(2n - k)(dmk — k2)"] otherwise.

The first hypothesis implies that the whole (n — 2)-skeleton M" 2, as a
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simplicial complex, is intrinsic to M, for it is the coarsest possible triangulation

of the “singular set” of M—that is, of the set of points where the normal geometry
is nontrivial. The second hypothesis then says that the singular set is “fairly
dense” in M; it implies for example that every point of M is distant at most p
from the singular set.

The proof relies heavily on the combinatorial structure M”~2 on the singular
set. I think that some more general form of the theorem must be true in which
no such combinatorial structure is required, but the general local shape and size
of the singular set are more carefully restricted. I have already mentioned my
belief that it should also be possible to weaken the curvature assumption if one
has the right analogue for p.l. manifolds of Ricci curvature in smooth ones.

The plan of the proof is this: I first prove an analogue of Theorem 3 for
p-spherical metric complexes with p finite, and show that such metric complexes
have diameter <mp (Proposition 5.3). A linear metric complex M satisfying the
second hypothesis of Theorem 3 has a g-spherical approximation M* once q is
large enough. If M satisfies the first hypothesis of the theorem as well, then M*
satisfies the hypotheses of Proposition 5.3, if q is large enough (Lemma §.4).
Hence M*, and therefore M, is compact. It remains to compare py; t0 Py e
(Lemma 5.5) and to estimate how small a value of q will do.

Let M be a p-spherical metric complex which is an n-manifold without
boundary. The Curvature Hypothesis is this assumption on M: if 2 € M with
dim ¢ < n —2 and if P € int a, then dim ¢p(M) = dim a and x_(PX) > O for
all PX C vp(M). The Curvature Hypothesis for (n — 2)-simplexes is the same,
except with “dim ¢ < n — 2” replaced by “dim @ = n — 2”. By Lemma 2.8 the
the Curvature Hypothesis is equivalent to this condition: whenever P € int 4 and
dim @ < n — 2, then pp(M) = Tp(a) and diam 0p(M) < 7. This is the form in
which the Curvature Hypothesis will be applied. The Curvature Hypothesis for
(n — 2)-simplexes can be expressed similarly.

LemMMA 5.1. The Curvature Hypothesis is equivalent to the condition: if
is a geodesic from P to Q in M, then o meets M" ™2 at most in its endpoints,
unless P and Q lie in the same simplex.

ProoF. First assume the Curvature Hypothesis. Let o be a geodesic. For
each r € (0, 1) let a(f) be the simplex such that a(r) € int a(¢). Choose ¢ so that
dim a(z) is as small as possible. It suffices to show that if P and Q do not lie in
a(t), then dim a(¢) = n — 1. (If dim a(?) = n, then P and Q have to be in a(f).)

Suppose dim a(t) <n —2. Set R = a(t), a = a(t). The tangent directions
R and Ra_ cannot both be tangent to a, because then a N g would be a seg-
ment X—Y with at least one of X and Y lying in bdy a N int a, which would
contradict the choice of ¢. So say Ray ¢ Tx(a).
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Now T (M) = Tx(a) x vp(M) by the Curvature Hypothesis. Let Pbe the
projection into the second factor. Then RR@y) is a genuine direction RX' C
Vr(M). Ty(c) defines a geodesic in T, (M) near R, by Lemma 2.5; hence P(T(«))
defines a geodesic in v, (M) near R, by Lemma 24. Thus P(Ra’) must be a
genuine direction in v, (M) also; call it RY'. By the Curvature Hypothesis again,
LX'RY' <m0 P(Tx(e)) is not a geodesic near R after all. This contradiction
establishes the first part of the lemma.

Conversely, assume geodesics avoid M* 2. Let dima<n-—-2andletP€E
int a. By looking at geodesics in expp(¥p(M)) one can show that k_(PX) > 0 for
all PX C vp(M). Clearly ¢p(M) D Tp(a). Suppose they are not equal. Then there
is a geodesic a’ through P in pp(M) which does not lie in T;(a). But expp(a’) is
then a geodesic through P in M which cannot lie in a single simplex. This is
contrary to the assumption, so pp(M) = Tp(a). This completes the proof of
Lemma 5.1.

LemMA 5.2. Let M be a p-spherical metric complex with p finite, which is
an n-manifold without boundary. Assume the Curvature Hypothesis holds for M.
Then M is bounded and has diameter <7p.

PrOOF. Let a be a geodesic in M from P to O, and assume that [(a)
mp. Let C be a chain such that « is within C, and let C* be the development of
C. Then int(im o) C int C*, by Lemma 5.1, since a is too long to fit inside a
simplex. Now int C* is smooth: every X € int C* has a neighbourhood isometric
to an open set in an n-sphere of radius p. Thus it makes sense to speak of
variations of « with fixed endpoints, in the context of smooth differential
geometry. A little care is needed at the endpoints, but if I use variations which
are sufficiently close to a in the C! topology, they will meet bdy C* only in
{P, @}. Since L(a) # mp, such variations exist which are shorter than «, as is
well known from the calculus of variations. It follows that any minimal path
from P to Q in M has length <#p. Hence M is bounded and has diameter <p.

To prove the strict inequality, let a be a path within C from P to Q which
is a minimal path of length 7p, so that P and Q are conjugate. Then a can be
varied through geodesics, all having length np. To be precise, say C = @p,-..,
@) withP€a, and Q€ q,. LetaNb, = {X};then X Eint b,. Pick Y €
bdy b, and let § be the geodesic X—Y. For each u € I, either there is a geodesic
o, from P to Q of length mp which passes through p(u), or else the geodesic
from P through f(u) meets bdy C* at distance s<mp. Let u' be the smallest value
of u for which the second case occurs (it certainly does occur—when u = 1, for
example). Then lim{e, as u — u' from below} is a path @, in C* from P to
Q of length 7p. On the other hand, int o, N M*2 #4450 by Lemma 5.1 a,-
is not a geodesic in M and can therefore be shortened. Thus Py (P, Q) < 7p.
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This is a contradiction. Hence M has diameter <<7p, as was to be proved.

PROPOSITION 5.3. Let M be a p-spherical metric complex (p may be in-
finite) which is an n-manifold without boundary and which satisfies the Curvature
Hypothesis for (n — 2)-simplexes. Then M satisfies the Curvature Hypothesis.

Proor. I use induction on n — i to prove that if P € int a with dima =
i <n -2, then dim (M) =i and x_(PX) > 0 for all PX C v,(M).

Tp(M) is the orthogonal product of Tp(a) with some cone Np. Let Z be
the unit sphere in Np. Using the inductive hypothesis I shall prove that Zp satis-
fies the hypotheses of Lemma 5.2. It will follow that Np = vp(M); hence o,(M)
= Zp has diameter <7, and the inductive step will be proved.

Zp is a 1-spherical metric complex simplicially isomorphic to link(z, M).
Let b' be a jsimplex of Zp and let Q €int b'. Then TQ(TP(M)) can be expressed
as the orthogonal product Tp(a) x TQ(NP) = Tp(a) x R! x TQ(EP), where
R! represents T,(PQ). Let T be the orthogonal complement of QP in
TQ(TP(M)). Then T} is isometric to Tp(a) x To(Zp) = Tp(@) x 9o(Zp) x
vQ(EP), where (pQ(EP) is at least j-dimensional.

Let s be a small, positive number and let s,: Tp(M) — Tp(M) be the
corresponding dilation (see Lemma 2.5). If s is small enough, then R =
expp(s4(Q)) is defined and lies in int(z * b), where b € link(a, M) corresponds
to b’ € Z,. Now dim(a « b) =i +j + 1, so by inductive hypothesis, T (M) =
Tr(a * b) x v,(M) is the intrinsic factoring of T (M) into base and normal
geometry. Let T} be the orthogonal complement of RP in T(M); then T} =
Rt/ x vp(M). The map expp © 54 induces a map T3 — T} which is angle-
preserving; in fact, by the proof of Lemma 2.5, it differs from an isometry only
by a dilation. Hence there is an isometry between Tp(a) x ‘pQ(EP) X vQ(EP)
and Rt/ x vp(M). The former has flat part at least Tp(a) x ¢o(Zp), Which is
at least (i + j)-dimensional. It can only be that Tp(a) x ¢y(Zp) = Ri*/, 0 that
dim ch(Ep) =J, and that v, (Zp) = vg (M). By inductive hypothesis 0,(Zp) =
0x(M) has diameter 7. It follows that the Curvature Hypothesis holds at each
point Q € Tp. So by Lemma 5.2, T has diameter 7.

The proof of Lemma 5.1 now shows that the base of N, must be simply
{P}. Hence in the factoring Tp(M) = Tp(@) x Np, Tp(a) must be the whole flat
part of Tp(M). Therefore pp(M) = Tp(e) has dimension i, and 0p(M) = Zp has
diameter s<7. The inductive step follows, and Proposition 5.3 is proved.

The first assertion of Theorem 3 is a particular case of Proposition 5.3. To
prove the second assertion I shall use spherical approximations to linear metric
complexes. Let M be a linear metric complex. Let 2 € M; say dima = k.
Thinking of a as a linear simplex in R¥, let the (k — 1)-sphere circumscribed
about g have radius p(e). If q is a number 2 {p(a) for all ¢ € M}, then the q-
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to vp~(a") because b is contained in the affine space [C, b"] generated by C and
b", in which Tp»(b") and CP" are both orthogonal to vp(a"). Hence P o A*is
just orthogonal projection Tp(@) — vp(a”). As P varies in b, so that P” varies
in S, vp«(a") undergoes parallel translation, since it always remains orthogonal to
[C, b"] which remains fixed. (I am abusing notation somewhat by referring to
vp(a") when P” need not be in a”; what I really mean is DA(vp(Tp+(2))), where
P is the varying point and P’ its original position.) Thus for the purpose of
measuring angles in v,(a) and vp+(a"), it does not matter where in [b] I choose
P. Choose P so that CP is orthogonal to [b]; then Tpn(b") is parallel to Tp(d),
and P ° \* reduces to A*: vp(@) — vp(@”). So f, can be calculated using g © A*.

Let X, Y € 0,(a) and let B be the geodesic X-Y in 0p(a), so that LXPY =
L(B). Set f* =A*° 8, X* = AXX), Y* = A*(Y). Then LX*P"Y* s the dis-
tance in op+(a”) between £,(X) and £,(Y).

Let (#*, 6*) be polar coordinates at P” in the plane [P", *], and let s and
s* denote the arc-length functions along § and $*. Then ds* = r*df*; also ds*
< ds since A* is orthogonal projection. Hence d6* < (1/r*)ds. Now if ()
denotes the angle between PB(¢) and P"B¥(r), then r*(f) = cos Y(z). But y(f) is
at most the angle y between [a] and [Tp+(a")]; and the latter is the tangent
plane to S at a point in the polar cap determined by [2] N'S. Hence ¢ <
sin"!(p(@)/q) < sin"!(p/q). So r* > [1 — (p/q)?]” and do* < [1 — (p/q)?] % ds.
It follows that L X*P"Y* < [1 - (p/q)®] "L XPY, which is what I had to prove.
The proof of Lemma 5.4 is complete.

LEMMA 5.5. Let M be a linear metric complex satisfying hypothesis (2) of
Theorem 3. Let q satisfy the inequality of Lemma 5.4 and let \: M — M" be
the q-spherical approximation to M. Then for every P, Q € M,

pu®@ Q) < [1 = (/9?1 %pp-(AP), NQ)).

PROOF. As said in the proof of Lemma 5.4, I need only prove this result
in case P and Q are in the same simplex 2 €M. Say a C R¥ and let S be a sphere
with centre C and radius q circumscribing 2. Let « be the geodesic P-Q, and let
s be the arc-length function along a. Let (7, 8) be polar coordinates with origin
C in the plane [C, a]. Similarly let a” be the geodesic A(P)-A(Q) in S, and let
s" be the arc-length function along «”. Then im o" = A(im ), so I can re-para-
matrize o” as A © a.

Now ds” = qd6 and ds = rd8/sin(L Qa(t)C). And L Qa(t)C > cos™ (p(a)/q)
> cos™!(p/q). Since r <gq, ds < [1 — (p/q)*] % ds". The lemma follows.

Proor oF THEOREM 3. Combining Lemmas 5.4 and 5.5 gives: whenever
q Z p[1 — (27 — x)/2m)?] %, then M has diameter <nq%(q? - p2)%. The
function F(x) = mx/(x — p?)” takes on its minimum value 2np when x = 2p2.
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But 2p? is a permissible value for q, or the limit of permissible values, only if

k = (2 — 2%)m. Otherwise F(q?) is strictly increasing in q2 and so the best I can
infer is diam M < mp4n®/[(27 — k)(dmk — k2)"]. Thiscompletes the proof of
Theorem 3.

THEOREM 4. Let K be a simplicial 3-manifold without boundary. Assume
that every 1-simplex is a face of at most five 3-simplexes. Then K is finite.

ProoF. Metrize K by making all the tetrahedra regular, of side length 1.
Then K is actually a metric complex. The essential ingredient in the proof of
this statement is the observation that any finite subcomplex L of K can be iso-
metrically embedded as a subcomplex of a regular hyper-simplex with as many
vertices as L has. As was already mentioned in §2, Example 2, K satisfies the
Curvature Hypothesis for 1-simplexes. The second hypothesis of Theorem 3 is
trivial to verify; so Theorem 4 is a particular case of Theorem 3.

THEOREM 2. Let M be a spherical metric complex which is an n-manifold
without boundary, and which satisfies the Curvature Hypothesis for (n — 2)-sim-
plexes. Then:

(i) M satisfies the Curvature Hypothesis;
(ii) if n is even and M orientable, then M is simply-connected;
(iii) if n is odd, then M is orientable.

Proor. The first assertion is just Proposition 5.3. I shall prove only the
second statement; the proof is quite close to that of Synge [14]. The third
assertion is proved using the same techniques; see Preissmann [9, Théoréme 13"~
caution: “paire” is a misprint for “impaire™].

Assume for now that M is p-spherical, with p finite. Let u € 7;(M) be a
nonzero free homotopy class (that is, without fixed base-points), and let a be a

shortest path representing u. Then a is a closed geodesic. By Lemma 5.2 a has
a neighbourhood U in M which is a smooth manifold, and « is a smooth curve in

U. Let P = of0) = of1). Let N C Tp(M) be the hyperplane orthogonal to
Tp(im o). Then parallel translation around e induces a linear isometry L: N —
N. The hypotheses on M ensure that L keeps some nonzero vector fixed; this
vector determines a parallel vector-field ¥ around a. Since U has constant positive
sectional curvature everywhere, it is clear that varying « in the direction of V
reduces its length. This is a contradiction; hence =, (M) = 0.

If M is a linear metric complex, the same argument can be applied. This
time U is flat, so translating ¢ in the direction of V preserves L(«). However, as
in the proof of Lemma 5.2, I can translate o until it meets the (n — 2)-skeleton
of M, and then a can be shortened. This is again a contradiction; and the Theorem
is proved.
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spherical approximation A: M —> M" is defined; see §4. The second hypothesis
of Theorem 3 implies that p(a) < p for every 4 € M. Hence the q-spherical ap-
proximation to M exists for every q = p.

LeMMA 5.4. Let M satisfy the hypotheses of Theorem 3. Let q 2 p[l —
(@7 - k)/21)*1™% and let M" be the q-spherical approximation to M. Then M"
satisfies the Curvature Hypothesis.

Proor. Iknow that for each P € M" ™2, g,(M) has diameter <(2m — k)/2;
it suffices to prove that o, (p)(M") has diameter <[1 — (p/q)*]~*%(2n - k)/2; for
then the condition on q ensures that this is <.

The proofs of this lemma and the next are based on this simple observation:
Let f: M — M" be a homeomorphism between spherical metric complexes such
that:

fis a simplicial isomorphism;

if P-Q is a geodesic segment in a simplex of M, then im f(P-Q) is the
geodesic segment f(P)—f(Q) in M";

there is a number N such that if P, Q € g, a simplex of M, then py~(f(P),
£(@) < Noy(®, 0).

Then this inequality holds for any two points of M.

For let a be a minimal path from P to Q in M, and let C be a chain within
which « lies. Then im f(c) is a path from f(P) to f(Q) within f((), and im f(a)
has length <N L(«). The desired inequality follows.

In the present case I take N = [1 — (p/q)?]1™". I must now define the
map f: ap(M) — oMP)(M"). Say P € int b, and let g have b as face. Think of
a as a k-simplex in R*. Let S be a sphere with centre C and radius q circum-
scribed about . Then radial projection of @ from C into S defines \: a — 4".
Set P = A(P), b" = (D).

A induces a linear map DX: Tp(a) — Tp(a"), and DA(Tp(b)) = Tp-(b").
Now vp(a) is the section of Tp(a) by the affine space through P orthogonal to
b. Hence DA\(vp(a)) is the section of Tp+(a") by an affine space through P”
which meets Tp+(5") only in P". Let P: Tpu(a") — vpn(a") be the orthogonal
projection. Then P © DX\: vp(@) —> vpe(a") is a linear isomorphism. Let g:
(vp(@") = {P"}) — op(a") be radial projection from P", and set f, =g o P o
DX: op(@) — aPn(a"). If b <c¢ <a, then f, is, up to a natural isometry, just
the restriction of f,. Hence f = |J{f, for b <a}: gp(M) — apn(M") is well
defined.

I now give a different construction of f,, which seems to me easier to cal-
culate with, but is not so clearly intrinsic. Let \*: Tp(a@) — Tp~(a") be parallel
projection in the direction CP. Then A\*(P) = P" and for each ray PX C Tp(a),
the images A*(PX) and DA(PX) are equal. The affine space Tp(b) is orthogonal
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