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ABSTRACT.  A simplicial complex M is metrized by assigning to each
simplex a £ M  a linear simplex a* in some Euclidean space Rfc so that face
relations correspond to isometries.  An equivalence class of metrized complexes
under the relation generated by subdivisions and isometries is called a metric
complex; it consists primarily of a polyhedron M with an intrinsic metric pm-
This paper studies geodesies in metric complexes.   Let P e M; then the tangent
space 7p(M) is canonically isometric to an orthogonal product of cones from
P,   Rk x i>p(M); once k is as large as possible. vpQA) is called the normal geo-
metry at P in M.  Let PX be a tangent direction at P in vp(M).  I define num-
bers k+(PX) and kJ¡PX), called the maximum and minimum curvatures at P
in the direction PX.   THEOREM.  Let M be a complete, simply-connected
metric complex which is a p.l n-manifold without boundary.   Assume k+(PX)
< 0 for all P e M and all PX Ç vp(M).   Then M is p.l. isomorphic to R".
This is analogous to a well-known theorem for smooth manifolds by E. Cartan
and J. Hadamard.  THEOREM (ROUGHLY).  Let M be a complete metric
complex which is a p.L n-manifold without boundary.   Assume (1) there is a
number k ^ 0 such that k_(PX) > k whenever P is in the (n — 2)-skeleton of
M and whenever PX Ç pp(M); (2) the Simplexes of M are bounded in size and
shape.   Then M Is compact.   This is analogous to a weak form of a well-known
theorem of S. B. Myers for smooth manifolds.

1.  Introduction.  I have been studying geodesies on manifolds with piece-
wise-linear (abbreviated to p.l.) metrics, trying to relate the global topology of
such a manifold to its local geometry. In §2 I shall lead up to the definition, for
any point F of a p.l. manifold M, and for any tangent direction PX at P which
lies in the "normal geometry" vp(M) at P in M, of numbers k+(PX) and k_(PX),
with k+(PX) > k_(PX). They are caUed the "maximum and minimum curvatures"
of M at F in the direction PX. There seems to be an analogy between k_(PX)
and, in the smooth case, the minimum sectional curvature at a point of two-planes
containing a fixed tangent vector at that point; likewise between k+(PX) and the
maximum such sectional curvature. To support this intuition I offer the foUowing
results:
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2 D. A. STONE

Theorem 1. Let M be a simply-connected, complete metric complex which
is a p.l. n-manifold without boundary. Ifk+(PX) < 0 for each PGM and for
each tangent direction PX C vp(M), then M is p.l. isomorphic to Euclidean space
R".

(This theorem is slightly stronger than the corresponding one announced in
[13].)  Theorem 1 is analogous to a theorem proved for smooth manifolds by
E. Cartan [3] and J. Hadamard [5] under the hypothesis that every sectional
curvature be <0.

Theorem 2. ¿er M be a complete metric complex which is an n-manifold
without boundary. Assume that whenever a is an (n - 2)-simplex, P G int a and
PX Ç vp(M), then k_(PX) > 0. Then:

(i) M has positive curvature "everywhere": k_(PX) > 0 for all PX C fp(M),
provided that P is in the (n - 2)-skeleton of M;

(ii) // n is even and M orientable, then M is simply-connected;
(in) if n is odd, then M is orientable.

In the smooth case a theorem analogous to (ii), was proved by J. Synge [14]
under the assumption that all sectional curvatures are > 0; the smooth analogue
of (üi) is an elementary consequence of his method observed by A. Preissmann [9].

Theorem 3. Let M be a complete metric complex which is an n-manifold
without boundary. Assume

(1) there is a number k~> 0 such that whenever a is an (n - 2)-simplex, P G
int a and PX C vp(M), then k_(PX) > k;

(2) there is a number p such that whenever a is an n-simplex of M and is
represented as a linear simplex in R", then the (n - l)-sphere circumscribed about
a has radius <p.

77ie«
(i) M has positive curvature "everywhere", as in Theorem 2(i);

(ii) M is compact (I shall give an estimate for the diameter o/M).

Theorem 3 is a weak analogue of a theorem proved for smooth manifolds
by S. Myers [7] under the hypothesis that the Ricci curvature be everywhere
bounded above 0. I have no idea what notion of pJ. Ricci curvature would imply
the "right" analogue of Myers' theorem, but I do believe that some such notion
exists.

An amusing consequence of Theorem 3 is

Theorem 4. Let Kbe a simplicial 3-manifold without boundary. Assume
that every 1-simplex is a face of at most five 3-simplexes.  Then K is finite.
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GEODESICS IN PIECEWISE LINEAR MANIFOLDS «J

A. Phillips has pointed out that R3 can be triangulated so that every 1-sim-
plex is a face of at most six 3-simplexes. The proof of the theorem is to give K
a metric by making all the tetrahedra regular, of side-length 1, and then verifying
that the hypotheses of Theorem 3 hold.  I should be most interested to know of
a combinatorial proof of Theorem 4; the more so because I have been able to
prove by combinatorial means a general finiteness theorem for simplicial manifolds,(2)
but Theorem 4 is a "limiting case" and I cannot prove it by these methods.

For 2-dimensional manifolds-topological and pj.-the theory of curvature
is well established (see Aleksandroff and Zalgaller [1] or W. Rinow [10]), and
Theorems 1, 2 and 3, though perhaps new, are simply exercises. The present
work is independent of both T. Banchoff s work [2] on the Gauss-Bonnet theorem
for polyhedra and of H. Osborn's work [8] on deRham theory for pJ.. manifolds.
I have benefitted greatly from H. Gluck's foundational work on the intrinsic
geometry of polyhedra; much of §2 is based on his notes [4].

2. Foundations.  First, some abbreviations, symbols and conventions.
In general, bold-face letters such as X, M will denote both topological spaces

and simplicial complexes. I shall make no distinction in notation between an
abstract simplicial complex M, a particular realization of M (such as a metric com-
plex, to be defined) and the underlying topological space of a realization of M.
Lower-case letters a, b will refer to Simplexes, and v, w to vertices, of a simplicial
complex. Capitals such as P, Q will refer to points in topological spaces. Thus in
the statements "a G M", "F G M", "F G a", a and M are a simplex and a simplicial
complex in the first statement, and topological spaces in the other two.

The dimension of a simplicial complex or simplex will be written dim M or
dim a. The notation ft < a will mean that ft is a face of a.   If ft j, . . . , ftfe are
faces of a, then their span bx, . . . , bk is the smallest face of a which contains
them all.

R will denote the real Une, I the unit interval [0, 1]. R" will denote Euclid-
ean «-space; thus R1 is not quite the same as R.  By a sphere S", I shall mean the
locus of a point in R"+ x at fixed distance from a fixed point. If X C R", then
the affine space generated by X, denoted [X], is defined to be the smallest affine
space in R" which contains X. If X, Y C R", then their join X * Y is defined as
y {straight-line segments from X to Y, for X E X, Y E Y}. If X, Y Ç S" and if
no point of X is antipodal to any point of Y, then X * Y is defined in the same
way, but with "straight-line segments" replaced by "shortest geodesic segments".

If X C Y, then int X, bdy X and cl[X] will denote the interior, boundary
and closure of X in Y. If X is a manifold, then bdy X will refer to its boundary.
The diameter of a metric space X will be written diam X. If /: X —► R and r G
R, then f will denote {X E X such that f(X) < r).

(z)Added in proof.   I retract this statement.
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4 D. A. STONE

I shall abbreviate piecewise linear to p.l. and piecewise differentiable to p.d.
Let M be a connected, locally-finite, finite-dimensional simplicial complex.

M is metrized by giving, for each a G M, a linear simplex a* in some Euclidean
space and a simplicial isomorphism fa: a —*■ a* such that whenever b < a, then
the induced simpUcial isomorphism b* —► fa(b) is an isometry. (A map between
linear Simplexes in EucUdean spaces is an isometry if it extends to an isometry
between the affine spaces generated by the Simplexes.)  If L is a subdivision of
M, then L can be metrized in a natural way. Let M' be another complex, met-
rized by {f'c). M and M' are isometric if they have subdivisions L and V and if
there is a simplicial isomorphism h: L —► L' such that for every a G L, h is an
isometry between a and h(a) (more precisely, if f'nia\ ° h ° (fa)~x: a* —► (h(a))*
is an isometry, as just defined).  An entity associated to a metrized complex M
is intrinsic if it depends only on the isometry class of M. The most important
such entity is the "intrinsic metric", which I now describe, following Gluck [4].

Let M be a metrized complex, let P, Q G M and let J be a closed interval
[s, r] C R. A path from P to Q in M is a continuous map a: J —► M such that
cc(s) = P, a(t) = Q.   Unless otherwise stated, every path will have domain I. The
space of paths in M can be given the C° topology; so when one path is said to be
"close" to another, it wiU always mean "pointwise close".

Let a be a p.l. path in M.  Let I' be a subdivision of I such that a maps
each 1-simplex of I' linearly into some simplex of M.  For each 1-simplex c G Ï,
let L(tY 1 c) be the length of fa(a(c)), where a G M contains a(c); then L(a r c)
does not depend on the choice of a.  The length of a, denoted L(oi), is defined to
be 2{L(a 1 c) for aU 1-Simplexes c G I'}; this does not depend on the choice of
I'. Gluck shows how to define the length of a continuous path a in M by ap-
proximating a by p.l. paths. The precise definition is not important for the
purposes of this paper, because from Proposition 2.1 onward I shaU use only pJ.
paths. The intrinsic metric on M, denoted p or, when necessary, pM, is defined
thus: for any P, Q G M, p(P, Q) = gJ.b.{L(a) for all paths a from P to Q); since
M was assumed to be connected, this definition makes sense.

A path a from P to Q is minimal if it is parametrized proportionaUy to
arc-length and if L(a) = p(P, 0-so that a is as short as possible. Such a path
is clearly one-to-one.  I shall often refer to im a as a "minimal path"; if a is
assumed to have domain I, then a is uniquely determined by its image and a
choice of initial endpoint, so I doubt that this usage will cause serious ambiguity.
A geodesic is a path a which is locally minimal; that is, every t G I has a neigh-
bourhood [s, «] CI such that a r [s, u] is a minimal path. (It foUows that a is
parametrized proportionally to arc-length.)

Gluck proves these facts:
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GEODESICS IN PIECEWISE LINEAR MANIFOLDS 5

Proposition 2.1. (l)If im a is not a subpolyhedron of M, then a can be
approximated arbitrarily closely by p.l. paths ß with the same endpoints, such
that L(ß) « L(a).

(2) If im a is p.l. but a is not p.l., then a can be approximated arbitrarily
closely by p.l. paths ß with the same endpoints, such that ß is a re-parametrization
of a (so im ß = im a) and L(ß) < L(a).

(3) There is a subdivision Lof M such that whenever P, Q lie in a simplex
a EL, then the straight-line segment in the simplex between them is the unique
minimal path from P to Q.

(4) // M is complete with respect to p, in particular if M is a finite complex,
then there is at least one minimal path between any two points of M.

The proposition shows that p can be defined using only p.l. paths, and
hence p is indeed intrinsic. Therefore the property of completeness is intrinsic.
A metrized complex in which assertion (3) holds will be called a metric complex.
Henceforth I shall use only complete metric complexes. When a minimal path
from P to Q lies in a simplex, I shall often denote it P-Q.  The proposition also
shows that minimal paths, and hence geodesies, are p.l. Thus to study the intrin-
sic metric and geodesies one need normally use only pJ. paths; henceforth paths
will be pJ. unless otherwise stated.

Among p.l. paths, geodesies can be characterized in terms of the "energy
function": if a is p.l., let L(ot, t) be the arc-length function along a; that is,
L(a, t) = L(a I" [0, t]); and define the energy of a by

Ew = S![d7L(a>t)]2dt->
the derivative here is defined for almost all t.  Then E(a) > [ L(a)]2, and equality
holds if and only if a is parametrized proportionally to arc-length. So minimal
paths from F to Q axe those among pJ. paths from F to Q which minimize energy,
and geodesies are paths which do so locally.

I now define "spherical metric complexes", still following Gluck [4]. I am
not interested in them for their own sake, but they are useful in studying metric
complexes. I offer three reasons.  First, many results will be proved by induction
on dimension. The natural application of an inductive hypothesis is to the link
of a point.  But the simplicial link has little relationship to any metric hypotheses.
It is more natural to use as the link of a point a sphere of suitably small radius
about that point; this sphere is a spherical metric complex. Second, the simplest
way to get at the "angle" between two tangent directions at a point seems to be
by measuring the distance between their intersections with some spherical link,
using the intrinsic metric of this link. The third, and perhaps most interesting,
reason I shall save until after the definitions.
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6 D. A. STONE

Let S" be a sphere of radius p in R"+x.  Let VQ, . . . , Vk, with k < n, be
points which Ue in an open hemisphere, and let a be the convex huU in S of
V0, . . . ,Vk. If the V¡ are in general position, that is, if a is ^-dimensional, then
a is, by definition, a p-spherical k-simplex.  The V¡ are its vertices, and every sub-
set of the V¡ generates a p-spherical simplex which is a face of a.  In hopes of
reducing confusion between the prefixes I shaU always use a bold-face letter for
the radius. Observe that if P, Q G a, then there is a unique minimal path in S
from P to Q, and it lies in a; if P and Q are in a face of a, then so is the minimal
path.

If a is a p-spherical ̂ -simplex in S", then [a] is an affine (k + l)-space in
Rn+ x which passes through the centre of S. A map f:a—*a' between p-spher-
ical Simplexes is an isometry if it extends to an isometry [a] —*■ [a']. An abstract
simpUcial complex M is given a p-spherical metrization by assigning to each a G
M a p-spherical simplex a* in some EucUdean space and a simpUcial isomorphism
fa:a—>a* such that whenever b < a, then the induced (abstract) simpUcial
isomorphism b* —► fa(b) can be realized by an isometry of p-spherical Simplexes.

A path a: I —*■ M is piecewise geodesic if there is a subdivision I' of I such
that for every 1-simplex c G I', a(c) is contained in a single simplex of M and
a t c is geodesic in that simplex. As before, one can use piecewise geodesic
paths to define the intrinsic metric on M. One can prove an analogue of Proposi-
tion 2.1; hence every geodesic is piecewise geodesic, and if M is complete, then
between any two points there is at least one minimal path. And I map speak of
p-spherical metric complexes.

For many purposes metric complexes can be included among p-spherical
metric complexes, and so it is convenient to aUow p to take the value °°. The
phrase "a spherical metric complex" wiU stand for: "a p-spherical metric complex,
for some value of p"; thus spherical metric complexes include metric complexes.
To distinguish metric complexes from p-spherical ones I shaU always specify of
the latter that p is finite, and the former I shaU caU linear metric complexes.

The third reason for introducing spherical metric complexes of finite radius
is that in the linear case there are only finitely many minimal paths between two
points (this can be inferred from Proposition 3.4); of course this is not true in
the spherical case. Thus in p-spherical metric complexes of finite radius the cal-
culus of variations can be used to a Umited extent. This is the nub of the proof
of Theorem 3. To use the calculus of variations directly in the Unear case one
would have to redefine concepts as basic as "conjugacy" and the "index" of a
geodesic. The proof of Theorem 1 avoids this issue because it deals with a situa-
tion in which one can be sure that "conjugate points"—whatever they are—do not
occur.

As I mentioned before, one of the reasons for defining spherical metric
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GEODESICS IN PIECEWISE LINEAR MANIFOLDS 7

complexes is to be able to discuss the link of a point in a linear metric complex.
Let M be a p-spherical metric complex and let P E M. The ball of radius r about
P is defined to be BP(r, M) = {X E M such that p(P, X) < r}. Its boundary is
Sp(r, M), the sphere of radius r about P.  If r < p(P, link(F, M)), then Bp(r, M)
and Sp(r, M) are indeed a topological ball and sphere, though for large r this
need not be the case. Assuming this inequality satisfied, let me abbreviate Bp(r, M)
and Sp(r, M) to B and S. Then S has a natural simplicial structure isomorphic
to link(F, M), which is given by a radial projection from F denoted \p: star(F, M)
- {F} —> S. It follows that S is a q-spherical metric complex, where q =-
p sin(//p) if p is finite and q = r if p = °°. Let p, p' and p" be the intrinsic
metrics on M, star(F, M) and S respectively. The connection between them is

Lemma 2.2. Assume that r < lAp(P, linkfF, M)). 77ie« for all I, FSB
different from P:

(1) p(X, Y) = p'(X, Y).
(2) The segments X-P-Y constitute the only minimal path from X to Y

in starfF, M) «• p"(\jj(X), \p(Y)) > trq.
(3) If p"(^j(X), \p(Y)) < Trq, then there is a bijection

ty:   {minimal paths from X to Y in B}

—* [minimal paths from \p(X) to $(Y) in S}
such that im ^(á) = \¡j(ixn a).

Proof.   The first assertion is elementary and I omit its proof.
Let \¡/': star(F, M) - {F} —> linkfF, M) denote radial projection from P.

Let a be a one-to-one piecewise geodesic path in S from \¡j(X) to ü(Y). Then \p'
carries a into a path in linkfF, M) which can be re-parametrized as a pJ. path a.
Let K be the join F * a'; then K is a p-spherical metric 2-disk, and im a = K n S.
Say p(P, X) = s, p(P, Y) = t, and let 0 be the angle of K at F, so 0 = L(a)/q.
Since r < 7t/2, F * ct is convex in K, so the minimal path in K from X to Y lies
in F * a. In fact (see Diagram 1) there is a unique such path, say /(a).

(*) /(a) consists of the segments X-P-Y o 0 > it, and then L(f(a)) =
s + t.

(**) P$f(a) o 6 < tt; and then

cos(L(/(cv))/p) = cos(s/p) cos(i/p) + sin(s/p) sin(f/p) cos(L(a)/q)

if p is finite, and

(L(f(a)))2 =s2 +t2 - 2st cos(L(a)/r),   if p = «.

It follows that if a is a minimal path in S, then/(a) is a minimal path in starfF, M)
(observe that X-P-Y is the shortest of the paths from X to Y which pass
through F). This proves assertion (2).
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8 D. A. STONE

If ß is a minimal path in star(P, M) from X to Y which does not pass
through P, then i/>(j3) is defined and can be re-parametrized as a piecewise geodesic
path in S; by definition, this is V(ß). Clearly f(V(ß)) = j3. (**) shows that *(j3)
is a minimal path in S of length <7rq. Hence Sp" is defined, with inverse /; and
assertion (3) follows.

Let M be a spherical metric complex. A subset X C M is convex if any
minimal path a whose endpoints are in X itself Ues in X.

link(/>, M)

M is a single 3-simplex

Diagram 1

If in addition im(a 1 (0, 1)) C int X for every such a, then X is strictly convex.
X is weakly convex if for any two points of X there is a path between them in
X which is a geodesic in M.  A function /: M —* R is convex, strictly convex or
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GEODESICS IN PIECEWISE LINEAR MANIFOLDS 9

weakly convex if for every r G R the set f, defined as {X G M such that f(X) <
/■}, is convex, strictly convex or weakly convex respectively.

Corollary 2.3. Ifr < lAp(P, link(P, M)), then Bp(r, M) is strictly convex
in M, and p' is just the restriction of p to B.

The metric geometry of a neighbourhood of a point P in a metric complex
is determined by the metric geometry of a spherical Unk of P.  Lemma 2.2 says
roughly that if one is to be told only the structure of geodesies and not the
whole intrinsic metric, then it is more valuable to know about geodesies in a link
than in a neighbourhood B of P; for one does not lose track of geodesies in B
which do not pass through P when examining a Unk of P and one has extra infor-
mation about geodesies in B which do pass through P.

Let a C Rfc and b C R' be linear Simplexes. Give a x b the metric in which
its factors are orthogonal, so that

[paXb((Xx, Yx), (X2, Y2))]2 = [pa(Xx,X2)]2 + [pb(Yx, Y2)]2.

Then a x b is a convex linear cell in Rk+/, and after subdivision can be regarded
as a metric complex. Now let M and N be Unear metric complexes. The linear
metric complex M x N, called the orthogonal product of M and N, is defined by
metrizing some simplicial subdivision of the cell complex M x N so that for every
a G M and b G N, a x b is given the orthogonal product metric. That this met-
rization of M x N is indeed a metric complex foUows from this lemma, whose
proof I omit:

Lemma 2.4. A path in M x N is minimal (or is a geodesic) o its projections
into M and N are both minimal (or both geodesies).

It is clear how to generalize the foregoing discussion and Lemma 2.4 to the
orthogonal product of any finite number of Unear metric complexes.

Let S ' be a sphere of radius p in R/+ x, let a be a p-spherical simplex in S,
and let PGa.  For each geodesic a from P in a, let Dp(a) be its tangent vector
at P.  The tangent cone of a at P is defined to be Tp(a) = \J{Dp(a) for all such
a); then Tp(a) is an unbounded convex linear cone with vertex P lying in the
tangent space TP(S) of S at P.  Let b be the face of a such that PGintb; then
Tp(b) = [b], the affine space in R/+ x generated by b.  Tp(b) is called the base
or flat part of Tp(a); it can be characterized as [X G Tp(a) such that Tp(a) is a
cone with vertex X).

Now let M be a spherical metric complex and let P G M. For each a G M
such that P G a I have Tp(a) (or more precisely, Tf,P)(a*), where /: a —> a* is
given by a metrization of M).  The tangent space TP(M) to M at P is formed from
the disjoint union [J (TP(a) for all a containing P) by making identifications
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10 D. A. STONE

according to the natural embeddings TP(b) c_>. TP(a) whenever P Eb and ft < a.
TP(M) can be given the structure of a linear metric complex. It is intrinsic to
M in the sense that any isometry ft: M —► M' induces a natural isometry TP(M)

If X * P is in starfF, M), then TP(P-X) is an infinite ray from P.  It will
be denoted PX and called a tangent direction to M at F.  Since TP(TP(M)) can be
identified with TP(M), I shall also speak of the tangent direction PX when X =/= F
is in TP(M). If a is a path from F in either M or TP(M), then Pâ will denote
PX where P-X is an initial segment of a in star(F, M) or TP(M). Similarly if a
is a path through F, then FcFJi and FcT will denote the tangent directions to a at
F in the directions of increasing and decreasing parameter respectively.

Let SP(M) be the unit sphere about F in TP(M), and let ps be the intrinsic
metric on SP(M).  Let PX, PY C 7>(M), and set X'= PX n SP(M), Y' = PY C\
SP(M). The a«fte between PX and Ff is defined to be LXPY = ps(X', Y'). If
N is a subcone of TP(M), then its orthogonal complement is defined to be U [PY
such that LXPY = tt¡2 for all PX C N}.

For example if r < }$p(F, link(F, M)) and if Q E SP(r, M), then
Tn(Sp(r, M)) can be naturally identified with the orthogonal complement of QP
in Tq(M). (This is clearly true when M is a single simplex; one need only add
that in general the natural identifications defined for each simplex of starfF, M)
respect the combinatorial structure of M.)

To connect properties of geodesies in TP(M) with those of geodesies in M
near P, I now introduce the "exponential map" at P.  Let r be a number such that
0 < r < pM(P, link(F, M)).  Say M is a p-spherical metric complex.  For each
a G M such that P Ea, think of a as a simplex in a p-sphere S* C Rl+ x. Then
the standard exponential map expp: TP(S) —* S restricts to a homeomorphism
exp(a)p: Bp(r, TP(a)) —* Bp(r, a). The exponential map at F, expp: BP(r, TP(M))
—► Bp(r, M) is defined to be (J{exp(a)p for all a containing F}. Of course if M
is a linear metric complex, then expp is an isometry; the purpose of the next
lemma is to show that even if p is finite, expp is still "approximately" an isometry.

Let B(r), Br(r) denote Bp(r, M) and Bp(r, TP(M)) respectively, and let
S(r) and ST(r) be defined similarly. Let \¡/: B(r) - {F} —*■ S(r) and \j/T: BT(r) -
{P} —► ST(r) denote radial projection from P.

Lemma 2.5. Let r < lAp(P, link(F, M)). 77ie«
(1) expp: ST(r) —*■ S(r) gives a bijection between minimal paths (and hence

between geodesies), and preserves angles.
(2) expp: Br(r) —+ B(r) preserves the structure of geodesies near P in the

sense that for any Q, F # F i« Br(r):
(i) The minimal path from Q to R is Q-P-R <> that from expp(g) to

expp(F) is expp(ß)-F-expp(F); i« Ifti's case expP takes one minimal path into
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GEODESICS IN PIECEWISE LINEAR MANIFOLDS 11

the other and they have the same length.
(ii) If minimal paths from QtoRdo not pass through P, then there is a

bijection E: {minimal paths yT from Q to R) —► {minimal paths from expP(Q)
to expp(R)) such that im \p(E(yT)) = exp^Om tyT(yT)); in this case L(yT) =
L(E(yT)) + 0(r2).

Proof.   For Unear metric complexes the lemma is trivial, so I assume M is
p-spherical with p finite. For any s > 0 define the dilation s*: TP(M) —*■ TP(M)
with factor s by: s*(P) = P, and for X + P, s*(X) G PX at distance spT(P, X)
from P.  Clearly s* preserves minimal paths and angles, and multipUes distances
by s.  Hence s* induces a map s": ST(r') —► Sr(sr') for any r.  s" also multipUes
lengths by s, and so preserves geodesies. I claim that s" preserves angles. For if
Q G ST(r), then 7V,(Sr(r')) can be identified with the orthogonal complement
Nô of ßP in TQ(TP(M)), and the tangent map Ds": TQ(ST(r')) -* TSt(Q)(ST(sr'))
with the restriction of the tangent map Ds+: Ng —+ Ns ,g). But since TP(M)
is a Unear metric complex, Ds* can be identified with s*, in a neighbourhood of
Q.  Now s* preserves angles in Nq ; hence s" does so at Q.

Set r' = p sin(r/p) and s = r/r. Then expp ° s": ST(r) —► S(r) is an isometry.
Since exp^: Sr(r) —* S(r) can be written as (expP ° s") ° (1/s)", assertion (1)
foUows.

In fact this argument shows also that exp^: ST(r) —+ S(r) multiplies all
distances by 1/s. Part (i) of assertion (2) now follows from Lemma 2.2. That
lemma also implies that either both \I> appUed to expp(Q) and expp(R), and the
analogous *r appUed in Tp(M) to Q and R, are defined, or else neither is defined.
Note that expp(\¡sT(Q)) = Tp(expp(Q)) and simUarly for R.  So E can be defined,
under the hypotheses of (ii), as the composition

{minimal paths from Q to R)

> {minimal paths from $T(Q) to ^/T(R) in ST(r))

-► {minimal paths from iKexPp(0) t0 ^(exPp(R)) m S(r)}cxp»

x  > {minimal paths from Q to R in B(r)}.

The comparison of L(yT) to L(E(yT)) foUows from equation (**) of Lemma 2.2
applied in B(r) and BT(r), and the fact that s = 1 + O^3). This completes the
proof of Lemma 2.5.

For example, a geodesic in M can now be characterized as a path a para-
metrized proportionaUy to arc-length such that ¿cCo(0û+ ^ ît for all i G (0, 1).

So far the train of thought runs thus: to study the nature of minimal paths
near a point P in a metric complex M it suffices to study minimal paths in
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12 D. A. STONE

SP(r, M) (Lemma 2.2), or even better, in SP(M) (Lemma 2.5). But this is still
not good enough, for the following reason: Let c be the simplex of M such that
PEintc and let N be the orthogonal complement of Tp(c) in TP(M). Then TP(M)
is the orthogonal product Tp(c) x N, and since Tp(c) is the flat part of TP(M), all
the interesting geometry of M near F is captured by N. However, assume now that
dim c > 1, so that Sp(c) C SP(M) is nonempty. Then for any X, Y E N n SP(M)
there is a path from X to Y in SP(M) of length it; namely, connect X and Y to a
point of Sp(c). It follows that SP(M) has diameter <7T, and this for a reason
which has nothing to do with N. One is in fact sacrificing the extra information
about geodesies through F in M that was gained in Lemma 2.2.

It is perhaps tempting to disregard TP(c) and work only with N. But N is
not intrinsic to M at F, since c was not intrinsically chosen. To rectify this, con-
sider all possible isometries between TP(M) and the orthogonal product of a
Euclidean space and a cone with vertex F, such as ft: Rk x N(ft) —► TP(M).
Choose ft so that k is as large as possible; of course dim c < k < dim M. Then
the image yP(M) = h(Rk x F) is called the base or flat part of TP(M), and the
image vp(M) = ft(0 x N(ft)) is called the normal geometry of F in M. The base
ix>p(M) is intrinsic to M, for it can be characterized as {Q E TP(M) such that
TP(M) is a cone with Q as vertex}. Now vp(M) can be intrinsically defined as the
orthogonal complement of <x>P(M) in TP(M). Let aP(M) be the unit sphere in
¡>P(M) about F, and let pCT be the intrinsic metric on ap(M); then pa(X, Y) =
L XPY. Information about geodesies in M near F is best summarized by informa-
tion about geodesies in ap(M).

Let X, YE o>(M). Then PY is in the open cut locus of PX, denoted
C?(PX), if there are two or more minimal paths from X to Y in aP(M). The cut
locus C(PX) ofPX is defined to be cl[C°(PX)]. It will follow from Lemma 2.8
that if M is a manifold without boundary and if ^(M) =£ {F}, then C(PX) =£ 0
for any PX C vp(M). Assuming that C(PX) ¥= 0, the maximum and minimum
curvatures of Mat P in the direction PX C vp(M) axe defined by:

k+(PX) = 2tt-2 min {¿IF? for PY Ç C(PX)};

kJPX) = 2tt - 2 max{LXPZ for PZ C C(PX)}.
If C(PX) = 0,1 set k+(PX) = k_(PX) = 0.

Examples.    1. Let M be a linear 2-manifold without boundary. If F is
other than a vertex of nonzero curvature, then M is flat near F; that is, <^p(M) =
TP(M) and vp(M) = {F}, so M is locally isometric to R2. Diagram 2 shows points
of positive and negative curvature. Geodesies from a point Q near F, as seen from
above, look roughly as in Diagram 3. To determine geodesies from Q exactly it is
best to develop the two cones in the plane by cutting each of them open along
the ray PX "opposite" to PQ; then in the resulting planar nets, geodesies will be
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GEODESICS IN PIECEWISE LINEAR MANIFOLDS 13

straight lines wherever possible (see Diagram 4). Observe that PX is just the cut
locus of PQ (once M is identified with TPQA) near P). In this example k+(PQ)
= k_(PQ) = 2tt - 2 L QPX, which is indeed the usual 2-dimensional curvature of
M at P.  In this case the curvature does not depend on PQ, only on P.

2. The proof of Theorem 4 hinges on this example: let M be a simpUcial
3-disk triangulated as the join of a 1-simplex c to a pentagon N, so M consists of
five 3-simplexes about a 1-simplex. M is metrized by making aU the 1-Simplexes
have length 1. M is actually a metric complex because it can be Unearly embedded
in R4. Let P be the midpoint of c. Then <pP(M) is essentiaUy c and vp(M)
essentially P * N (at least in a neighbourhood of P). The total angle of P * N
at P is < 2?r. Again k+(PX) = k_(PX) = 2tt - (total angle of P * N at P) does
not depend on the choice of PX C vp(M), and the curvature at P is < 0.

3. More generally if M is a metric complex (linear or spherical) which is an
n-manifold without boundary, then k+(PX) = k_(PX) = 0 whenever P G int a
with dim a > n - 1. If dim a = n - 2, then either vp(M) = {P), in which case
M is flat near P, or else dim vP(M) = 2. In this case k+(PX) = k_(PX) and the
curvature is independent of the direction PX C i>p(M).

Positive curvature

Diagram 2

Diagram 3
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14 D. A. STONE

Diagram 4

4. Here is an example in which the curvature at some points does depend
on which direction one chooses. Let U be the (closed) exterior of a unit cube
in R3 with boundary C, and let V be a copy of U. Form M from the disjoint
union U U V by identifying bdy U to bdy V in the obvious way. Clearly the
geometry is interesting only at the edges and vertices of C. If c is an edge of C
and F G int c, then vp(M) is 2-dimensional, so the curvatures at F are equal and
do not depend on the direction used. In fact k+(PX) = k_(PX) = -it in all
directions. However, the situation is different if F is a vertex of C. Now <pP(M)
= {F} and vp(M) = TP(M). Let PX be the axis of symmetry of U at F, and PY
the corresponding direction in V. Then PY C C(PX) and maximizes L XPY.
It follows that k_(PX) = 4 taxTx(21A) -2it<0. Also k+(PX) = 0. These state-
ments are easy to verify once one knows what geodesies from X in SP(M) look
like. They are drawn (not very accurately) in Diagram 5. First I have split
SP(M) into SP(U) and SP(V); each is the complement in the 2-sphere SP(R3) of
the spherical triangle EXE2E3 = SP (unit cube). Then I have projected SP(V)
into R2 stereographically from the antipode X' of X in SP(R3), and treated
SP(V) similarly. Geodesies from X axe suggested by dashed lines, which of course
continue from one half of the picture into the other. The region E2E3XX
represents a spherical triangle such that XE2E3 U E2E3XX is isometric to a por-
tion of a 2-sphere in which X and Xj' are antipodal and XE2XX and XE3X'[ are
great semicircles. In this region geodesies from Xall converge to Xx. The region
XXX2E3 is isometric to half of a polar cap about E3 in a 2-sphere. In this region
geodesies from X consist of the geodesic X-E3 in SP(V) followed by geodesies
from F3. The region XlX2X3 represents the points distant more than 7r from X.
C(PX) is the infinite cone from F on U {Y-Xx for i = 1, 2, 3}. Geodesies from
X in the region YX2X3 axe the continuations of geodesies from Ex.

On the other hand TP(C) is geodesically closed in TP(V) and TP(V), and
hence in TP(M). Thus if Q is the midpoint of E2-E3 in SP(M), then PQ =
C(Fé7 in TP(C)). Let F{ be antipodal to Et in SP(R3). It is not hard to see that
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Diagram 5

C (PËf in TP(U)) is the infinite cone from P on Q-E\. It follows that nJPEf) =
0 and k+(PEx) = tt/2. Thus the curvature hypothesis of Theorem 1 is not satis-
fied by M; which is just as weU, since M is homeomorphic to S2 x R1.

I shaU say that a spherical metric complex M has unique minimal paths near
P if P has a neighbourhood B in M which is convex and such that for every X, Y
G B there is a unique minimal path from X to Y in B. M has unique minimal
paths locally if this is true for every P G M. If for every X, YGM there is a
unique minimal path (or geodesic) from X to Y, then M has unique minimal paths
(or geodesies).
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16 D. A. STONE

Lemma 2.6. Let M be p-spherical and let PGM. Then these conditions
are equivalent:

(1) k+(PX) < 0 for all PX C i^(M);
(2) M has unique minimal paths near P;
(3) ifr < lAp(P, link(P, M)) and i/q = p sin(r/p), then whenever X, Y G

Sp(r, M) wir« ps(X, Y) < Trq, there is a unique minimal path from X to Y in S.

Proof.   Condition (1) holds •» vp(M) has unique minimal paths (by Lemma
2.2) o TP(M) does so (by Lemma 2.4) * Bp(r, Tp(M)) does so (by Corollary 2.3)
o Bp(r, M) does so (by Lemma 2.5); and this is just condition (2). Conditions
(2) and (3) are equivalent by Lemma 2.2 again.

Lemma 2.7. ¿er X and Y be subsets of a spherical metric complex M.
Assume that for every X GX and Y G Y there is a unique minimal path in M
from X to Y.   Then these minimal paths vary continuously (pointwise) with their
endpoints.

Proof.   Let a¡ be the minimal path from X¡ G X to Y¡ G Y, where X¡ —>
X G X, Y¡ —»• Y G Y, and let a be the minimal path from X to Y.  The a¡ are
eventuaUy all contained in some compact set (for example, Bx(2p(X, Y), M)).
Hence the cx¡ have (pointwise) convergent subsequences. The limit of any such
subsequence is a path from X to Y whose length is p(X, Y); that is, the Umit
path is a minimal path from X to Y; it must therefore be a. This proves the
lemma.

Lemma 2.8. Let vp(M) be the normal geometry of P in a spherical metric
complex M which is a manifold without boundary. Assume vp(}\) ¥= {P}. Let
PX C vp(M), and let PY C vp(M) be such that LXPY is as large as possible.
Then PY C C(PX).

Proof.  Say PX and PY meet o>(M) in X and Y.  Suppose PY <£ C(PX).
Set B = BY(r, oP(M)) and S = bdy B. Then for some r > 0 there is a unique
minimal path az from each point Z G B to X.  By Lemma 2.7  az varies contin-
uously in Z.  So Uiaz} defines a map /: X * B —► oP(M), a homotopy of B
down to X.  But for ZGS,az does not pass through Y.  So Y #f(X * S); this
is a contradiction, and the lemma is proved.

Corollary 2.9. k_(PX) > 0 for all PX C vp(M) <* diam o>(M) < 7T.

These conditions are also equivalent, as will be shown in Lemma 5.1, to
saying that if a geodesic a passes through P, then Pa+ and Pct_ lie in ^(M).

3. The hypothesis of unique minimal paths.  This section is given to the
proof of some results needed in §4, which is about metric complexes of negative
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curvature. Throughout this section, unless otherwise stated, I shall hypothesize
of any p-spherical metric complex M that whenever Q, R E M with p(Q, R) <
7rp, there is a unique minimal path from Q to R.  The main examples used in §4
are these: Let M' be a spherical metric complex and let F G M be such that
k+(PX) < 0 for all PX ç vp(M). Then, for any r < %p(P, link(F, M)), BP(r, M)
and SP(r, M) satisfy the above hypothesis, by Lemma 2.5.

Propositions 3.1 to 3.5 are the results from this section which will be quoted
in §4; they are stated directly below. The reader who accepts their proof may
proceed directly to §4.

Proposition 3.1. Let M be a linear metric complex, and let a and ß be
minimal paths.   Then for all t G [0, 1],

p(a(t), ß(t)) < (1 - t)p(a(0), ß(0)) + tp(a(l), ß(l)).

Proposition 3.2. Any geodesic of length <rrp is a minimal path.

Proposition 3.3. Let P, Q, REU be such that p(P, Q), p(P, R) < 7rp/2.
77ze« the minimal path y from Q to R satisfies: p(P, y(t)) < (1 - t)p(P, Q) +
tp(P, R), and equality holds only if't = 0 or 1, or if' P, Q and R lie on a minimal
path.

Proposition 3.4. Let M be a p-spherical metric complex, not necessarily
having unique minimal paths. Let a be a geodesic from P to Q of length <7rp.
Then there is an e> 0 such that whenever ß is a path from P to Q pointwise
closer than e to a and im ß ¥= im a, then L(ß) 3s L(a).

Proposition 3.5. Let PEM and let q < rrp/2. Then for any simplex a,
Bp(q, M) n a is either empty, a single point, or a smooth, strictly convex body
with nonempty interior in a.

I first give a rough outline of the proof of Proposition 3.1 as typical of the
methods of this section. It suffices to prove the proposition in case a(0) = ß(0)
= P, say (Lemma 3.9). Let y be the minimal path from Q = a(l) to R = ß(l),
and for each t let af be the minimal path from F to y(t). The paths at vary
continuously in t, so their union forms a sort of "triangle" PQR in M. This
"triangle" is not necessarily polyhedral, but it can be sufficiently well approxi-
mated by a polyhedron, so let me assume that PQR is itself one. To prove the
proposition one may consider only PQR with its intrinsic metric. I distinguish
three cases. The proof is simplest in Case I: PQR has no interior points of
curvature and y is a straight-line segment. The "sides" PQ and PR of PQR need
not be straight, but they can have only reflex angles. In this case PQR can be
constructed in R2  (Lemma 3.6) and the required inequality can now be easily
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proved. In Case II, PQR still has no interior points of curvature, but y is not
straight. Then the angle at a vertex Z of y is reflex. Cutting PQR along the afs
from P to the various Z's decomposes PQR into "triangles" in Case I, and the
required inequality follows. In Case III, the general case, PQR may have interior
points of curvature, Y.  They all have negative curvature; in fact, cutting PQR
along the af's from P through the Fs decomposes PQR into "triangles" in Case
II (Lemma 3.8), and the proposition follows.

Now the points Y arise (roughly speaking) in this way: A generic af passes
through the interiors of Simplexes ax(t), bx(t), a2(t), . . . , bk_x(t), ak(f), in that
order, with dimensions alternately n, n - l,n, . . . , n  (assuming that y is also
generic).  The exceptional o^'s pass through (n - 2)-simplexes, generically
speaking; these af's are isolated and meet the (n - 2)-simplexes in isolated points,
which are the Fs. Thus Case I arises when examining "short" paths y such that
the sequence aj(r), . . . , ak(t) is the same for aU r.  The generic case is not the
general case, however; and in general one cannot assume that the a¡(f) and b¡(f)
have dimensions n and n - 1 respectively, even for most values of r.  Lemma 3.7
shows that, nonetheless, for short segments of 7, Case I does apply. To analyze
Case I, and also to construct a pJ. approximation to PQR, I first fix a sequence
of the form ax(f), . . . , ak(f) and examine paths which yield this sequence.

Let M be a spherical metric complex, and let P, Q G M.  A chain from P
to Q is a sequence C = (ax, . . . ,ak) of Simplexes of M such that PGax,QG
ak and b¡ = a¡ n a¡+ x is nonempty, for i = 1, . . . ,k - 1   (if k = 1 this condition
shall be void). A path a from P to Q lies within C if there are x,, . . . , xk_x G I
(which need not be distinct) such that a(x¡) = b¡ and such that (setting x0 = 0,
xk = 1) a maps [x¡, x¡+1] into a/+1 and a l [x¡, xi+x] is a geodesic, for i = 0,
..., k — 1. The development of C is a spherical metric complex C* defined thus:
take disjoint Simplexes a¡* isometric to a¡, and identify, for i = 1, ... ,k - 1, the
faces corresponding to b¡ in a¡ and ai+x. Then C* has its intrinsic metric pc»;
however I shaU usually write pc for pc,, and call pc a "metric" on C, to save
expUcit mention of C*.

If P G ax and QGak, then any geodesic from P to Q in the metric pc is a
path within C. On the other hand, every geodesic from P to Q in M Ues within
some chain. For many purposes, including that of looking for minimal paths in
M, it would make sense to lay down as an axiom of chains that the Simplexes of
a chain be distinct; but in the proof of Proposition 3.4 it wiU be useful to aUow
chains to have repeated Simplexes.

Let paths a and ß from P to Q and R within C be determined by points
X¡ and Y¡ of b¡ respectively, for i = 1, . . . ,k - 1; assume Q and R are both in
ak. Then I can form these 2-simplexes (some of which may be degenerate):
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(P,Xx,Yx)Cax,

<X{_X, Y¡_x, Y,), {X¡_x, X¡, Y{) Ça,,   for i = 2,.... k - 1,

and

afc, yfc,t2>,afc,ô.A>Çafc.

The metric 2-complex formed by the union of these Simplexes, K, is called the
span of a and ß. Topologically K looks like a finite sequence of 2-disks with
consecutive ones either touching at boundary points or being joined by an arc
between boundary points.

The next lemma shows that if a and ß axe geodesies and are not too long,
then K is either an arc, a disk, or at most an arc followed by a disk; that is,
once a and ß separate they cannot again converge. In the outline of the proof of
Proposition 3.1, K is the polyhedron that approximates, in Case I, the "triangle"
of minimal paths from F to Q-R.

Lemma 3.6. In the previous notation assume that a and ß are geodesies
of length <7ip/2.  77k?« K is isometric to a metric complex L in a p-spherical
2-sphere S of this form:

(1) L = Lj U L2, where Lx is a polygonal region and L2 an arc;
(2) the boundary ofLx is a simple, closed curve made of geodesic segments

with vertices W, Ux, U2, . . . , Um, Vn, . . . , Vx in that order;
(3) L Ux, . . . , L Um_x, L Vn_x, . . . ,LVX   (measured within L) are>ir;
(4) the length of Um-Vn is <rrp;
(5) Lj C int Bw(irpl2, S);
(6) L2 is a geodesic segment W-X;
(7) Lj n L2 = W.

(See Diagram 6.)  Under this isometry P, Q and R correspond to X, Um and Vn
respectively, a to X-W-Ux- • • • - Um and ß to X-W-Vx- ■ ■ • -Vn. Thus
X-W represents whatever initial portion im a and im ß have in common; of course
if im a n im ß = P, then X = W and L2 is degenerate.  Lx can also be degenerate.

Proof.   Let cx, . . . ,c¡ in this order be the 2-simplexes (some of which
may be degenerate) used to define K. By discarding for now an initial portion
common to a and ß, I may assume cx is nondegenerate. The proof is by induc-
tion on /= 1,...,/; the inductive hypothesis is that cx U • • • U c¡ has been
embedded in S and that its image, which I call by the same name, lies in the non-
degenerate, convex, spherical triangle c'j = P* d¡ (where d¡ = cy n cj+x for
/=1,...,/-1).

The initial case is trivial. Now let; = 2. Consider first the possibility that
c2 is degenerate. It suffices to show that d2 is not degenerate. If this did happen,
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say d j = < w\, w\ ) and d2 = w\  (observe that d¡ n dj+ x can never be empty),
then w\ would be an interior vertex of either a or ß, say of ß, and cx would be
a neighbourhood of w\ in K. But Lw\  (in K) < tt (since cx is a convex triangle
in S); this would imply that j3 is not a geodesic in K at w\, a fortiori not in M,
contrary to hypothesis. Now assume c2 is nondegenerate. I can embed c2 in S
so that a neighbourhood of dx in cx U c2 is embedded. The vertices of c2 are
distant <7;p/2 from P in K, and hence in S, since L(a) and Liß) < 7tp/2. So c2
Ues in the convex set

Diagram 6

int Bp(np/2, S), and it foUows that cx U c2 is embedded. Say d2 = <w{, w\),
and say wx is a vertex of p\ For ß to be a geodesic in M, and hence in K, Lw\
(in K) must be >it. Hence cx D c2 GP * d2. So c2 is 2-dimensional and thus
nondegenerate; it is convex because L(d2) < 7rp and its other two sides have
length <7Tp/2. This finishes the case / = 2.

For the general step I apply the same argument to c'f and c¡+ x, with these
modifications: If cj+ x is degenerate, let d¡ = (wj, w2); then Lwj (in cx U • • •
U cf) < Lwj (in c'f) < 7T  (since c'¡ is convex), and it foUows that dj+ x cannot be
degenerate. If c/+ j is nondegenerate, say c?/+1 = (wj, wj+ x >; then Lwj  (in
cy U c.+ f) > Lwj   (in K) > it, and as before c'¡ Uc;>1 CP* d^ x. This com-
pletes the inductive step.

At the end of the induction Lj has been constructed but for labelling its

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GEODESICS IN PIECEWISE LINEAR MANIFOLDS 21

vertices.  W is the image of P;UX, ... ,Um are, in order, the distinct images of
those X¡ such that LX¡ (in K) > it; and Vx, . . . , Vn are defined similarly. I
have hitherto assumed im a and im ß have no common initial portion, but the
general case presents no further difficulty. This completes the proof of Lemma
3.6.

The next two lemmas enable one to generalize from Case II situations to
Case III ones.

Lemma 3.7. Let M be a p-spherical metric complex, not necessarily having
unique minimal paths. Let abe a geodesic.  Then there is ane>0 such that
whenever ß is a path pointwise closer than e to a, there is a chain B satisfying:

(1) a is within B ;
(2) ß is a path in B; more strictly, ß can be lifted to a path in the develop-

ment of B.

Proof.   For each t G I let <a(r)> be the simplex such that a(t) G int (a(r)>.
There is a minimal subdivision 0 = r0 < ij < • • • < tk = 1 of I such that <a(r)>
is the same simplex a¡ for aU r G (t¡_x, t¡), i = 1,..., k.  Set b¡ = <a(ff)>; so
b¡ = a¡ n a¡+ x. Then C = (ax,. . . , ak) is a chain. Set XQ =P,Xk = Q, X¡ =
im a C>b¡ for i = 1,... ,k - 1, and say that X¡ = a(u¡). Choose numbers
v0 = 0, vk+x = 1, and v¡ for / = I,... ,k so that u¡_x < v¡ < u¡, and set
Y i = a(v¡), for i = 1, . . . , k.  Note that Y¡ G int a¡ and X¡ G int b¡ for i = 1,
... ,k - 1. Choose e so smaU that for each i = 0,... ,k the set N¡ =
U $a(t)(e> M) for r G [v¡, v¡+ x] ) is contained in int star(Xf, M). (See Diagram
7.)

Let ß be a path from P to Q, pointwise closer than e to a. Let B =
(cx, . .., cn) be the chain analogous to C defined for ß. Then ß is a path in
B (though not within B) in the sense of assertion (2). I have to show a is
within B. Now im ß G \J{N¡) = Uíint star(ô,., M)}. Hence every (ß(t)) has at
least one b¡ as face. For each i = 1,..., k - 2 define the set T¡ to be {t G
[v¡, vi+x] such that b¡_x is not a face of (ß(f))}. To check that T¡ # 0,1 now
show that vi+ x G T¡: for ß(vi+x) is within distance e of Yi+ x, and hence ß(vi+x)
G intístartr,., M) n star(Xf;). x, M)) = int star(ai+ x, M). So ai+ x < (ß(vi+ x)). If
b¡_x were also <(j3(ü/+1)>, this would say that a took two simplexes-a,- and
ai+x -where one would do—<j3(u/+1)>; in other words, a would not be a geodesic.
Hence vi+ x G T¡. Moreover ß(v() G int star(Xf_!, M) = int star^^, M) again by
choice of e, so v¡ £ T¡. It foUows that gj.b. (T¡) is one of the t¡; caU it fw.

Now X¡ G dm = <ß(tm)). For j(i) </ </(/ + 1), v¡_x < t¡ <vi+x;
hence

ß(tf) G int(stai(Z,., M) U star(Z/+ x, M)).
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Diagram 7

By choice of j(i + 1), ß(t}) E int star(Xf, M). That is, X¡ E d¡ for j(f) < / <
j(i + 1). Any Ct is spanned by d¡_x and d¡, so Cy/i+1\ contains X,- and X/+1.
Thus a is the path within 8 determined by the points Z, E d- defined by Z, = X¡
for /(/) </ </(/ + 1). This completes the proof of Lemma 3.7.

Lemma 3.8. Let P,Q, RE M. Let y be a path from Q to R, and for each
t let at be the minimal path from P to y(t). Then there is a subdivision 0 = t0
< fj < • • • < tk = 1 of I sixcft that for each i = 0.k - 1, at. and at.+ x
lie within the same chain.

<'/

Proof.   Recall (Lemma 2.7) that at varies (pointwise) continuously in t,
Let T C I be the set of t for which there exists a subdivision 0 = r0 <
= t (which may vary with t) of [0, t] such that at. and at¡+ x lie within the
same chain. Applying Lemma 3.7 to a = a0 and ß = at as t approaches 0 from
above shows that T¥=0   (because in this case ß, being a minimal path, is within
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the chain 8 of that lemma). Let t* = l.u.b. (T). Applying Lemma 3.7 as t
approaches t* from below shows that t* E T; applying the lemma once more as
t approaches t* from above would show there are t E T which are > t*—unless
i* = 1, which must therefore be the case. This proves Lemma 3.8.

Proposition 3.1 follows from:

Lemma 3.9. Let M be a linear metric complex, PEM,a and ß minimal
paths from P.  Then p(a(t), ß(t)) < fp(a(l), 0(1)).

Proof of Proposition 3.1. Let y be the minimal path from a(0) to ß(l),
and apply Lemma 3.9 first to a and y, and then to y and ß.

Proof of Lemma 3.9. The proof distinguishes three cases; most of the
work is done in the first one.

Case I. a and ß are within the same chain C, and Q and R are in the same
simplex. Let K be the span of a and ß. If K degenerates to an arc, the required
inequality is easily proved. Otherwise, K is isometric to a complex L C R2 of
this form: L = Lj U L2, where Lj satisfies the hypotheses of Lemma 3.6. Ex-
tend the lines Um_2-Um_x,... , W-Ux, W-Vv .... Vn_2-V„_x past their
second endpoints till they meet Um-Vn, say in Yx,... , Yr (r = m + n - 2).
Set YQ = Q, Yr+ j = R, and let r¡¡ be the geodesic in L from W' to Y¡. It suffices
to show that pL(r}¿(t), r)i+x(t)) < tpL(Y¡, Y¡+x), for i = 0.r.  In other
words the lemma is reduced to the case that m = n = 1.

Now L = <£/, V, W) U (W, X). Set a(t) = U' and ß(t) = V'. If U' and V'
both Ue in a or in ß, the required inequality is trivial, so I assume U' G W-U,
V' E W- V.  Taking polar coordinates at W, let U- V have equation r = r(6).
Let X-W have length c.  Then U'-V' is no longer than the smooth curve y from
U' to V' defined by r = r'(d) = tr(6) - (1 - t)c. Let ds and ds denote arc-length
along U-V and y. Then dr = tdr; hence

(ds)2 = (r')2(dd)2 + (dr')2 < (tr)2(dd)2 + (tdr)2 = t2(ds)2.

So ds' < tds, and hence L(U'-V') < L(y) < tl(U-V). The lemma is proved in
Case I.

Case II. a and ß are within the same chain C. Say QEa¡ and R E ak with
/ < k.  Let the minimal path from Q to R be determined by Z¡ E b¡, for i = /,
. . . , k - 1. Set Z¡_x = Q, Zk = R, and let f; be the geodesic from F to Z¡,
for i = / - 1,.... k. For each i = / - 1,.... k - \,pc(Si(t), £l+1(0) <
tpc(Z¡, Z¡+1) by Case I. Adding these inequalities for all i,

Pctfi-i«, WO) <ZpCG#)> WO) < 'ZPC(Z,,Zi+l) = ip(ö, F);
which proves Case II.

Case III. a and 0 general. Let y be the minimal path from Q to F.  By
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Lemma 3.8 there is a subdivision 0 = r0 < tx < • • • < tk = 1 of I such that for
each i = 0,... ,k - 1 the minimal paths a,- and a¡+ x fromPto y(t¡) and y(ti+ f)
Ue within some chain; of course a0 = a and <xk = ß. I apply Case II to each
consecutive pair of o^-'s and add the resulting inequalities; as in the proof of Case
II this proves the lemma in general.

Lemmas 3.10 to 3.12 are the heart of the proofs of the other propositions.
I shall prove first Lemma 3.10 in Case I, then part of Lemma 3.11, then Lemmas
3.10, 3.11 in fuU, and finaUy Lemma 3.12.

Lemma 3.10. Let P, Q, R be such that p(P, Q), p(P, R) < 7rp/2. Assume
there exists a geodesic y in M from Q to R which lies in int Bp(np/2, M). 77ze«
P(P, 7(0) < (1 - t)p(P, Q) + tp(P, R) for all t G I, with equality only ift = 0
or I, or ifP, Q and R lie on a minimal path.

Lemma 3.11. Let a be a minimal path from Q to P of length <itp/2. Let
y: [0, e] —> M parametrize a short geodesic segment from Q by arc-length. Then for
e sufficiently small (but nonzero):

(1) LciQy < ?r/2 <> p(P, y(f)) is strictly decreasing on some nondegenerate
subinterval [0,5];

(2) LaQy > it¡2 <> p(P, y(f)) is strictly increasing on [0, e].

Proof of Lemma 3.10, Case I. Assume the minimal paths a and ß from
P to Q and R he in the same chain C, Q and R are in the same simplex, and
7 = Q-R. I shaU not assume 7 C int Bp(irp/2, M) (this is impUed by the inequal-
ity to be proved).

Let K be the span of a and ß . By Lemma 3.6 K is isometric to a metric
complex L in a p-spherical 2-sphere S, L satisfying the assertions of that lemma.
It suffices to prove the inequality with pM replaced by p" = pL and with L2
degenerate. Thus I assume L is a polygonal figure with vertices W, Ux,. . . , Um,
Vn,...,Vx;\ have to show that if Z divides Um-Vnm the ratio 1-f.t, then
p"(W, Z) < (1 - t)p"(W, U„) + tp"(W, V„). This is proved by induction on
m + n.  Let w denote the length of Um-Vn, ux, u2,. .. , um the lengths of
W-Ux, Ux-U2,.... Um_x-Um, andletu = ux+u2 + --- + um = L(a).
Let v be defined simUarly. Let z = p"(W, Z).

Initial step,  m = n = 1. I first prove the inequaUty for the midpoint Z0
of Um-V„. Let the rotation of S through 7r about the axis through Z0 carry W
into W'; U and V are of course interchanged. Then W-Z0-W' is a geodesic of
length 2z0. It is the unique minimal geodesic from W to W' because u, v < np/2
and Bw(q, S) is convex whenever q < 7tp/2, so that z0 < 7rp/2. The path W-U-
W' has length u + v and U does not Ue on W-Z0-W' (or (U, V, W) would not
be a 2-simplex). Hence 2z0 < u + v, as required.
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By repeating this argument the strict inequality is shown whenever f is a
dyadic fraction, not 0 or 1. Since z varies continuously with t, the weak inequal-
ity is shown. But now any position of Z other than U, V or Z0 lies between ZQ
and one of the others-say U.  Then Z divides U-Z0 in the ratio 2(1 - t): 2t - 1.
So z < (21 - l)ix + 2(1 - 0*0 < (2i -l)u + (l-tXu + v) = tu + (l- t)v; and
the strict inequality is proved if 0 < t < Vt. A similar argument applies if xk < t
< 1; and the initial step of Case I of Lemma 3.10 is proved.

Inductive step.  Now assume that m (say) is > 1. L can be obtained from
the convex triangle (Um, Vn, W) by deleting the convex polygons Hx = WUXU2
• - - Um and H2 = WVX V2 ■ • • V„. Within Bw(npl2, S), if W-Ux is extended
beyond Ux it cannot meet Ht after leaving Ux, nor can it meet H2 after leaving
W.  It follows that the extension of W-Ux meets bdy L in just one point Z0,
which lies in Um-Vn and is not Um ox Vn.

Let W-Z0 have length zQ. Say Z0 divides Um-Vn in the ratio 1 -10 : tQ;
then by the initial step since f0 =£ 0 or 1, z0 < t0ps(W, Um) + (1- t0)ps(W, Vn)
< t0u + (1 - t0)v. Now If-Zfj divides L into two regions: L', with boundary
Ux • • - UmZ0, and L", with boundary WZ0Vn • • • Vv Both L' and L" satisfy
the hypotheses of this lemma and both have fewer vertices than L, so by induc-
tive hypothesis I may assume the lemma holds for L' and L".

Let Z divide Um-Vn in the ratio 1 -1 : t with t < r0. Then Z G L" and
pL(W, Z) = pL»(W, X). Z divides Z0-7„ in the ratio 1 - (t/t0) : t/t0, so z <
0Ao)zo + 0 ~ 0Ao))ü < *« + (1 - t)v, with equahty only if t = 0.

If í > t0, then Z G L' and divides Um-Vn in the ratio (1 - t)/(l -10) :
t/(l -10). Any minimal path from Z to W in L must he in L' and consist of a
minimal path from Z to Ux in L' followed by f/j-W.  Hence z < «j +
(1/(1 - t0)Xu -ux) + ((l-1)/(1 - i0))(20 - "i) < tu + (1 - t)v again, with equality
only if t = 1. This completes the inductive proof of Case I of Lemma 3.10.

Part of proof of Lemma 3.11. I now prove: If there are t* arbitrarily
close to 0 such that p(P, y(t*)) < L(a), then LäQy < tt/2.

Choose such a t* so small that a and the minimal path ß from F to R =
7(1*) he within a common chain C. Let K be the span of a and ß. I may assume
im a and im ß have no common initial portion; in particular if K degenerates to
an arc, then im ß C im a and LctQy = 0. So K is isometric to a polygonal region
Lj satisfying the assertions of Lemma 3.6. If t > 0 is close enough to 0, then
the minimal path in K from F to y(t) corresponds to the path W-Ux- • • • -Um_
-Z(t), where Z(0 is the image of 7(0- By Case I of Lemma 3.10 this path is
strictly shorter than a. Hence L(Um_x -Z(t)) < L(fVWJ_1-t7m), and this must be
true for all small enough t.  (**) of Lemma 2.2 shows that L Um of triangle
^in-i^m^Omustbe^^. Thatis,¿a07 (in K) < n¡2; a fortiori LäQy (in
M) <tt/2.
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Proof of Lemma 3.10. By Lemma 3.8 there is a subdivision 0 = t0 <
tx < • • • < tk = 1 of I such that for each i = 0.k - 1 the minimal paths
from P to 7(r,) and 7(rI+ x) he within a common chain. I use induction on k.
The initial case, when k = 1, is just Case I of this lemma.

Now say k = 2. Set Z = 7(fj) and let J be the minimal path from P to Z.
Let K' be the span of a and f in some common chain, and K" the span of f and
ß in some chain. K' is isometric to L' = Lj U L2 satisfying the assertions of
Lemma 3.6; so Lj has vertices W'U'X • • • U'm<Vn> • • • V'x; and L2 is a
geodesic segment W'-X', with L'x n L2 = {W'). Here X'-W'-U'x- • • • -U'm>
corresponds to a, X'-W'-V'x- • ■ • -V'n- to f, and X'-W' to whatever initial
portion a and f have in common; of course X' may equal W'. SimUarly K" is
isometric to a complex L" C S, with L" = L'x U L2, where Lj has vertices
W"U¡ ■ • ■ U"m»V"n» • • ' V"x, and L2 = W"-X", such that x"-Wtt-Ux--
Um- corresponds to f and X"-W"-V¡- • • • -V'¿» to ß. (See Diagram 8.) Set
u = L(a), v - L(ß), h = L(y) and z = L(f). Say Z = y(p), so that ^-K;.
has length ph and U'^'-V'^" length XA, where X = 1 - p. By Case I of this
lemma it suffices-in this case, k = 2—to show that z < Xu + pv, with equaUty
only under the given circumstances.

If either K' or K." degenerates into an arc, the required inequaUty foUows
from Case I of Lemma 3.10. So I now assume neither is degenerate. Let Z't
and Z"t divide V'n-U'm- and U'm—V"n» in the ratio t : 1 - r.  For t sufficiently
small, the minimal path from X' to Z't in L' consists of the segments X'-W1-
V'x- • • • -V'n'_x-Z'v and the minimal path from X" to Z" in L" consists of the
segments X"-W"-U¡- • • ■ -Um»_x-Z'¡. Say these paths have lengths ut and
vt. An elementary calculation shows that it suffices to prove z < Xut + pvr

Now up to first order in t,
(1) z = ut + tph cos(L V'n.) + 0(t2),

(2) z = vt + tXh cos(Z U'n») + 0(t2).

Since X + p = 1, X(l) + p(2) gives

z = Xut + pvt + Xpth [cos(L V'n.) + cos(¿ U"^)] + 0(t2)

= Xut + pvt + 2Xpth cos K(L V'n- + L U"m») cos K(L V'n- - L U"m«) + 0(t2).

The point is that since 7 is a geodesic, L V'n> + LUm» > it, so that the third term
on the right-hand side is <0. Thus, for t smaU enough, z < Xut + pvt unless
LV'n< + L Um» = it. In this case, consider the figure formed by joining the 2-
simplexes (Z't, Vn'_x, V'n>) and <Zr", Um»_x, Um») along their common portion
off. The argument used in Case I appUes to this figure, and the desired inequal-
ity foUows.
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In general there is more than one Z¡ between Q and R.  Let Z, and Z¡ be
the last distinct ones before R.  By inductive hypothesis one can write down an
inequality for pQ(P, Zj) in terms of PC(P, Q) and pc(P, Z¡). By the argument
above one has an inequality for pc(P, Z¡) in terms of pc(P, Z¡) and pc(F, R).
Combining these inequalities yields the desired result for Z,-. By inductive hypoth-
esis the desired inequality holds for all the Z's, and hence also for points between
them by Case I. This completes the proof of Lemma 3.10.

Proof of Lemma 3.11. Choose e < *p(Q, link(ß, M)) (cf. Lemma 2.2);
then 7 and a 1 [0, e] are straight-line segments. It follows from Lemma 3.10
that there is a unique 5 G [0, e] at which p(P, y(t)) takes on its minimum value;
also that p(P, 7(0) is strictly increasing on [0, e] » 5 = O.jmd strictly decreasing
on [0, 5] if 5 ± 0. So it suffices to show that 6 =¿ 0 «• LaQy < ff/2.

The part of the proof of this lemma already given shows that if 5 # 0,
then LäQß < tt/2. Now assume that LäQß< jr/2. Then for any t E [0, e] the
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minimal path ßt from a(e) to 7(1) has length given by (**) of Lemma 2.2:

cos(L(ßt/p)) = cos(e/p) cos(r/p) + sin(e/p) sin(r/p) cos(¿ äQy),
if p is finite, and

(L(ßt))2 = e2 + t2 - 2et cos(LaQy),   if p = 00.

In either case, L(ßt) < e if r is small enough. For such t,

p(P, 7(0) < P(P. a(e)) + P(a(e), 7(0) - (L(ot) - e) + L(ßt) < L(o).

Hence 5 + 0. This completes the proof of Lemma 3.11.

Lemma 3.12. ¿er P, P1 G M, let q, q < tip/2 and assume that p(P, P') <
q + q'.  Then Bp(q, M) n Bp>(q', M) is weakly convex in M; in fact any minimal
path in Bp n Bp> is a geodesic in M.

Proof.  Let Q, R G Bp n Bp< and let 7 be a minimal path from ß to /? in
Bp O Bp>; such a path exists because Bp n Bp- is compact.   Since Bp n Bp-
is not a metric complex, 7 need not a priori be pJ.

Pick e so that 0 < e < min(7rp/2 - q, tip/2 - q). Let 0 = r0 < tx < '• • •
< tk — 1 be a subdivision of I such that Pu¡(y(t¡), 7(t¡+x)) < e for 1 = 0,.. .,
£ - 1. Set X¡ = y(t¡) for 1 = 0.fc; so X0 = Q, Xk = R.  Then the minimal
path in M from X¡ to Xi+2 lies in int Bp(np/2, M) n int Bp-(irp/2, M). By
Lemma 3.10 this minimal path Ues in B^ n B^-; hence 7 1 [r,-, ri+1] must be
this minimal path. This shows that 7 is p.l. Moreover Lemma 3.10 shows that
y(t¡, t¡+2) C int Bp n int BP'. So 7(0, 1) C int BP n int B^-.

For each r ^ 0 or 1, Ty(t)(Bp n BP>) = Ty,t)(M). Thus the criteria for 7
to be a geodesic in M and in Bp n BP- coincide. So 7 is a geodesic in M and the
lemma is proved.

Proof of Proposition 3.2. Let a be a geodesic from P to Q and ß the
minimal path from P to Q, and assume that L(a) < rrp. Suppose that cx(lA) +
ßi}A). Pick q so that L(a) < 2a < irp. Let 7 be a minimal path from aQA) to
j30£) in £^((7, M) n 5ß(a, M). Then 7 is a geodesic in M by Lemma 3.12. Since
L(a) > L(ß) it foUows from Lemma 3.10 that p(P, y(f)) is decreasing in r for t
sufficiently close to 0. By the first part of the proof of Lemma 3.11, LyaQA)cC
< tt/2. SimUarly LyaCA)ÖLf. < jt/2. But then LäZQA)öi^ < 7r, contradicting the
hypothesis that a is a geodesic. So aQA) = ß[}A). The same argument shows that
ai}A) = ß(}A) and so on, tiU a(t) = ß(t) whenever t is a dyadic fraction. By con-
tinuity ct(0 = ß(t) for aU r, which proves the proposition.

Proof of Proposition 3.3. In view of Lemma 3.10 it suffices to prove
that the minimal path 7 from Q to R Ues in int Bp(np/2, M). Pick q so that
P(P, Q), P(P, /Î) < o < 7rp/2. Let 7" be a minimal path in Bp(q, M) from Q to
R.  By Lemma 3.12, 7" is a geodesic in M. Since L(y") < 2q < 7rp, 7" = 7 by
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Proposition 3.2. This proves Proposition 3.3.
Proof of Proposition 3.4. By Lemma 3.7 e can be chosen so that when-

ever ß is a path from F to Q pointwise closer than e to a, there is a chain 8 such
that ß is a path in 8 and a is within 8. Assume that L(ß) < L(a); I have to show
that im ß = im a. The proof is a modification of the proof of Proposition 3.2:
one replaces M by 8 and uses Case I of Lemma 3.10 instead of the full version.

Proof of Proposition 3.5. It follows from Lemma 3.10 that Bp(q, M)
n a is either empty, a single point or a strictly convex body with nonempty
interior in a. Lemma 3.12 shows that at each point of (bdy Bp) n a there is a
unique supporting hyperplane in a; and it follows that Bp n a is smooth.

4. Negative curvature. In this section I shall prove:

Theorem 1. Let M be a complete, simply-connected linear metric complex
which is an n-manifold without boundary. Assume that k+(PX) < 0 for all
PEU and all PX C vp(U). Then U is p.l. isomorphic to Rn.

For smooth manifolds the proof of the Cartan-Hadamard theorem falls into
two parts (see J. Milnor [6]). First one shows, using the calculus of variations,
that if V is complete, simply-connected and has everywhere nonpositive sectional
curvature, then V has globally unique geodesies. It then follows that at any F G
V, the map expp: TP(V) —► V is everywhere nonsingular and is therefore a dif-
feomorphism. I shall follow this plan as best I can. Let me deal with the second
part of the proof first, where I shall have to modify most the argument outlined
above. This part of the proof will take us up to Corollary 4.6.

As Diagram 3 of §2 shows, it is not at all clear how to define a global map
"expp": TP(U) —► M, far less how to show it a homeomorphism. I shall replace
the proof used in the smooth case by a "critical point" argument. Let p: M —*■
R be defined by p(X) = pu(P, X). The main step is to show that the only
"critical point" of p on M is F.  This requires induction on n, the dimension of
M.

For any a G M, p r a takes on its minimum value at just one point â G a
(Proposition 3.5). Starring M at all the â, in order of decreasing dimension, gives
a subdivision, which I call M again, such that if v and w axe vertices which span
a 1-simplex, then p is strictly monotone on v-w.  Lemma 4.4 will show that the
vertices are the only possible "critical points" of p, and Lemma 4.5, which makes
use of the inductive hypothesis, will show that the vertices are not in fact
"critical points" either.

I must first make a detour to discuss p.d. regular neighbourhoods. I do not
know whether a general theory has been established for them, so I shall give an
account which will suffice for the purposes of this paper.

Let /: M —► R be a function such that for each a G M, / f a is strictly
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convex, has smooth level surfaces and takes its minimum value at a vertex of a.
In the paragraph before last, p is a function of this type, once M has been sub-
divided. Let c be a number such that bdy fc contains no vertices of M. (Recall
that fc is, by definition, {X G M such that f(X) < c}.) Define the subcomplex
K C M by K = {a such that f(v) < c for all vertices v<a}. Then K is a full
subcomplex of M. If ft G M meets K but is not in K, then ft can be uniquely
expressed as a' * ft', where a' G K, ft' n K = 0. fc n ft is a smooth, strictly
convex neighbourhood of a' in ft which does not meet ft'. Hence fc is a p.d.
regular neighbourhood of K in M; it is the only type of p.d. regular neighbourhood
which I shall use in this paper. For example, let M be a p-spherical metric com-
plex which satisfies the condition of §3 that whenever Q, REU with p(Q, R)
< Tip, then there is a unique minimal path from Q to R.  Fix F G M, and let
p: U —*■ R denote the function distance-from-F.  Then pc is a p.d. regular neigh-
bourhood of some subcomplex of M, as above, provided that c < 7Tp/2, by
Proposition 3.5. This type of example lends itself to inductive arguments; for if
M is such a metric complex, let r < VipiP, link(F, M)), let F* G Sp(r, U) and let
p*: Sp —► R denote the function distance-from-F* (in SP); then p*c is also a
p.d. regular neighbourhood in SP, provided c < 7rp sin(r/p)/2, by Lemma 2.6
and Proposition 3.5.

To prove a uniqueness theorem for such regular neighbourhoods, the idea
is to "linearize" M and /, so that the standard theorem for pJ. regular neighbour-
hoods can be applied (see for example Rourke and Sanderson [11]).

First let M be a p-spherical metric complex, with p finite. I now construct
a metrization M" of M as a linear metric complex, together with a p.d. isomorphism
X: U —► M". The reverse of this construction-giving a linear metric complex a
spherical metrization—will be used in §5.  For each a G M, think of a as a sim-
plex in a p-sphere S' C R,+ x. Say S has centre C and let a have vertices i>0,
. . . , vk. Let a" be the linear simplex (v0,. .. ,vk)C Rl+ x. Since C $ [a],
the affine space generated by a, radial projection from C gives a diffeomorphism
Xa: a —► a". Up to isometry, a" and Xa depend only on a.  In particular if ft < a,
then there is a natural isometry between ft" and Xfl(ft) < a" such that Xb corre-
sponds to Xa r ft.  Hence the linear metric complex M" can be defined as {a"}
with incidence relations induced from those of M, and the natural map X = Ui\J:
M —► M" is a simplicial isomorphism and is smooth on every simplex. X is called
the linearization of M.

For use in §5 I give the condition necessary for a linear metric complex M"
to accept a p-spherical metrization. Let a" E U" be a fc-simplex, and think of a"
as a linear simplex in R/+1. Let the (k - l)-sphere circumscribed about a" in [a"]
have radius p(a"). Let S' be a sphere with radius p and centre C circumscribing
a"; then p must be >p(a"). If p > p(a"), then C £ [a"], and radial projection
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from C carries a" onto a p-spherical fc-simplex a C S.  If p > p(a") for all a" G M",
then following the previous construction I obtain a p-spherical metric complex M
and a homeomorphism X": M —► M" which is a simplicial isomorphism and is
smooth on every simplex.  X" will be caUed the p-spherical approximation to M".
The second hypothesis of Theorem 3 is made to ensure that such a number p
exists.

Let M be a p-spherical metric complex, with p finite, and let X: M —► M"
be its linearization. Set f" =f° X~x  (fas in the antepenultimate paragraph);
then for each a" G M", f" \ a" is strictly convex, has smooth level surfaces and
takes its minimum value at a vertex of a". So/"c is a p.d. regular neighbourhood
of K" = X(K) in M". Define the linearization /*: M" -* R of /by f*(v) = f(v)
for every vertex, and /* is linear on every simplex. Then f*c is a p.l. regular
neighbourhood of K" in M".

Lemma 4.1. Let M be a linear metric complex, let fc be a p.d. regular
neighbourhood ofK, and let f*c be the linearization off0. Then there is a p.d.
isomorphism h: M —♦ M such that:

h(fc)=f*c;
h(a) = a for every a G M, and h t a is smooth;
h t a is the identity if a G K or if a n K = 0.

Proof.   Let N = \J {int b such that b n K *0 but b <£ K}. Then bdy f*c
C N. Let X G bdy f*c; say X G int b, and write b as a' * b', with a' G K and
b' n K = 0. There are unique points Yx G a and Zx G b' such that X G Yx-Zx;
and then Yx-Zx n bdy f*c = {X).   As X varies in bdy /*c, the int(Y^-Z^)
are disjoint and vary continuously, in fact smoothly in every simplex. Since N =
Uiinttr^-Z^) for X G bdy f*c), it foUows that N is a fibre bundle over bdy f*c
with fibre (0, 1). The hypotheses on /imply that bdy fc meets each fibre just
once, and so can be regarded as a section g of N. It is now straightforward to
define a p.d. isomorphism h: cl N —► cl N such that:

h preserves the fibres of N;
h(Yx-X) = Yx-g(X);
on Yx-Zx, h is the identity near Yx and Zx;
h is smooth on every simplex.

Extend h over aU of M by the identity on those Simplexes of M which are con-
tained in or disjoint from K. Then h satisfies the requirements of the lemma.

I now return to the proof of Theorem 1. In view of Lemma 4.1 it suffices
to work with the linearization p" of p instead of with p.

Proposition 4.2. Let M be a p-spherical metric complex which is an
n-manifold. Assume there are PGM and a finite number q < 7rp/2 such that:

(1) Bp(q, M) has a unique minimal paths and is disjoint from bdy M;
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(2) for each a G M wfticft meets Bp(q, M), p la takes on its minimum value
at a vertex of a;

(3) Sp(q, U) contains no vertices of U.
Then p"q is a p.l. n-disk.

Proof.   The proof is by induction on «.  It includes Lemmas 4.3 and 4.4,
and Corollary 4.5.

Consider {p(v) for u a vertex lying in Bp(q, M)} C R, and write these num-
bers in strictly increasing order, say dx, . . . , dk. Since M is complete and q
finite, there are only finitely many d,.

Lemma 4.3. If d¡ < c < e < dj+ x, then there is a p.l. isomorphism ft: M"
—► M" such that:

h(p"e) = p"c;

h(a) = a for every a E U";
h r a is the identity if a C p"c or if a O p"c = 0.

In other words, the vertices ofU" are the only possible "critical points" of p" up
to level q.

Proof.   Let K" = {aE U" such that p"(v) < d¡ for all vertices v < a}.
Then K" is a full subcomplex of M", and p"e and p"c are both first-derived neigh-
bourhoods of K". The lemma is now a standard result; see for example Rourke
and Sanderson [11, 3.6]. The proof is analogous to that of Lemma 4.2, but not
the same because the construction there is not pJ.

Lemma 4.4. Assume Proposition 4.2 i« dimensions <« - 1. Let v be a
vertex ofU", and say p"(v) = d¡. Let c, e be numbers such that dj_x < c < d-
< e < dj+ j. 77ie« there is a p.l. isomorphism h: star(u, M") —> star(u, M") such
that:

Ha) = a for all a E linkfj;, M");
h \ ais the identity if a E link(t>, M") is contained in or is disjoint from p"c.

Proof.   Set Ne = p"e n star(u, M"), Ne = p"c n star(v, M") and Lc = p"c
O Hnk(i>, M").  On hnk(u, M"), ft can be constructed by Lemma 4.3. Let K =
{a G link(u, M) such that p(w) < d=_x for all vertices w < a}. Let X: M —► M"
be the linearization of M, and let K." = X(K). Then Nc and Ne are first-derived
neighbourhoods in star(u, M") of K" and v * K" respectively. I shall use the
inductive hypothesis of Proposition 4.2 to show that Lc is an (« - l)-disk. An
elementary argument in regular neighbourhood theory then shows that Nc and
Ne are both «-disks which meet link(u, M") in (« - l)-disks, and the desired ex-
tension of ft over star(u, M") can easily be made.

Recall that there is a natural simplicial isomorphism g: link(i), M) —*■ SV(U).
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By virtue of the way in which M was subdivided, g(K) can be characterized as
{a G SU(M) such that Lwvct < rr/2 for all vertices w < a), where a is the minimal
path from v to P.   Say m meets SV(M) in P*, and let ps denote the function
distance-from-P* on 5y(M). There is some number r < 77/2 such that g(K) C
int ps. Then ps is a p.d. regular neighbourhood of g(K) in 50(M).  By Lemma
2.6 and Proposition 3.3 ps has unique minimal paths. Let Xs be the linearization
of SV(M) and let p* be the Unearization of ps. By inductive hypothesis p*r is a
pj. (n - l)-disk. Applying the simplicial isomorphism X ° g~x ° Xg1, this
says that K" has a regular neighbourhood in link(u, M") which is a pj. (n - 1)-
disk. Hence IF, which is another such regular neighbourhood, is also an (n - 1)-
disk, which is what remained to be proved.

Corollary 4.5. Assume Proposition 4.2 in dimensions <« - 1. Ifd¡_x
< c < d, < e < dj+x, then there is a p.l. isomorphism A: M —► M such that:

h(p"e) = p"c;

h 1 a is the identity if a G int p"c or ifa n p"c =0.

Proof.   Let vx,.. . , v¡ be the vertices of M" such that p"(v¡) = d¡. Then
the int stariu,., M") are pairwise disjoint.   Let N = Uimt D sucn tnat b n P0 ^
0, b <£ p"c and none of the v¡ is a vertex of b). Define h on N by the method
of Lemma 4.3. In view of the second requirement on h, it remains only to define
h on UistarOv M")}; and Lemma 4.4 shows how to define h on each star(uf, M").

Proof of Proposition 4.2 in dimension n, assuming its truth in
dimensions <m - 1. Choose numbers c¡, for / = 1,..., k so that ck = q and
dj < Ct < dj+ j for /' = 1.k - 1. Now dx = 0, since P has become a vertex
of M. Hence p"ci is a convex neighbourhood of P contained in star(P, M") and
so is a p.l. n-disk.  By induction on /, using CoroUary 4.5 at each step, it follows
that p"q is a pJ. n-disk, which is what was to be proved.

Corollary 4.6. Let M be a linear metric complex which is an n-manifold
without boundary. Assume that M has unique geodesies to P. Then M is p.l. iso-
morphic to R".

Proof.   Assume M subdivided so that for every a G M, p \ a takes its
minimum value at a vertex of a.  Let dx,. .. , dk,. .. be defined as before.
This time the dk form an infinite sequence, but since M is complete, they have no
cluster point in R. Choose numbers ck as before, interpolated between the dk;
then lim ck = °°. By Proposition 4.2, each p"c* is a pJ. n-disk, and M = U{p"c*
for k = 1, . . .). By a theorem of J. StaUings [12]   M is pJ.. isomorphic to R".

Remark. By analysing p.d. regular neighbourhoods more thoroughly one
could prove Lemma 4.4 even in case d¡ = e.  This would mean that the third
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hypothesis of Proposition 4.2 could be eliminated. As an addition to Theorem 1
one would have: for any F G M and any finite number q > 0, Bp(q, M) is a p.d.
«-disk.

It remains to prove the first part of Theorem 1, which is implied by:

Proposition 4.7. Let Ube a complete, connected linear metric complex
such that k+(PX) < 0 for all PEU and for all PX C vp(U). Then for any P, Q
E U, there is just one geodesic in each homotopy class of continuous paths from
PtoQ.

Proof.  The proof will take up the rest of §4. The method of proof is
closely analogous to that used by Milnor [6] in the smooth case.  Let Í2 be the
space of p.l. paths from F to Q, with the C° topology. There is an energy func-
tion E: Í2 —* R, defined in §2. I shall construct a family of finite-dimensional
approximations Slq to Í2. Analysing the "critical points" of E r £lq as in the
proof of Proposition 4.2 will show that Í2? can be deformed within itself onto a
discrete set; the paths in M corresponding to points of this set are geodesies from
F to Q.  Homotopy-theoretic considerations will show that as the Q,q approximate
Í2, the corresponding discrete sets approximate the set of homotopy classes of
paths from F to Q.

Let a: I —► U be a path. Recall that for each t El, L(<x, t) denotes the
length of a r [0, t], and the energy E(a) is defined to be J0 [dL(a, t)/dt] 2dt.  It
is easily checked that E: í2 —► R is continuous. Also E(a) > L(a))2, and equality
holds only when a is parametrized proportionally to arc-length.  By Proposition
3.4, the local minima of E are isolated points of Í2 and represent exactly the
geodesies in M from F to Q.  The main step in proving Proposition 4.7 is to show
that Í2 can be deformed onto the set of local minima of E.

Let q be a positive number. Then P = {a G Í2 such that E(a) < q) is
contained in Bp(qVi, U) which is compact. Hence there is a finite collection of
balls Bxi(st, M), i = 1, . . . , /, such that: im a C U{int Bx^st, M)} for all a E
B1; Bxi(2s(, U) C star(X', M), is strictly convex and has unique geodesies. Set
s = minis,.}. There is an e > 0 such that e < s and whenever X, YEBp(q, U)
and p(X, Y) < e, then X and Y lie in some int Bxi(s¡, M), and so there is a unique
geodesic from X to Y in M. Set 5 = e2/q.  Whenever aep and t, t' E I with
I r - r' I < 5, then p(a(t), ot(t')) ** e. Choose a subdivision 0 = t0 < tx < • • • <
tk+x = 1 such that ti+x - t¡ < S, for i = 0, ... , k.  Define Q,q(tx, . . . , tk) =
{oGp such that a l [t¡, ti+x] is a geodesic, for i = 0, . . . , k}; then
Slq(tx, . . . , tk), which I shall usually abbreviate to üq, is the type of approxi-
mation to S2 that will be used. I shall first prove that Í2? can be deformed onto
the set of local minima of E 1 íí9, and then discuss how various of the
£lq(tx.tk) (for increasing q and k) approximate Í2.
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Lemma 4.8. £lq(tx,.. ., tk) is naturally homeomorphic to a compact
subset of Mfc, the k-fold product of M.

Proof. Define /: Slq —> M* by /(a) = (a(tx),.... a(rfc)); then /is the
required homeomorphism. The proof is quite simUar to that of [6, 16.1]. The
only extra detaU is to show that f~x is continuous. Let S' < 5 and let ßGSlq
be such that p(ß(tf), oltfi) <6' for / = 1.fc    Then for each i = 0.
k+1, a(t¡), a(ti+x),ß(tt) andß(ti+x) aU Ue in some Bx¡(2sj, M). This baU has
unique geodesies in M, so by Proposition 3.1, p(ß(t), a(t)) < (qS')'A for aU r G
[t¡, rí+1]. Hence ß is pointwise closer then (q8')Vl to a. Thus/-1: im/—► Çlq
is continuous, and the lemma is proved.

Henceforth I shaU suppress/and identify £lq with its image. In this con-
text E: üq -* R can be defined thus: if Z = (Zx,... ,Zk)GSlq, then setting
%0 =P> %k+l = Q>

E(Z) = Z{[pM(Zi,Zi+x)]2l(ti+x -1¡) for i = 0,..., k).
E can be defined by this formula over aU of Mfc. For d < q, (E r Slq)d = {Z
such that E(Z) < d) can be identified with Í2d(r1(. . . , tk); this I shall do.

Let B C M* be a fc-fold product of independently chosen Bx¡(s¡, M). Index
the various such sets B as B,,. .. , B„  (so h = lk). Then Slq C Uiint 5/}>
and by Lemma 2.4 each B- is convex in M* and has unique geodesies.

Lemma 4.9. Let B be one of the B¡. Then E is strictly convex on B.

Proof.  Let Y = (Yx,. .. , Yk) and Z = (Zx,... , Zk) he in B. Set
Y0=Z0=Pand Yk+ x = Zk+X = Q.  Then for each i = 0, . . . ,k + 1,Y¡
and Z¡ are both in some Bx¡{Sj, M); hence for i = 0, . . . , k, Y¡, Y¡+ x, Z¡ and
Z/+ j are all in Bxj(2s¡, M), which is strictly convex and has unique geodesies in
M.

Let ß be the geodesic in Mk from Y to Z.  Projecting ß into the ith factor
Mj. gives the geodesic /?,. from Y¡ to Z¡. By Propositions 3.1 and 3.3,

p(P, ßx(t)) <(1- f)p(P, Yx) + tp(P, Zf);

(*)       P(ßk(t), 0 < d - t)p(Yk, Q) + tp(Zk, Q);

P(ßi(t)> ft+l(0) <(1 - t)p(Y¡, Yt+f) + tp(Z¡, Z/+1)   for i = 1.fc- 1.
The first two inequalities are strict unless P, Yx and Z1, or Q, Yk and Zk, lie on
a geodesic. Now squaring an inequality among nonnegative numbers of the form
x < (1 - f)y 4- tz gives x2 < (1 - f)y2 + tz2, with equaUty only if:

(1) the original inequaUty is an equality, and
(2) either t = 0 or 1, or y = z.

It follows from the inequaUties (*) that Efj3(0) < (1 ~ t)E(Y) + tE(Z), with
equality only if r = 0 or 1, or if:
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(1) the paths in M determined by Y and Z have the same image, and
(2) p(Yt, Yi+ x) = p(Z{, Zi+ x) for i = 0, ... , k.

These two conditions imply that Y = Z, which proves the lemma.
I now proceed, as in the proof of Proposition 4.2, to analyse the "critical

points" of E on Í2*7. Let M* be a subdivision of Mfc such that:
(1) for every vertex vEU* which lies in Çlq, star(u, M*) is contained in

some int B;-;
(2) for every a G M* which meets Í2', E r a takes on its minimum at a

vertex of a.
Let E*: M* —■*• R be the linearization of E (recall that M* is a linear metric
complex).  For every a G M* which meets £lq, E t a is strictly convex. Hence
E** Ç Ed whenever d < q.

Lemma 4.10. For any d <q there is a deformation retraction o/i2d onto
E*>.

Proof.  The proof is very close to that of Lemma 4.2, and I omit it.
Let dj,... , d¡ be the distinct elements, arranged in increasing order, of

{E(v) for v E S/V and v a vertex of M*}; since £2' is compact, there are only
finitely many such u.

Lemma 4.11. Ifd- < c < e < d+ j, rfte« there is a deformation retraction
ht of E*e onto E*c such that ht(a n E*e) ç a for every a which meets E*e.

Proof.   As in the proof of Lemma 4.3, E*e and E*c are both first-derived
neighbourhoods of a subcomplex of M*. Since E*c ç int E*e, the lemma follows
from Rourke and Sanderson [11, 3.18].

Lemma 4.12. Let d_x < c < d, < e < d + x,and let v be a vertex of U*
such that E(v) = d¡. Assume that E*c n star(u, M*) ¥= 0. 77ie« there is a de-
formation retraction of E*c U (E*e n star(u, M*)) onto E*°.

Proof.  Let Nc = E*c n star(u, M*), Lc = E*c n link(i>, M*) and Jc =
cl[bdy Nc - Lc]. Let Ne, Le and Je be defined similarly. Set H = cl[N* - Nc]
andG = cl[Le-Lc].

H is a cone from v to Je U G U Jc, and so can be deformed onto v *
(G U Jc). The proof of Lemma 4.11 gives a deformation retraction of Le onto
Lc. Hence G U Jc has J° as deformation retract, and so u * (G U Jc) can be
deformed onto v * Jc. Now star(u, M*) is contained in some convex B C M* in
which geodesies are unique, and therefore vary continuously with then endpoints
(Lemma 2.7). Pick a point W E E*c rï B and let a be the geodesic from v to W.
For each Z G Ie and each t El, let ß*z be the geodesic from a(t) to Z.  Then
v * J* = (J {ß\ for Z G Jc}. Define a homotopy / of v * Ie by ft(ß°z(u)) =
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ßz(u). Since Í2C n B is convex, by Lemma 4.9, fx(v * Jc) C fic. By Lemma
4.10, u * Jc can be further deformed into E*°. This completes the proof of
Lemma 4.12.

Corollary 4.13. Let dj_x < c < d;. < e < d¡+ x. Then E*e has as de-
formation retract E*c U {v G M* such that E(v) = d¡ and v is a local minimum
ofE).

Proof.   The proof is simUar to that of CoroUary 4.5.

Corollary 4.14. Slq has as deformation retract the discrete set of local
minima of E. This discrete set can be identified with the set ir0(Slc) of compon-
ents of £2C.

The rest of the proof of Proposition 4.7 connects the topology of Slq to
that of M. As in Milnor [6, 16.2] one can show that there is a deformation
retraction of F onto Slq. The local minima of E I" F correspond to geodesies
in M from P to Q of length <q'A, and hence these local minima are in Q,q all
along. Thus each component of F has exactly one local minimum of E. Hence
whenever q < r, the inclusion F Ç Er induces a one-to-one map 7r0(F) G
7ro(E0. Now Í2 is the direct limit of {Eq for q G R); and it is easUy seen that
7r0(S2) = Um 7r0(F).  Hence there is exactly one geodesic from P to ß in each
component of Í2.  But 7r0(i2) represents the set of homotopy classes of continu-
ous paths from P to Q, by the simpUcial approximation theorem. This proves
Proposition 4.7, and with it Theorem 1.

5. Positive curvature. The bulk of this section-up to Lemma 5.5—is
devoted to proving Theorem 3; the techniques of its proof will give Theorem 2
as a by-product.

Theorem 3. ¿er M be a complete, linear metric complex which is an n-
manifold without boundary. Assume:

(1) there is a number k>0 such that whenever a is an (n - 2)-simplex, P
G int a and PX C vp(M), then k_(PX) > k;

(2) there is a number p such that whenever a is an n-simplex of M and is
represented as a linear simplex in R", then the (n - l)-sphere circumscribed
about a has radius <p.

77ie«
(i) kJPX) > 0 for all PX G vp(M), provided that Pis in the (n - 2)-skeleton

o/M;
(ii) M is compact; diam M < 27rp i/k > (2 - 2Vl)n and diam M <

irp4n2/[(27T - k)(477k - k2)'a] otherwise.

The first hypothesis impUes that the whole (n - 2)-skeleton M"-2, as a
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simplicial complex, is intrinsic to M, for it is the coarsest possible triangulation
of the "singular set" of M-that is, of the set of points where the normal geometry
is nontrivial. The second hypothesis then says that the singular set is "fairly
dense" in M; it implies for example that every point of M is distant at most p
from the singular set.

The proof relies heavily on the combinatorial structure M"-2 on the singular
set. I think that some more general form of the theorem must be true in which
no such combinatorial structure is required, but the general local shape and size
of the singular set are more carefully restricted. I have already mentioned my
belief that it should also be possible to weaken the curvature assumption if one
has the right analogue for pJ. manifolds of Ricci curvature in smooth ones.

The plan of the proof is this: I first prove an analogue of Theorem 3 for
p-spherical metric complexes with p finite, and show that such metric complexes
have diameter <7rp (Proposition 5.3). A linear metric complex M satisfying the
second hypothesis of Theorem 3 has a q-spherical approximation M* once q is
large enough. If M satisfies the first hypothesis of the theorem as well, then M*
satisfies the hypotheses of Proposition 5.3, if q is large enough (Lemma 5.4).
Hence M*, and therefore M, is compact. It remains to compare pM to pM.
(Lemma 5.5) and to estimate how small a value of q will do.

Let M be a p-spherical metric complex which is an «-manifold without
boundary. The Curvature Hypothesis is this assumption on M: if a G M with
dim a < « - 2 and if F G int a, then dim <x>P(M) = dim a and k_(PX) > 0 for
all FX C i>p(M). The Curvature Hypothesis for (n - 2)-simplexes is the same,
except with "dim a < « - 2" replaced by "dim a = « - 2". By Lemma 2.8 the
the Curvature Hypothesis is equivalent to this condition: whenever F G int a and
dim a < n - 2, then yP(U) = Tp(a) and diam aP(M) < 7T. This is the form in
which the Curvature Hypothesis will be applied. The Curvature Hypothesis for
(« - 2)-simplexes can be expressed similarly.

Lemma 5.1. 77ie Curvature Hypothesis is equivalent to the condition: if a
is a geodesic from P to Q in U, then a meets U"~2 at most in its endpoints,
unless P and Q lie in the same simplex.

Proof.   First assume the Curvature Hypothesis. Let ce be a geodesic. For
each t G (0, 1) let a(0 be the simplex such that a(I) G int a(0- Choose t so that
dim a(0 is as small as possible. It suffices to show that if F and Q do not he in
a(0, then dim a(0 = « - 1. (If dim a(0 = «, then F and Q have to be in a(0-)

Suppose dim a(t) < « - 2. Set R = a(t), a = a(0- The tangent directions
FcFj; and FcC cannot both be tangent to a, because then a D a would be a seg-
ment X-Y with at least one of X and Y lying in bdy a n int a, which would
contradict the choice of t.  So say Roc^. £ TR(a).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GEODESICS IN PIECEWISE LINEAR MANIFOLDS 39

Now TR(M) = TR(a) x uR(M) by the Curvature Hypothesis. Let P_be the
projection into the second factor. Then KR&+) is a genuine direction RX' C
vR(M). TR(a) defines a geodesic in TR(M) near R, by Lemma 2.5; hence ?(TR(a))
defines a geodesic in vR(M) near R, by Lemma 2.4. Thus P(RöT) must be a
genuine direction in vR(M) also; caU it RY'. By the Curvature Hypothesis again,
LX'RY' < 7r; so P(TR(a)) is not a geodesic near R after all. This contradiction
estabUshes the first part of the lemma.

Conversely, assume geodesies avoid M"~2. Let dim a < n - 2 and let P G
int a.  By looking at geodesies in expp(vp(M)) one can show that k_(PX) > 0 for
all PX C ^(M). Clearly ipP(M) D Tp(a). Suppose they are not equal. Then there
is a geodesic a' through P in fP(M) which does not lie in 7^). But expp(a') is
then a geodesic through P in M which cannot Ue in a single simplex. This is
contrary to the assumption, so yP(M) = Tp(a). This completes the proof of
Lemma 5.1.

Lemma 5.2. Let M be a p-spherical metric complex with p finite, which is
an n-manifold without boundary. Assume the Curvature Hypothesis holds for M.
Then M is bounded and has diameter <7rp.

Proof.   Let a be a geodesic in M from P to Q, and assume that L(a) ~>
up. Let C be a chain such that a is within C, and let C* be the development of
C. Then int(im a) C int C*, by Lemma 5.1, since a is too long to fit inside a
simplex. Now int C* is smooth: every X G int C* has a neighbourhood isometric
to an open set in an «-sphere of radius p. Thus it makes sense to speak of
variations of a with fixed endpoints, in the context of smooth differential
geometry. A little care is needed at the endpoints, but if I use variations which
are sufficiently close to a in the C1 topology, they wiU meet bdy C* only in
{P, Q). Since L(a) > 7rp, such variations exist which are shorter than a, as is
weU known from the calculus of variations. It follows that any minimal path
from P to ß in M has length <7rp. Hence M is bounded and has diameter <7rp.

To prove the strict inequaUty, let a be a path within C from P to ß which
is a minimal path of length 7rp, so that P and ß are conjugate. Then a can be
varied through geodesies, all having length 7rp. To be precise, say C = (a,,....
ak) with P G ax and ß G ak. Let a n bx = {X); then X G int bx. Pick Y G
bdy bx and let ß be the geodesic X-Y.  For each « G I, either there is a geodesic
au from P to ß of length 7rp which passes through ß(u), or else the geodesic
from P through ß(u) meets bdy C* at distance <7rp. Let u be the smaUest value
of « for which the second case occurs (it certainly does occur-when u — 1, for
example). Then lim{aM as u —► u from below} is a path au< in C* from P to
ß of length 7rp. On the other hand, int au> n M"-2 =£ 0; so by Lemma 5.1  au-
is not a geodesic in M and can therefore be shortened. Thus PM(P, Q) < 7rp.
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This is a contradiction. Hence M has diameter <;rp, as was to be proved.

Proposition 5.3. Let Ube a p-spherical metric complex (p may be in-
finite) which is an n-manifold without boundary and which satisfies the Curvature
Hypothesis for (n - 2)-simplexes.   Then M satisfies the Curvature Hypothesis.

Proof.   I use induction on « - / to prove that if F G int a with dim a =
i < n - 2, then dim <pp(U) = i and k_(PX) > 0 for all FX C i>p(M).

jTp(M) is the orthogonal product of Tp(a) with some cone Np. Let Sp be
the unit sphere in Np. Using the inductive hypothesis I shall prove that Sp satis-
fies the hypotheses of Lemma 5.2. It will follow that Np = i>P(M); hence aP(M)
= 2P has diameter <7T, and the inductive step will be proved.

Sp is a 1-spherical metric complex simplicially isomorphic to link(a, M).
Let ft' be a /-simplex of SP and let Q E int ft'. Then Tq(Tp(U)) can be expressed
as the orthogonal product Tp(a) x Fß(Np) = Tp(a) x R1 x TQÇZ,P), where
R1 represents TQ(PQ). Let T|, be the orthogonal complement of QP in
TQ(TP(U)). Then Tß is isometric to Tp(a) x Fß(Sp) = Tp(a) x <x>e(2P) x
Vq(Ep), where <£ß(2p) is at least /-dimensional.

Let s be a small, positive number and let s„: FP(M) —*■ TP(U) be the
corresponding dilation (see Lemma 2.5). If s is small enough, then R =
expp(s#(ß)) is defined and lies in int(a * ft), where ft G link(a, M) corresponds
to ft' G Sp. Now dim(a * ft) = i + / + 1, so by inductive hypothesis, TR(U) =
TR(a * ft) x vR(U) is the intrinsic factoring of TR(U) into base and normal
geometry. Let TR be the orthogonal complement of RP in TR(U); then T£ =
R,+^ x pr(U). The map expp ° s* induces a map 1% —► TR which is angle-
preserving; in fact, by the proof of Lemma 2.5, it differs from an isometry only
by a dilation. Hence there is an isometry between Tp(a) x <xvj(2p) x i>g(2p)
and RI+/ x vR(U). The former has flat part at least Tp(a) x (¿v,(2p), which is
at least (i +/)-dimensional. It can only be that Tp(a) x <pQÇ2P) = Rl+I, so that
dim (¿v>(2P) =/, and that VqÇLp) = vR(M). By inductive hypothesis Og(2p) =
aR(U) has diameter <7r. It follows that the Curvature Hypothesis holds at each
point Q E 2P. So by Lemma 5.2, 2P has diameter <7T.

The proof of Lemma 5.1 now shows that the base of Np must be simply
{F}. Hence in the factoring FP(M) = Tp(a) x Np, TP(a) must be the whole flat
part of FP(M). Therefore <pP(U) = TP(a) has dimension i, and ap(M) = 2P has
diameter <7T. The inductive step follows, and Proposition 5.3 is proved.

The first assertion of Theorem 3 is a particular case of Proposition 5.3. To
prove the second assertion I shall use spherical approximations to linear metric
complexes. Let M be a linear metric complex. Let a G M; say dim a = k.
Thinking of a as a linear simplex in Rfc, let the (k - l)-sphere circumscribed
about a have radius p(a). If q is a number > {p(a) for all a G M}, then the q-
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to vp"(a") because b is contained in the affine space [C, b"] generated by C and
b", in which TP"(b") and CP" are both orthogonal to vp»(a"). Hence P ° X* is
just orthogonal projection TP(a) —► vp»(a"). As P varies in b, so that P" varies
in S, vp"(a") undergoes parallel translation, since it always remains orthogonal to
[C, b"] which remains fixed. (I am abusing notation somewhat by referring to
vP"(a") when P" need not be in a"; what I really mean is DX(vp(TP'(a))), where
P is the varying point and P' its original position.)  Thus for the purpose of
measuring angles in vp(a) and vp»(a"), it does not matter where in [b] I choose
P.  Choose P so that CP is orthogonal to [b] ; then Tp»(b") is parallel to Tp(b),
and P ° X* reduces to X*: vp(a) —*■ vp»(a"). So fa can be calculated using g ° X*.

Let X, Y G oP(a) and let ß be the geodesic X-Y in op(a), so that LXPY =
L(ß). Set j3* = X* ° ß, X* = X*(X), Y* = X*(y). Then LT*P"T* is the dis-
tance in oP"(a") between fa(X) and fa(Y).

Let (/*, 0*) be polar coordinates at P" in the plane [P", /?*], and let s and
s* denote the arc-length functions along ß and j3*. Then ds* > r*dd*; also ds*
< ds since X* is orthogonal projection. Hence dô* < (l/r*)ds.  Now if i//(0
denotes the angle between Pj3(7)~and P"ß*(t), then r*(r) = cos ^(0- But \p(f) is
at most the angle i// between [a] and [TP"(a")] ; and the latter is the tangent
plane to S at a point in the polar cap determined by [a] n S. Hence i// <
sin_1(p(a)/q) < sin_1(p/q).  So r* > [1 - (p/q)2]'/2 and dd* < [1 - (p/q)2]~Vlds.
It foUows that LT*P"T* < [1 - (p/q)2]~'/2¿ZPF, which is what I had to prove.
The proof of Lemma 5.4 is complete.

Lemma 5.5. Let M be a linear metric complex satisfying hypothesis (2) of
Theorem 3. Let q satisfy the inequality of Lemma 5.4 and let X: M —► M" be
the ({-spherical approximation to M. Then for every P, Q G M,

pu(p> Q) < t1 -(p/q^PM'W). MQ))-

Proof. As said in the proof of Lemma 5.4,1 need only prove this result
in case P and ß are in the same simplex a G M. Say a C Rfc and let S be a sphere
with centre C and radius q circumscribing a. Let a be the geodesic P-Q, and let
s be the arc-length function along a. Let (r, 6) be polar coordinates with origin
C in the plane [C, a]. Similarly let a" be the geodesic X(P)-X(Q) in S, and let
s" be the arc-length function along a". Then im a" = X(im a), so I can re-para-
matrize a" as X ° a.

Now ds" = qd9 and ds = rdO/sm(LQa(t)C). And LQa(t)C> cos_1(p(a)/q)
> cos-1 (p/q).  Since r < q, ds < [1 - (p/q)2]"V2ii*s". The lemma follows.

Proof of Theorem 3. Combining Lemmas 5.4 and 5.5 gives: whenever
q > p[l - ((2tt - K)/27r)2]-'/2, then M has diameter <77q2(q2 - p2)~%. The
function F(x) = ttx/(x - p2)'/2 takes on its minimum value 277p when x = 2p2.
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But 2p2 is a permissible value for q, or the limit of permissible values, only if
k > (2 - 21/2)tt. Otherwise F(q2) is strictly increasing in q2 and so the best I can
infer is diam M < 7rp47r2/ [(27T - k)(477K - k2)14] . This completes the proof of
Theorem 3.

Theorem 4. Let K be a simplicial 3-manifold without boundary. Assume
that every 1-simplex is a face of at most five 3-simplexes.  Then K is finite.

Proof.  Metrize K by making all the tetrahedra regular, of side length 1.
Then K is actually a metric complex. The essential ingredient in the proof of
this statement is the observation that any finite subcomplex L of K can be iso-
metrically embedded as a subcomplex of a regular hyper-simplex with as many
vertices as L has. As was already mentioned in §2, Example 2, K satisfies the
Curvature Hypothesis for 1-Simplexes. The second hypothesis of Theorem 3 is
trivial to verify; so Theorem 4 is a particular case of Theorem 3.

Theorem 2. Let Ube a spherical metric complex which is an n-manifold
without boundary, and which satisfies the Curvature Hypothesis for (n - 2)-sim-
plexes.   Then:

(i) M satisfies the Curvature Hypothesis;
(ii) ifn is even and U orientable, then U is simply-connected;
(iii) if n is odd, then U is orientable.

Proof.  The first assertion is just Proposition 5.3. I shall prove only the
second statement; the proof is quite close to that of Synge [14]. The third
assertion is proved using the same techniques; see Preissmann [9, Théorème 13"—
caution: "paire" is a misprint for "impaire"].

Assume for now that M is p-spherical, with p finite. Let p G 7Tj(M) be a
nonzero free homotopy class (that is, without fixed base-points), and let a be a
shortest path representing p. Then a is a closed geodesic. By Lemma 5.2 a has
a neighbourhood U in M which is a smooth manifold, and a is a smooth curve in
U. Let F = c<0) = a(l). Let N C FP(M) be the hyperplane orthogonal to
Fp(im a). Then parallel translation around a induces a linear isometry L: N —►
N. The hypotheses on M ensure that L keeps some nonzero vector fixed; this
vector determines a parallel vector-field V around a. Since U has constant positive
sectional curvature everywhere, it is clear that varying a in the direction of V
reduces its length. This is a contradiction; hence ît^M) = 0.

If M is a linear metric complex, the same argument can be applied. This
time U is flat, so translating a in the direction of V preserves L(ot). However, as
in the proof of Lemma 5.2,1 can translate a until it meets the (« - 2)-skeleton
of M, and then a can be shortened. This is again a contradiction; and the Theorem
is proved.
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spherical approximation X: M —► M" is defined; see §4. The second hypothesis
of Theorem 3 implies that p(a) < p for every a EU. Hence the q-spherical ap-
proximation to M exists for every q > p.

Lemma 5.4. Let M satisfy the hypotheses of Theorem 3. Let q > p[l -
((27T - k)/2tt)2]~Vi and let U" be the q-spherical approximation to U. Then U"
satisfies the Curvature Hypothesis.

Proof.   I know that for each F G M"~2, ap(M) has diameter <(27i - k)/2;
it suffices to prove that oX(PJU") has diameter < [1 - (p/q)2]-'/2(27T - k)/2; for
then the condition on q ensures that this is < it.

The proofs of this lemma and the next are based on this simple observation:
Let /: M —» M" be a homeomorphism between spherical metric complexes such
that:

/is a simplicial isomorphism;
if P-Q is a geodesic segment in a simplex of M, then im f(P-Q) is the

geodesic segment f(P)-f(Q) in M";
there is a number N such that if F, Q G a, a simplex of M, then pM"(/(F),

f(Q))<NpM(P,Q).
Then this inequality holds for any two points of M.
For let a be a minimal path from F to Q in M, and let C be a chain within

which a lies. Then im /(a) is a path from /(F) to f(Q) within /(C), and im /(a)
has length <AL(ot). The desired inequality follows.

In the present case I take N = [1 - (p/q)2]_/i. I must now define the
map /: ap(M) —► o\(x>)(M").  Say F G int ft, and let a have ft as face. Think of
a as a fc-simplex in Rk. Let S be a sphere with centre C and radius q circum-
scribed about a. Then radial projection of a from C into S defines X: a —* a".
Set P" = X(P), ft" = X(ft).

X induces a linear map DX: Tp(a) —> Tp»(a"), and DX(Tp(b)) = Tp»(b").
Now vp(a) is the section of Tp(a) by the affine space through F orthogonal to
ft.  Hence DX(vp(a)) is the section of TP"(a") by an affine space through P"
which meets Fp»(ft") only in P". Let P: Tp»(a") —*■ vp-(a") be the orthogonal
projection. Then P ° DX: vp(a) —► vp»(a") is a linear isomorphism. Let g :
(vp"(a") - {F"}) —* op»(a") be radial projection from P", and set fa = g ° P °
DX: aP(a) —* aP"(a"). If 6 < c < a, then fc is, up to a natural isometry, just
the restriction of fa. Hence /= IJ{/a for ft < a}: oP(M) —► aP-(M") is well
defined.

I now give a different construction of fa, which seems to me easier to cal-
culate with, but is not so clearly intrinsic. Let X*: Tp(a) —► TP-(a") be parallel
projection in the direction CP.  Then X*(P) = P" and for each ray FX C Tp(a),
the images X*(FX) and DX(PX) axe equal. The affine space Tp(b) is orthogonal
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