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1 Introduction

Topology change is an intriguing feature of string theory, and possibly of quantum gravity
more generally, which was first discovered and studied some time ago [1–7]. It is an
interesting question how recent attempts to extract general features of low-energy theories
from quantum gravity, in the context of the swampland programme [8–11] relate to topology
change and whether topology change itself might perhaps give rise to such general features.

In the present paper, we will study the extended Kähler moduli space of Calabi-
Yau (CY) threefolds, including the boundary structure and the flop transitions connecting
Kähler subcones, in relation to geodesic motion. Our main context is M-theory compact-
ifications on CY threefolds to five-dimensional N = 1 supergravity, although some of our
results can also be directly applied to type II compactifications. To keep the discussion
explicit we will focus on CY threefolds X with Picard number h1,1(X) = 2, the simplest
case where we can expect a non-trivial Kähler cone structure.

We review the different types of Kähler cone walls, namely flop walls, walls along which
a divisor collapses to a curve or a point, and effective cone walls on which the volume of the
CY goes to zero, and show how they can be identified from basic topological CY data, as
well as discuss the properties of the moduli space metric near these walls. Some emphasis
is placed on isomorphic flops, that is, flop transitions of a CY manifold to another version
of the same topological type, which can give rise to infinite sequences of flop transitions.
A classification of intersection forms for h1,1(X) = 2 CY threefolds is presented which
exhibits three different cases.

To substantiate our discussion we have compiled a detailed dataset which contains the
cone and wall structure of the extended and effective cones for all h1,1(X) = 2 manifolds
within the complete intersection CYs (CICYs) [12] and the CY hypersurfaces in toric
fourfolds (THCYs) [13]. This data shows that the Kähler moduli space structure is quite
rich, even at the level of Picard number two, and it should provide a useful resource for
future studies of topology change in string theory.

Our main goal is the study of geodesics and we will show that, thanks to the classifica-
tion of intersection forms, the geodesic equation can be explicitly solved for all h1,1(X) = 2
CYs. This allows us to follow geodesic motion near Kähler cone walls and across flop tran-
sitions. Our results further substantiate a recent discussion of how geodesic motion across
the extended Kähler moduli space relates to the distance conjecture [14]. In particular,
we argue that the existence of infinite-length geodesics for CYs with infinite flop sequences
does not contradict the distance conjecture.

The plan of the paper is as follows. In the next section, we review the structure of the
CY Kähler moduli space, its possible walls, isomorphic and non-isomorphic flop transitions
as well as infinite flop sequences. In section 3, we introduce the metric and the geodesic
equation on Kähler moduli space, discuss how it relates to the cone and wall structure
and prepare the ground for solving the geodesic equation by carrying out a classification
of intersection forms. The explicit CY data, covering the h1,1(X) = 2 manifolds from
the CICY and THCY lists, will be introduced in section 4, with the detailed information
provided in appendices A and B. In section 5 we study the geodesic equation in detail and
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show that it can be explicitly solved for all h1,1(X) = 2 CYs. Several explicit examples of
these solutions will be presented in section 6. We conclude in section 7.

2 Kähler moduli space

In this introductory section, we review a number of relevant features of the Kähler moduli
space of Calabi-Yau (CY) threefolds, to prepare for our later study of geodesics. Some of
these have been well-known for some time, but we will also discuss certain features em-
phasised more recently, including the possibility of isomorphic flop transitions and infinite
chains of flops. We will focus on Picard number two manifolds and, in particular, present
a classification of intersection forms for this case.

2.1 Kähler cones

We are interested in CY threefolds X and their Kähler cone K(X). The Kähler cone
consists of all closed (1, 1)-forms J on X which satisfy

vol(C) :=
∫
C
J > 0 , vol(D) := 1

2

∫
D
J2 > 0 , vol(X) := 1

6

∫
X
J3 > 0 , (2.1)

for all holomorphic curves C ⊂ X and all effective divisors D ⊂ X. Its dimension equals
h = h1,1(X) and it is usually parametrised as J = tiJi, where t = (t1, . . . , th) are the
Kähler moduli and (J1, . . . , Jh) forms a suitably chosen basis of the second cohomology of
X, with a Poincaré dual basis (D1, . . . , Dh) of divisor classes. We also choose an integral
basis (C1, . . . , Ch) of dual curve classes, so that∫

Ci
Jk = δik , ti = vol(Ci) =

∫
Ci
J . (2.2)

and introduce the triple intersection numbers dijk and the pre-potential κ by

dijk = (Di, Dj , Dk) =
∫
X
Ji ∧ Jj ∧ Jk , κ = 6 vol(X) = dijkt

itjtk , (2.3)

where (·, ·, ·) is the triple intersection form on X. At the boundary of the Kähler cone
the volume of a sub-manifold vanishes and there are three qualitatively different scenarios
of what can happen at a given boundary point, depending on which type of integral in
eq. (2.1) approaches zero (see for example refs. [7, 15] for more information),

(1) Flop wall: the volume of a curve in X goes to zero, while the volumes of divisors and
the volume of X remain finite.

(2) Zariski wall: the volume of a divisor D in X goes to zero, while the volume of X
remains finite. There are two sub-cases.
(a) The divisor D collapses to a curve.
(b) The divisor D collapses to a point.

(3) Effective cone wall: the volume of X goes to zero, together with the volumes of some
divisors and curves.

A cartoon of these three possibilities is shown in figure 1.
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Figure 1. (Top left:) Collapse of a curve. (Top right:) Collapse of a divisor to a curve. (Bottom
left:) Collapse of a divisor to a point. (Bottom right:) Collapse of the CY.

When a flop wall is encountered, the geometric moduli space continues beyond the
wall into an adjacent Kähler cone of another CY manifold X ′, birationally equivalent to
X. The volume of the collapsing curves becomes formally negative from the perspective of
the original CY X, but they are replaced by a new set of holomorphic curves on X ′. The
manifolds X and X ′ can be isomorphic or non-isomorphic and we will refer to isomorphic
and non-isomorphic flops accordingly. We will see later that isomorphic flops are, in fact,
rather common. If the new CY X ′ allows for a flop other than the one leading back to X
the process can be continued. By exhausting all possible flops in this way the extended
Kähler cone, Kext(X), of X is produced. It has been conjectured that the extended Kähler
cone only contains a finite number of non-isomorphic CY manifolds, in a statement known
as the Kawamata-Morrison conjecture [16, 17] (see also ref. [14] for a recent connection
with the infinite distance conjecture). On the other hand, as we will see, the extended
Kähler cone can contain a countably infinite number of isomorphic CY manifolds.

When a Zariski wall is encountered, a divisor collapses. While the CY volume stays
finite, the theory cannot be continued (in the geometric regime) to a new CY. However, the
Zariski wall does not mark the end of the effective cone of X, denoted by Eff(X). Rather,
adjacent to the Zariski wall is a Zariski cone containing effective divisors, or equivalently
line bundles with global holomorphic sections.

Finally, when an effective cone wall is encountered, a divisor collapses in such a way
that the CY volume goes to zero. In such cases, the geometric interpretation is lost and the
CY cannot be continued beyond this wall in a geometric setup. In contrast to the Zariski
wall, there are no line bundles with global holomorphic sections beyond this wall, so in
this case the wall is both a boundary of the Kähler cone and a boundary of the effective
cone of X.

2.2 Picard number two manifolds

In this paper, we are primarily interested in CY manifolds with Picard number h1,1(X) =
2 and in this case we can be slightly more explicit about what happens at the Kähler
cone boundaries. First, the Kähler cone is necessarily simplicial and we can choose an
integral basis (D1, D2) of Kähler cone generators so that the Kähler cone K(X) = {xD1 +
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yD2 |x, y > 0} is the positive quadrant in the coordinates t = (t1, t2) = (x, y). The effective
cone Eff(X) is not fixed but has generators which we can parametrise as

D1 = v11D1 + v12D2 , D2 = v21D1 + v22D2 , (2.4)

so that Eff(X) = {l1D1 + l2D2 | l1, l2 > 0}, and in the basis (D1, D2) we can write these
generators as vectors

v1 =
(
v11
v12

)
, v2 =

(
v21
v22

)
. (2.5)

Finally, the prepotential (2.3)

κ = d111x
3 + 3d112x

2y + 3d122xy
2 + d222y

3 (2.6)

depends on four intersection numbers, and for convenience we group these into the two
vectors

d1 =
(
d122
d222

)
, d2 =

(
d111
d112

)
. (2.7)

The main CY data which will enters the subsequent discussion consists of these vectors
(d1, d2, v1, v2), defined relative to the basis in which the Kähler cone is the positive quad-
rant. For the two most important classes of CY examples (complete intersections in prod-
ucts of projective spaces and hypersurfaces in toric varieties), they will be explicitly deter-
mined in section 4, but for now we proceed by analysing which conclusions can be drawn
in general.

We would like to understand to what extent the data (d1, d2, v1, v2) encodes the be-
haviour of the CY X at its Kähler cone boundaries. Of course, the cycle volumes

vol(C1) = x , vol(C2) = y , (2.8)

vanish at the boundaries x = 0 and y = 0, respectively. To decide whether these correspond
to flop boundaries we need to look at the volumes of effective divisors and the entire CY.
For concreteness we will analyse this for the boundary at x = 0 on the understanding
that the analogous statements for the boundary y = 0 are obtained by the index exchange
1↔ 2.

First, for the volumes of D1 and D2 we have

vol(D1) = 1
2(d111x

2 + 2d112xy + d122y
2) vol(D2) = 1

2(d211x
2 + 2d212xy + d222y

2)
x=0−→ 1

2d122y
2 ,

x=0−→ 1
2d222y

2 .

so that the volume of an arbitrary divisor D = k1D1 + k2D2 is given by

vol(D) = 1
2
[
(k · d2)x2 + 2(k · d)xy + (k · d1)y2

]
x=0−→ 1

2(k · d1)y2 , (2.9)

where k = (k1, k2)T and d = (d112, d122)T . For the total volume we have

κ = 6 vol(X) = d111x
3 + 3d112x

2y + 3d122xy
2 + d222y

3 x=0−→ d222y
3 . (2.10)
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boundary at x = 0 condition event

flop wall d1 · v1 > 0 and d1 · v2 > 0 vol(C1)→ 0
Zariski wall d222 6= 0 & ∃k ∈ Eff(X), k 6= 0 : k · d1 = 0 vol(C1), vol(D)→ 0,

type (a) k · d 6= 0 D collapses to curve
type (b) k · d = 0 D collapses to point

effective cone wall d222 = 0 vol(C1), vol(D2), vol(X)→ 0

Table 1. Conditions for possible events at the x = 0 boundary of the Kähler cone. The anal-
ogous statements at the y = 0 boundary are obtained by the index exchange 1 ↔ 2. Here
d1 = (d122, d222)T , d = (d112, d122)T capture intersection number data, v1, v2 describe the gen-
erators of the effective cone, k = (k1, k2)T , and D = k1D1 + k2D2.

From these expressions we can read off simple criteria, as summarised in table 1, which
allow us to determine the type of boundary wall in terms of the intersection numbers and
the effective cone generators. It is worth noting that, while the intersection numbers are
topological and, in particular, complex-structure independent, this is not necessarily the
case for the effective cone Eff(X). New effective divisors can appear for specific complex
structure choices and this can lead to a flop wall turning into a Zariski wall. We will later
see an example of this phenomenon.

2.3 Flops for Picard number two

Now suppose the wall at x = 0 is a flop transition to another, birationally equivalent CY
manifold X1

1 whose Kähler cone K(X1
1 ) shares the boundary x = 0 with K(X). To be

more precise, K(X1
1 ) is a cone in H2(X1

1 ), while K(X) is a cone in H2(X). However, a flop
induces an isomorphism ρ : H2(X) → H2(X1

1 ) such that K(X) and ρ−1(K(X1
1 )) share a

common wall. To simplify notation, from now on we will say that K(X) and K(X1
1 ) share

a common wall.
At the x = 0 boundary N curves Cα collapse, of which n1 have class C1 and n2 = N−n1

have class 2C1. The intersection forms (·, ·, ·) and (·, ·, ·)′ of X and X1
1 are then related by

(D,E, F )′ = (D,E, F )−
N∑
α=1

(D, Cα)(E, Cα)(F, Cα) , (2.11)

where D,E, F are divisors. This implies the triple intersection numbers dijk = (Di, Dj , Dk)
and d′ijk = (Di, Dj , Dk)′ satisfy

d′ijk = dijk − n δ1iδ1jδ1k , (2.12)

where n = n1 +8n2. These two sets of triple intersection numbers can be basis-transformed
into each other by

d′ijk = dabcM
a
1 iM

b
1 jM

c
1k , M1 =

(
−1 0
m1 1

)
, (2.13)

provided that
m1 = 2d122

d222
, n = 2d111 − 3m1d112 +m2

1d122 . (2.14)
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If m1 is fractional then X and X1
1 are different CY manifolds and the above equation

for n is typically not satisfied since n needs to be integer. Hence, the triple intersection
forms are not related by the matrix M1 and we have a non-isomorphic flop. On the other
hand, for m1 integer the transformation M1 is integral and X and X1

1 may be isomorphic.
In this case, the second eq. (2.14) is a formula for a specific combination, n, of Gromov-
Witten invariants in terms of the intersection numbers. In either case, it can happen that
X1

1 has another flop boundary, different from the one it shares with X, which connects
it to a further manifold X2

1 and so forth. It is conjectured that only a finite number of
non-isomorphic manifolds can arise in this way. However, as we will see below, there exist
infinite chains of isomorphic flops.

If X and X1
1 are non-isomorphic we are not aware of a general method to read off the

Kähler cone of the flopped space X1
1 from simple data on X. It seems K(X1

1 ) has to be
determined from an explicit construction of X1

1 or from line bundle cohomology data on
X. We will rely on the latter method for our example manifolds. The situation is much
simpler if X and X1

1 are isomorphic in which case the Kähler cone generators for X1
1 are

D′1 = −D1 +m1D2 and D′2 = D2 and the Kähler cones are given by

K(X) = {xD1 + yD2 |x, y > 0} , K(X1
1 ) = {xD1 + yD2 |x < 0, m1x+ y > 0} . (2.15)

Then, the matrix M1 in eq. (2.13) generates an involution which exchanges K(X) with
K(X1

1 ). The involution should be regarded as a map between CY threefolds of the same
type, but with different Kähler classes and different complex structures [18]. Under this
involution, a divisor (curve) class D = βiDi (C = γiC

i) on X and its equivalent D′ = βi
′
Di

(C ′ = γi
′Ci) on X ′1 are related by

βi
′ = M i

1jβ
j , γ′i = M1i

jγj . (2.16)

All this is illustrated on the left in figure 2. It has been argued in ref. [14] that the involution
generated by M1 is gauged and that the Kahler cones K(X) and K(X1

1 ) should, hence, be
identified. At first sight, it might seem that flops between isomorphic CYs are a somewhat
exotic and rare phenomenon. On the other hand, the ratio of intersection numbers in
eq. (2.14) being integer does not appear to be a particularly strong constraint. Indeed,
as we will see in the next section when we discuss examples, isomorphic flops are quite
common.

2.4 Infinite flop chains

The previous discussion about flops of course applies equally to the boundary at y = 0,
subject to the index exchange 1 ↔ 2. In particular, an isomorphic flop at y = 0 leads to
an involution generated by

M2 =
(

1 m2
0 −1

)
, m2 = 2d211

d111
, (2.17)

which exchanges the Kähler cone K(X) with

K(X1
2 ) = {xD1 + yD2 |x+m2y > 0, y < 0} . (2.18)
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x

y

−1

m1

K(X1
1 )

K(X)

M1

x

y

K(X)

K(X1
1 )K(X2

1 )· · ·

K(X1
2 )

K(X2
2 )

...

M1

M2

−1

−1

m̃1

m̃2

Figure 2. An isomorphic flop between Kähler cones K(X) and K(X1
1 ) with involution generated

by M1 (left) and an infinite flop chain, generated by M1 and M2 (right).

The matrices M1 and M2 in eqs. (2.13) and (2.17) do not commute and they generate
a certain discrete group G. To determine this group we consider the product of the two
involutions,

M = M1M2 =
(
−1 −m2
m1 −1 +m1m2

)
, (2.19)

which is of finite order, s, ifm1m2 < 4 and generates a group isomorphic to Z form1m2 ≥ 4.
The elements of G can be written in the unique form M q

1M
k, where q ∈ {0, 1} and either

k ∈ {0, . . . , s− 1} when m1m2 < 4 or k ∈ Z if m1m2 ≥ 4. In the former case, G is a finite
group whose structure is indicated in the table below.

(m1,m2) (1, 1) (1, 2) (1, 3)
G ∼= Z2 nZ3 Z2 nZ4 Z2 nZ6

For m1m2 ≥ 4, on the other hand, G is an infinite group isomorphic to Z2 n Z.
The extended Kähler cone Kext(X) is generated by acting with G on K(X). For the

finite cases with m1m2 < 4 the image of K(X) under G covers the x-y plane minus the
negative quadrant and is, therefore, not actually a cone. The conclusion is that h1,1(X) = 2
CY manifolds with intersections numbers that would lead to m1m2 < 4 do not exist.

For m1m2 ≥ 4 the extended Kähler cone contains an infinite number of cones, K(Xk
1 )

and K(Xk
2 ), where k = 1, 2, . . ., on either side of the original cone K(X), as indicated on

the right in figure 2. These infinite sequences of isomorphic flops converge to limits which
mark the boundary of the extended cone

Kext(X) = {xD1 + yD2 | m̃1x+ y > 0, x+ m̃2y > 0} (2.20)

where

m̃i = mi

2

(
1 +

√
1− 4

m1m2

)
. (2.21)

This cone is rational for m1 = m2 = 2 and irrational for all other cases, and in particular
for m1m2 > 4. Just as for the case of a single isomorphic flop, it has been argued [14] that
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G is a gauge symmetry and should be divided out, so that all the cones K(Xk
1 ) and K(Xk

2 )
are identified with K(X).

3 Geometry on Kähler moduli space

We will now introduce the metric on Kähler moduli space and discuss to what extent
it contains information about the wall and cone structure of this moduli space. Basic
properties of the associated geodesic equation will be discussed and we present a classifi-
cation of intersection forms for the case h1,1(X) = 2 which facilitates solving the geodesic
equation. Finally, we review M-theory compactifications on threefolds to five-dimensional
N = 1 supergravity, the low-energy context within which we prefer to consider the geodesic
equation.

3.1 Moduli space metric

The Kähler cone K(X) is equipped with the moduli space metric

Gij = −1
3∂i∂j ln κ = −2

(
κij
κ
− 3

2
κiκj
κ2

)
, (3.1)

where

κi = 1
3∂iκ = dijkt

jtk , κij = 1
6∂i∂jκ = dijkt

k . (3.2)

This metric is of course positive-definite on K(X). It can be used to define the contravariant
coordinates ti = Gijt

j which satisfy the useful relations

ti = κi
κ
, tit

i = 1 . (3.3)

The associated Levi-Civita connection reads explicitly

Γijk = 1
2∂iGjk = −dijk

κ
+ 9

κ(ijκk)
κ2 − 9κiκjκk

κ3 , Γijk = GilΓljk . (3.4)

Using that Gij is a homogeneous function of degree −2 in the coordinates ti and applying
Euler’s theorem, it follows that ∂iGjkti = −2Gjk or, equivalently,

Γijktk = −Gij , Γijktk = −δij . (3.5)

Given our focus on geodesics, we would like to understand to what extent the type of the
Kähler cone wall, as classified in table 1, is encoded in the behaviour of Gij at or near the
wall.1 As before, we focus on the boundary at x = 0, with the understanding that results
for the y = 0 boundary are obtained by the index exchange 1↔ 2. At this boundary, the
metric becomes

G|x=0 = 1
d2

222y
2

(
3d2

122 − 2d222d112 d122d222
d122d222 d2

222

)
, det(G|x=0) = 2(d2

122 − d112d222)
d2

222y
4 . (3.6)

1See also ref. [19] for a discussion of the regularity of the metric at boundaries of the Kähler cone.
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Clearly, the metric diverges at x = 0 if d222 = 0 and this coincides with the condition for
an effective cone wall in table 1. Now assuming that d222 6= 0, so that the metric does not
diverge for x = 0, can we distinguish the other wall types? The above expression for the
determinant shows that the metric becomes singular at x = 0 iff

d112d222 − d2
122 = 0 . (3.7)

If this condition is satisfied G develops one zero eigenvalue, so its rank reduces to one. We
will now show that such a singularity in the metric cannot arise in the case that x = 0
is a flop wall. To this end, we assume that G is non-divergent but singular at x = 0, so
d222 6= 0 but d2

122 = d112d222, and assume that a flop to a manifold X ′ arises at x = 0.
We will show that these assumptions lead to a contradiction by studying the behaviour of
G on either side of the boundary x = 0. For x ≥ 0, so inside the Kähler cone of X, the
determinant to first order in x is given by

det(G|x≥0) = 2d
3
122 − d111d

2
222

d3
222y

5 x+O(x2) = 2d112d122 − d111d222
d2

222y
5 x+O(x2) . (3.8)

The numerator d112d122−d111d222 cannot be zero as this would imply the vanishing of two
minors of the matrix in eq. (3.12) below and, hence, a reduction in the rank of ϕ, which
as we will see is excluded. Hence since G is positive definite for x > 0 we require that
d3

122− d111d
2
222 > 0. For x ≤ 0 we can carry out the same calculation as above but we have

to use the intersection numbers d′ijk of X ′ given in eq. (2.12). Since d111 is, in fact, the
only intersection number which changes, we have

det(G|x≤0) = 2d
3
122 − d′111d

2
222

d3
222y

5 x+O(x2) = 2d
3
122 − d111d

2
222 + nd2

222
d3

222y
5 x+O(x2) (3.9)

Evidently, the numerator of this expression remains positive (as n ≥ 0) but, since x ≤ 0,
it follows that det(G|x<0) < 0 near the wall which contradicts positive definiteness of the
metric. This shows that the metric G is necessarily non-singular at a flop boundary and,
conversely, that a non-divergent but singular metric indicates a Zariski wall.

We can be even more specific and decide which type of Zariski wall a singular metric
corresponds to. From table 1 the condition for a Zariski wall at x = 0 is k ·d1 = 0 for some
effective divisor k ∈ Eff(X). For a type (b) Zariski wall (divisor collapses to a point) we
need in addition that k · d = 0. Together these imply that the matrix

(d, d1) =
(
d112 d122
d122 d222

)
(3.10)

is singular, which is the case iff the determinant in eq. (3.7) vanishes. Conversely, if this
matrix is singular, so that d ∝ d1, there must exist an effective k satisfying k · d1 = 0
and k · d = 0, since we know from table 1 that at a Zariski wall either d1 · v1 ≤ 0 or
d1 · v2 < 0, where v1 and v2 describe the generators of the effective cone. The conclusion is
that a non-divergent but singular metric indicates a type (b) Zariski wall, where a divisor
collapses to a point.
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metric behaviour condition boundary type

non-divergent, non-singular d222 6= 0, d112d222 − d2
122 6= 0 flop or type (a) Zariski wall

non-divergent, singular d222 6= 0, d112d222 − d2
122 = 0 type (b) Zariski wall

divergent d222 = 0 effective cone wall

Table 2. Relation between metric behaviour at x = 0 and the type of Kähler cone boundary.

The above statements, relating the behaviour of the metric to the type of the boundary
wall, are summarised in table 2. The metric behaviour is apparently not sufficient to
distinguish between flop and type (a) Zariski walls. Indeed, one and the same Kähler cone
boundary can switch between the two types, depending on complex structure choice, but
without any change of the metric Gij . An example for this phenomenon will be presented
in section 4.

3.2 Classification of intersection forms

The intersection form, together with the Kähler cone, are the main ingredients in discussing
geodesics. For this reason it makes sense to discuss basis transformations of intersection
forms and find suitably simple normal forms. To this end, we call two intersection forms

κ(t) = dijkt
itjtk and κ̂(t) = d̂ijkt

itjtk (3.11)

equivalent if there exists a basis transformation P ∈ GL(Rh) such that κ̂(Pt) = κ(t) or,
equivalently, if the intersection numbers are related by dijk = d̂lmnP

l
iP

m
jP

n
k.2 Evidently,

this defines an equivalence relation and we are interested in finding the equivalence classes
and a suitably simple normal form for each class. Class functions can be helpful to carry
this out explicitly. One such class function is the rank, rk(ϕ), of the map ϕ : S2Rh → Rh

defined by [ϕ(s)]i = dijks
jk. However, by itself it is not sufficient to distinguish all classes,

as we will see below. For arbitrary Picard number h, the classification is a complicated
problem but for h = 2, our main case of interest, it is not too difficult to complete.

First, we note that, for h = 2, the general intersection form (2.10) is determined by
four intersection numbers so our classification is carried out in a space isomorphic to R4.
The intersection form (2.10) also shows that the map ϕ : S2R2 → R2 is represented by the
matrix

ϕ ∼
(
d111 d112 d122
d112 d122 d222

)
⇒ rk(ϕ) ∈ {0, 1, 2} . (3.12)

As already mentioned, this rank by itself is not sufficient to distinguish all classes. Another
class function can be constructed as follows. Seen as a cubic in RP1, κ has either one, two,
or three distinct zeros, and we define the class of κ to be this number, that is

cl(κ) =
∣∣∣{[x : y] ∈ RP1 | κ(x, y) = 0

}∣∣∣ ∈ {1, 2, 3} . (3.13)

2The notation of integrality is of course typically lost under this equivalence but this will not be essential
for the purpose of solving the geodesic equations.
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case normal form κ̂ (cl(κ),rk(ϕ)) metric Ĝ K(X) contained in

0 x3 (1,1) 1
x2

(
1 0
0 0

)
{}

1 x3 + y3 (1,2) 1
κ2

(
x4 − 2xy3 3x2y2

3x2y2 y4 − 2x3y

)
{x < 0, x+ y > 0}
∪ {y < 0, x+ y > 0}

2 x2y (2,2)

 2
3x2 0
0 1

3y2

 {x 6= 0, y > 0}

3 x2y + xy2 (3,2) 1
3

 1
x2 + 1

(x+y)2
1

(x+y)2

1
(x+y)2

1
y2 + 1

(x+y)2

 {x > 0, y > 0}
∪ {x > 0, x+ y < 0}
∪ {y > 0, x+ y < 0}

Table 3. Classification of intersection forms for CYs X with h1,1(X) = 2. The metric Ĝ has been
computed from the prepotential κ̂, using eq. (3.1). The regions where κ̂ > 0 and Ĝ is positive
definite are given in the last column and are plotted in figure 3.

Taken together, the rank, rk(ϕ), and the class, cl(κ), are sufficient to characterise the
equivalence classes of intersection forms, as can be shown by explicitly carrying out basis
transformations. It turns out there are four classes (apart from the trivial class which
consists of the zero polynomial) which are summarised in table 3, together with suitable
normal forms. The regions in the last column of table 3 are the ones where κ̂ > 0 and Ĝ
is positive definite, so they indicate the maximal Kähler cones possible in each case. For
case 0 the set is empty since the metric Ĝ is singular everywhere, so this case is irrelevant
for the discussion of CY intersection forms. For the remaining three cases, the maximal
Kähler cones have been plotted in figure 3. The boundaries x = 0 and y = 0 of the grey
region in case 1 are special in that the volume κ̂ remains finite (away from the origin) but
the metric Ĝ becomes singular. On all other boundaries of the grey regions in figure 3 the
volume κ̂ vanishes.

How does this classification of intersection forms relate to our previous discussion of
the Kähler moduli space and its boundaries? For starters, throughout the Kähler cone
K(X) of a CY threefold X the volume is positive and the metric is non-singular so such a
moduli space must map to a cone within one of the maximal cones in figure 3. The price
we pay for choosing coordinates where the intersection form becomes one of the normal
forms is a more complicated Kähler cone in those coordinates, not necessarily equal to the
positive quadrant. More precisely, if P transforms the intersection form κ(t) = dijkt

itjtk

with associated Kähler cone K(X) = {xD1 +yD2 |x, y > 0} into one of the normal forms κ̂
from table 3, so that κ̂(Pt) = κ(t), then the Kähler cone K̂(X) in normal form coordinates
is the image

K̂(X) = P ({(x, y) |x, y > 0}) (3.14)

of the positive quadrant under P . For cases 2 and 3 we can always choose P such that this
cone is contained in the positive quadrant, but it may not take up the entire quadrant. For
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Figure 3. Shaded regions indicate where κ̂ > 0 and Ĝ is positive definite, for case 1 (left), case
2 (middle) and case 3 (right) from table 3. The coloured lines are isochores (taking κ̂ = 6) and
the red dots indicate boundaries for which κ̂ vanishes at the boundary. The dashed line in case 1
indicates the isochore outside the consistent region.

case 1 we can ensure it lies within the upper cone and, again, it may or may not fill out
the entire region.

There are three qualitatively different possibilities for how a boundary of the mapped
Kähler cone K̂(X) can relate to the maximal cones in figure 3. First, if the boundary in
question is in the interior of a maximal cone the metric is non-divergent and non-singular,
so from table 2 this must correspond to a flop or type (a) Zariski wall. If a boundary
of K̂(X) coincides with one of the maximal cone boundaries where the volume vanishes
(all but the x = 0 and y = 0 boundaries of case 1) this must be an effective cone wall.
Finally, if a boundary of K̂(X) coincides with the x = 0 (or y = 0) boundary for case 1
then the volume remains finite and the metric is singular so that, from table 2, we have a
type (b) Zariski wall. This means that type (b) Zariski walls can only ever occur for case 1
intersection forms. The structure of the cones in figure 3 also shows that a type (b) Zariski
wall can only arise for at most one of the two boundaries of the Kähler cone.

3.3 M-theory on threefolds

The physics associated with the CY Kähler cone and its boundaries depends somewhat
on the string compactification considered. In type II string compactifications on a CY
threefoldX the Kähler moduli ti reside in h1,1(X) four-dimensionalN = 2 vector multiplets
but there are a number of complications: (i) The Kähler moduli ti are complexified by
axions. (ii) Instanton effects correct the prepotential κ and, hence, the metric Gij . These
effects become important for small curve volumes. (iii) Non-geometric phases, described by
abstract conformal field theories, may arise beyond certain boundaries of the Kähler cone.

In this paper, we focus on M-theory compactifications on CY threefolds instead, where
these complications are largely absent. These compactifications lead to five-dimensional
N = 1 supergravity theories with h1,1(X)− 1 vector multiplets and h2,1(X) + 1 hypermul-
tiplets. The vector multiplet scalars are the “shape moduli”

bi = ti

a
, a3 := vol(X) = κ

6 , (3.15)
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while the overall volume modulus a resides in the hypermultiplet sector. Evidently, the
prepotential κ̃ as a function of the shape moduli satisfies a constant volume contraint

κ̃ = dijkb
ibjbk ⇒ κ̃ = 6 , (3.16)

which accounts for the reduction from h1,1(X) to h1,1(X)−1, as required by the number of
vector multiplets. The metric and connection on the five-dimensional vector moduli space
are obtained from κ̃ by the analogue of eqs. (3.1) and (3.4) and these quantities will be
denoted by G̃ij and Γ̃kij . From homogeneity of these functions it follows that

κ̃ = a−3κ , G̃ij = a2Gij , Γ̃ijk = aΓijk . (3.17)

The detailed five-dimensional effective action in the Einstein frame can, for example, be
found in ref. [20]. For our purposes it is sufficient to know that geodesics in vector moduli
space are governed by the metric G̃ij and that geodesic distances are measured in units of
the five-dimensional Planck length.

As is clear from the above discussion, the vector multiplet scalars bi are not complex-
ified, so this type II complication is absent. Further, instanton effects are proportional to
exp(−R), where R is the M-theory radius (or the radius between four- and five-dimensional
effective theories), so they vanish in the five-dimensional limit R →∞. Hence, κ̃ and G̃ij
do not receive instanton corrections. Finally, non-geometric phases are absent in the five-
dimensional theory [7]. Having said this, our results can be straightforwardly applied to
IIA, provided it can be argued that the above complications can be neglected. Of course,
the results only apply to the sub-sector of IIA where axion dynamics have been switched
off (which can be done consistently). Further, we need to require that cycles either retain
large volumes or, if they become small, they do not give rise to instanton corrections and
that the evolution stays away from non-geometric phases. Of course these conditions have
to be checked case by case.

What is the physics of those M-theory compactifications to five-dimensions which cor-
respond to the different types of Kähler cone boundaries listed in table 1? At a flop wall,
a number, N , of curves in the CY manifold X shrink to zero size and the five-dimensional
effective theory acquires N additional hypermultiplets which become massless at the flop.
They originate from membranes wrapping the collapsing cycles. These hypermultiplets
can be explicitly incorporated into the five-dimensional supergravity [21]. As one passes
through the flop wall, from X to a birationally equivalent CY X ′, one-loop corrections due
to these hypermultiplets change the intersection numbers dijk of X which appear in the
five-dimensional theory to the intersection numbers d′ijk of X ′ [7]. With this adjustment of
intersection numbers understood we can think of the five-dimensional theory as a theory
on the extended Kähler moduli space of X.

For a type (a) Zariski wall we have a divisor which shrinks to a curve. This marks the
end of the five-dimensional vector multiplet moduli space with an SU(2) gauge theory from
membranes wrapping the developing A1 singularity appearing at the boundary [18].3 For a

3The five-dimensional effective theory including this SU(2) gauge theory has been constructed in ref. [22]
for the special case that there are no massless charged hypermultiplets.
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type (b) Zariski wall a divisor collapses to a point and this is the end of the moduli space.
An infinite tower of states arises from membranes wrapping the curves within the shrinking
divisor as well as from a five-brane wrapping the entire divisor (leading to a tensionless
string in five dimensions).

Finally, an effective cone wall combines the collapse of a divisor and the entire CY and
also marks the end of the vector moduli space. An infinite tower of light states appears
from the collapsing divisor or from Kaluza-Klein modes.

4 Calabi-Yau constructions

To add substance to the discussion, we now introduce two classes of CY manifolds with
h1,1(X) = 2 and explicitly determine their Kähler cone structure. The first set consists
of the h1,1(X) = 2 manifolds from the list4 of complete intersection CYs in product of
projective spaces (CICYs) [12] and the second is the subset of manifolds with h1,1(X) = 2
among all CYs defined as hypersurfaces in toric ambient spaces5 (THCYs) as captured in
the Kreuzer-Skarke list [13]. As it happens, both of these data sets contains 36 topological
types of CY manifolds each.

The manifolds in either data set are constructed in an ambient space A. For the
CICYs this is a product of projective spaces with the CY defined as the common zero
locus of sections whose associated line bundles form a nef partition of the anti-canonical
bundle of A. For THCYs the ambient space is a toric fourfold and the CY is defined as the
zero locus of a section with associated first Chern class equal to that of the anti-canonical
bundle of A. While the Kähler cone of the ambient space A can be easily determined
in either case, finding the Kähler cone of the CY manifolds X ⊂ A is, in general, not
straightforward. First of all, the second cohomology of X might not entirely descend from
the second cohomology of A. If it does the CY is called favourable. It turns out that all
h1,1(X) = 2 manifolds in either data set are favourable in this sense. Secondly, even in a
favourable case, the Kähler cone of X can be larger than the cone obtained from the Kähler
cone of A by restriction. When the two cones are equal the CY is called Kähler-favourable.
It turns out that all h1,1(X) = 2 CICYs are Kähler-favourable. On the other hand, while
many of the h1,1(X) = 2 THCYs are Kähler-favourable as well, this data set also contains
some Kähler non-favourable cases. The overlap between the CICY and THCY lists for
h1,1(X) = 2 consists of precisely two manifolds, which are the two h1,1(X) = 2 CICYs
(with numbers 7884 and 7887 in the standard list of ref. [12]) defined as hypersurfaces in
the four-dimensional ambient spaces A = P2 × P2 and A = P1 × P3.

Before presenting our examples in more detail it is worth commenting on some general
features of the data in appendices A and B. First, the structure of the extended and effective
cones is typically quite rich, even for our relatively simple examples with h1,1(X) = 2. We
note that most of the flop transitions (indeed all flop transitions in the CICY case) in
our examples are different from the traditional type where a flop in a toric ambient space

4The CICY table is available at http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/cicylist/.
5The Kreuzer-Skarke list is available at multiple places, e.g. at http://hep.itp.tuwien.ac.at/ kreuzer/CY/.

We use the SAGE package polytopes_db_4d.
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descends to a flop on the CY. For our examples, there is no ambient space flop and the
topological transition only arises on the CY itself. Somewhat unexpectedly, isomorphic
flops are rather common and perhaps even more surprisingly, multiple isomorphic flops
leading to an infinite flop sequence are by no means rare. We also learn that the three non-
trivial classes of intersection forms in table 3 are all realised by CY manifolds, although
the CICY examples fall either into case 2 or case 3. What happens to the class of the
intersection form under flop transitions? Of course isomorphic flops preserve the class but
we do not have a general statement for non-isomorphic flops. The examples show that
non-isomorphic flops typically do change the class, usually between 3↔ 1 and 2↔ 1. This
is often to account for a secondary cone with a type (b) Zariski wall which, as we know
from our classification, can only arise for case 1 intersection forms.

4.1 The h1,1(X) = 2 CICYs

The h1,1(X) = 2 CICYs are embedded in an ambient space A = Pd1 × Pd2 and are defined
as the common zero locus of K = d1 + d2 − 3 polynomials, homogeneous in coordinates
of each projective space factor. The classification of CICYs in ref. [12] lists 36 topological
types, each specified by a configuration matrix which contains the bi-degrees of the defining
polynomials. Since all of these manifolds are Kähler-favourable a suitable basis of Kähler
cone generators is obtained by restricting the standard Kähler forms on the projective space
factors to X [23]. This gives rise to forms J1, J2 and Poincaré dual divisor classes D1 and
D2. Below we will specify divisor classes as two-dimensional numerical vectors relative to
the basis (D1, D2). Curve classes will be represented relative to the basis (C1, C2) dual
to (D1, D2). The triple intersection numbers can be computed by standard methods, and
the intersection form case in table 3 is determined by computing the class from eq. (3.13).
Finding the structure of the various cones and the nature of the cone boundaries is more
difficult, but can be accomplished by computing line bundle cohomology on X, following
ref. [24]. The resulting information has been compiled in the table in appendix A.

As an example for how to read this information, we consider from the table in ap-
pendix A the CICY #7885 with configuration matrix

X ∈
[
P1 1 1
P4 4 1

]2,86

−168
. (4.1)

This notation denotes a manifold defined in the ambient space A = P1×P4 as the common
zero locus of two polynomials with bi-degrees (1, 4) and (1, 1). The Hodge numbers, at-
tached as superscripts, are h1,1(X) = 2 and h2,1(X) = 86 and the Euler number, attached
as a subscript, is χ(X) = −168. The triple intersection numbers can be straightforwardly
computed from this description to be(

d122 d222
d112 d111

)
=
(

4 5
0 0

)
⇒ κ = 12xy2 + 5y3 = y2(12x+ 5y) . (4.2)

This intersection form has two zeros, [1, 0] and [−5, 12], in RP1 and is, hence, a realisation
of case 2 from table 3. More generally, the table in appendix A shows that CICYs realise
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case 2 and case 3 intersection forms, but there is no case 1 example.6 As we will see in the
next subsection, case 1 intersection forms can be obtained from THCYs.

Returning to our example, one finds that the generators vi of the effective cone, and
the further subdivision of this cone by flop walls and Zariski walls, as discussed in section 2,
are given by

v1 =
(
−1

1

)
, v2 =

(
1
0

)
,


Z

K1
K2

−1 1
−1 4

0 1
1 0

E

Z

F16,0
E

 . (4.3)

In the matrix on the right, the numerical rows in the middle provide the generators of
the various cone boundaries. The first and the last of these generators are evidently the
effective cone boundaries and are, hence, marked by an E on the right. The boundary
generated by (−1, 4)T is a Zariski boundary marked by a Z while the boundary generated
by (0, 1)T is a non-isomorphic flop boundary, marked by F16,0. The subscripts are the
Gromov-Witten invariants n1 = 16, n2 = 0 which determine the change in intersection
numbers. The symbols on the left of the matrix indicate the nature of the cones. The cone
〈(−1, 1)T , (−1, 4)T 〉 is a Zariski cone, marked as Z. The cone 〈(−1, 4)T , (0, 1)T 〉 is a Kähler
cone K(X ′), marked by K1, where the subscript indicates that it has a case 1 intersection
form. Its intersection form κ′ can be determined from eq. (2.12) with n = n1 + 8n2 = 16,
so that

κ′ = −16x3 + 12xy2 + 5y3 (4.4)

Finally, the cone 〈(0, 1)T , (1, 0)T 〉 is the Kähler cone of the original CY, which is case 2 and
accordingly denoted by K2. A plot of this cone structure is presented in figure 6 below.

Of course a manifold X ′ obtained from a CICY X via a non-isomorphic flop does not
need to have a CICY realisation but is, more generally, described by a complete intersection
in a toric ambient space. The explicit construction of X ′ is not of immediate relevance for
the study of geodesics and will be presented in a forthcoming paper [25].

As another example, consider CICY #7887 with configuration matrix

X ∈
[
P1 2
P3 4

]
x = (x0, x1)
y = (y0, y1, y2, y3)

(4.5)

where the homogeneous coordinates of P1[x] and P3[y] are defined on the right. The defining
polynomial p has the structure

p = x2
0 p0(y) + x0x1 p1(y) + x2

1 p2(y) , (4.6)

where p0, p1, p2 are quartics in y. The intersection numbers give rise to a case 2 intersection
form (

d122 d222
d112 d111

)
=
(

4 2
0 0

)
⇒ κ = 12xy2 + 2y3 = y2(12x+ 2y) . (4.7)

6However, some of the CYs obtained from CICYs via non-isomorphic flops have case 1 intersection forms.
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and the cone structure is specified by

v1 =
(
−1

4

)
, v2 =

(
1
0

)
,

K2
K2

−1 4
0 1
1 0

E

I4
64,0
E

 . (4.8)

The matrix denotes that the primary Kähler cone 〈(0, 1)T , (1, 0)T 〉 of X is connected by an
isomorphic flop along the boundary generated by (0, 1)T , denoted I4

64,0, to the Kähler cone
of an isomorphic CY X ′. Here the subscripts are the Gromov-Witten invariants n1 = 64,
n2 = 0 while the superscript m = 4 determines the generator for the involution of Kähler
cones in eq. (2.13).

It is important to note that this result is valid for generic choices of complex structure,
that is, for generic polynomials of the form (4.6). For non-generic choices, previously non-
effective divisors can become effective. If these divisors collapse when the Kähler form
reaches a wall, this can change the wall type as well as the type of the adjacent cone. To
illustrate this, consider a special defining polynomial with p1 = 0, so that

p = x2
0 p0(y) + x2

1 p2(y) . (4.9)

For this choice the generically non-effective divisor D = −2D1 + 4D2 becomes effective,
as can be seen by computing h0(X,OX(D)). Comparison with eq. (2.9) shows that its
volume vanishes along the x = 0 boundary. Hence, this boundary, which is generically an
isomorphic flop wall, turns into a Zariski wall for non-generic defining polynomials of the
form (4.9). Since we are dealing with a case 2 intersection form this must necessarily be a
type (a) Zariski wall, as type (b) Zariski walls can only arise for case 1 intersection forms.

4.2 The h1,1(X) = 2 THCYs

A (generic) CY hypersurface in a four-dimensional toric variety is specified by a choice of
a four-dimensional reflexive polytope and a triangulation of its faces. The toric variety is
constructed from the fan over the chosen triangulation, while the monomials that contribute
to the defining polynomial are in one-to-one correspondence with the lattice points of the
dual polytope.

The polytope can be specified either directly, through its vertices, or indirectly, using
homogeneous coordinates. It is the latter approach that we use in appendix B. Thus
if z0, z2, . . . , zm denote the homogeneous coordinates on a four-dimensional toric variety,
these coordinates need to be identified under m− 3 scaling relations specified as the rows
of a weight system, also known as a charge matrix in GLSM language. Each homogeneous
coordinate is associated with an irreducible toric divisor Di defined by zi = 0 and the
scaling relations translate into linear relations between the toric divisors with coefficients
given by the rows of the charge matrix. In order to construct the reflexive polytope and,
subsequently, the fan of the toric variety, one associates a four-dimensional vector (ray)
vi to each toric divisor Di satisfying the same linear relations that hold between the toric
divisors. The vectors vi then specify the vertices of the polytope.

The triangulation of the surface of the polytope corresponds to the information about
the allowed simultaneous vanishings of the homogeneous coordinates. The non-allowed
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simultaneous vanishings are to be taken away before quotienting the homogeneous coordi-
nates by the scaling relations. If the generators corresponding to a number of coordinates
share a common cone, then the coordinates are allowed to simultaneously vanish, otherwise
they are not. The allowed vanishings are collected in the Stanley-Reisner ideal denoted in
appendix B as ‘SRI’.

Finally, the rank of the Picard group of the toric variety is given by the number of rays
minus the dimension of the fan, 4 in our case. Since we are interested in Picard number 2
compact toric varieties associated with reflexive polytopes, we will always have six rays.

Changing the triangulation of the polytope defining the toric variety corresponds to
flopping the ambient space. This might or might not descend to a flop on the CY hyper-
surface. If it does, the flop leads to a flop of the CY, and the Kähler cones of the two
manifolds glue along a common wall to form (a part of) the extended Kähler cone. If it
does not, the ambient space flop indicates a boundary of the ambient space Kähler cone
which is not a boundary of the CY Kähler cone. This means that the two ambient space
Kähler cones can be glued together to form (at least part of) the CY Kähler cone. In
particular, nothing special happens on the CY at the ambient space flop locus. We will see
examples illustrating both situations in section 6.

5 Geodesics in Kähler moduli space

In this section, we discuss general properties of the geodesic equation in Kähler moduli
space, both in terms of the Kähler moduli tt and the shape moduli bi. For h1,1(X) = 2 we
show that the geodesic equations for bi can be integrated and we carry this out explicitly
for the three intersection normal forms in table 3.

5.1 Generalities

The geodesic equation for a trajectory ti = ti(s) in Kähler moduli space reads

ẗi + Γijk ṫj ṫk = 0 , (5.1)

where the dot denotes the derivative with respect to the curve parameter s. Multiplying
the geodesic equation with Gij ṫj leads to a first “energy” integral

0 = Gij ṫ
iṫj + 1

2∂iGjk ṫ
iṫj ṫk = d

ds

(1
2Gij ṫ

iṫj
)

⇒ 1
2Gij ṫ

iṫj = E , (5.2)

with E ≥ 0 constant. The geodesic length between the points ti(s1) and ti(s2) is simply

∆τ = τ2 − τ1 =
∫ s2

s1
ds
√
Gij(t(s))ṫiṫj =

√
2E (s2 − s1) =

√
2E∆s . (5.3)

We would now like to show that the geodesic equation implies a decoupled differential
equation for the overall volume modulus κ = 6a3. To do this we first note that eq. (3.5)
implies the result ṫi = −Gij ṫj for the derivative of the contravariant Kähler moduli and
this leads to

κ̇ = 3κtiṫi , κ̈ = 3κti(ẗi + Γijk ṫj ṫk) + κ̇2

κ
. (5.4)
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Provided the geodesic equation (5.1) is satisfied, the first term on the right-hand side
vanishes and we find the desired equation

κ̈ = κ̇2

κ
⇔ ä = ȧ2

a
, (5.5)

for the volume modulus. The solution is

a(s) = a0 e
αs , (5.6)

where a0 and α are real constants. In particular, constant volume geodesics correspond to
α = 0, while α > 0 (α < 0) implies an exponentially expanding (contracting) volume.

5.2 Geodesics in very special geometry

Given that the volume modulus a can be decoupled from the geodesic equation it is rea-
sonable to ask if the same can be accomplished for the shape moduli bi = ti/a. A straight-
forward computation of the shape moduli derivatives lead to

ḃi = a−1(ṫi − tj ṫjti) , b̈i = a−1
(
ẗi − 2tj ṫj ṫi − tj ṫjtk ṫkti − (tj ẗj −Gjk ṫj ṫk)ti

)
, (5.7)

and combining these results it follows that

b̈i + Γ̃ijk ḃj ḃk = 1
a

[
ẗi + Γijk ṫj ṫk −

1
3κ

(
κ̈− κ̇2

κ

)
ti
]
. (5.8)

Evidently, if the geodesic equation (5.1) for the Kähler moduli ti (and, hence, eq. (5.5) for
the volume modulus) is satisfied then the right-hand side of this equation vanishes and we
find that the shape moduli satisfy the geodesic equation

b̈i + Γ̃ijk ḃj ḃk = 0 , (5.9)

where Γ̃ijk is the Levi-Civita connection in terms of the shape moduli, as in eq. (3.17).
Conversely, satisfying the geodesic equation (5.9) for the shape moduli and for the overall
volume modulus (5.5) implies the geodesic equation (5.1) for ti, as eq. (5.8) shows.

All this is consistent with the structure of five-dimensional N = 1 supergravity, where
the shape moduli bi are the vector multiplet moduli. As explained earlier, we will focus on
M-theory compactifications to such five-dimensional supergravity theories and, therefore,
study the geodesic equation (5.9) for bi. However, a solution bi(s) of this geodesic equation
can be multiplied with a solution (5.6) for a(s) to produce a solution ti(s) = a(s)bi(s) of
the geodesic equation (5.1) for the Kähler moduli ti. This can be interpreted as an M-
theory solution with evolving vector multiplet moduli and evolving volume modulus (which
resides in the hypermultiplet sector) or as a IIA solution with the same properties. In the
latter case we have to assume that the complicating effects which arise in IIA, that is,
possible axion dynamics, instanton effects and the presence of non-geometric phases, can
be neglected.

Of course the geodesic equation (5.9) also has a first energy integral

1
2G̃ijb

ibj = Ẽ , (5.10)
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where Ẽ ≥ 0 is a constant. The constants Ẽ and E in eq. (5.2) and the expansion coefficient
α of the volume modulus in eq. (5.6) are related via

1
2Gij ṫ

iṫj = 1
2G̃ij ḃ

iḃj + ȧ2

2a2 ⇒ E = Ẽ + 1
2α

2 . (5.11)

This means the geodesic length (5.3) becomes

∆τ =
√

2Ẽ + α2 ∆s . (5.12)

A solution ti(s) with varying volume is of the form

ti(s) = a(s)bi(s) = a0e
αsbi(s) , (5.13)

where bi(s) is a solution to the geodesic equation (5.9). For constant volume, a = const,
the case we focus on, we should set α = 0 in this equation. More generally, in the context
of M-theory, we can think of α as the contribution of the entire hypermultiplet moduli
sector. Then equation (5.12) shows that the α = 0 case, where all hypermultiplet moduli
are kept constant, provides a lower bound on the geodesic length.

For our purposes it is important to note that geodesics bi(s) for the shape moduli
satisfy the two equations

dijkb
ibjbk = 6 , dijkb

iḃj ḃk = −Ẽ . (5.14)

The first of these is simply the constant volume constraint, κ̃ = 6, and the second one
follows from the energy integral (5.10), given that κ̃ = 6 implies κ̃iḃi = 0. In general, these
two equations are of course not sufficient to find a solution, but they are for h1,1(X) = 2,
our main case of interest.

5.3 Geodesics and Kähler cone walls

Next we discuss how geodesics behave near walls of the Kähler cone, covering the different
types of walls listed in table 1.

At flop walls of the Kähler cone K(X), the metric Gij remains finite and non-singular.
Hence near a flop wall, geodesics behave regularly, qualitatively no different to how they
behave in the interior of the Kähler cone, and flop walls appear at finite geodesic distance.
What happens at the flop wall depends on the dynamics of the additional hypermultiplets
which become massless. If these hypermultiplets do not evolve, as is plausible since they
are massive away from the flop wall, the evolution continues through the wall and into the
adjacent Kähler cone K(X ′). We must therefore discuss how to match geodesics across a
flop wall. Recall from eq. (3.1) that the metric Gij on K(X) depends on the intersection
numbers dijk. The metric G′ij on K(X ′) is given by the same general expression but now in
terms of the intersection numbers d′ijk of X ′. From eq. (2.12), we can formally incorporate
this change into the five-dimensional theory by thinking of the metric as a function

G = G(b, dijk(b)) , dijk(b) = dijk − θ(−b1)nδ1iδ1jδ1k , (5.15)
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of the shape moduli bi and the moduli-dependent intersection numbers dijk(b). Here, we
are assuming that the flop arises at b1 = 0, and b1 > 0 (b1 < 0) corresponds to the Kähler
cone of X (X ′). As we compute the Levi-Civita connection (3.4) from this metric we would
expect additional terms proportional to δ(b1). However, these terms are always multiplied
by factors of b1. Hence, the connection has a discontinuity (due to the theta function which
arises in the first term in eq. (3.4)) across the flop wall but it does not have a delta function
singularity. The conclusion is that geodesics should be matched across a flop wall such that
bi and ḃi are continuous. In particular this means a geodesic in K(X) uniquely determines
its continuation into the adjacent Kähler cone K(X ′).

The above discussion has interesting implications for isomorphic flops. Suppose a
Kähler cone K(X) within the region b1 > 0 and an adjacent Kähler cone K(X ′) within the
region b1 < 0 are related by an isomorphic flop at b1 = 0. Consider a geodesic bi(s) across
both cones with bi(s) > 0 for s < 0 and bi(s) < 0 for s > 0, so that the flop arises for
parameter value s = 0. The two Kähler cones are related by an involution, generated by M
(see eqs. (2.13)) which leaves the flop locus b1 = 0 unchanged. We can use this involution
to map the geodesic bi(s) for s > 0 which is inside K(X ′) back into the primary Kähler
cone K(X), that is, onto M i

jb
j(s) for s ≥ 0. This is of course in line with the idea that

the involution is a gauge symmetry and that the Kähler cones K(X) and K(X ′) should be
identified. But the geodesics bi(s) for s ≤ 0 and M i

jb
j(s) for s ≥ 0 have the same initial

conditions at the flop locus s = 0 so they represent the same trajectories

M i
jb
j(s) = bi(−s) (5.16)

for s ≥ 0. Hence, in a “downstairs” description where we identify the extended Kähler
moduli space with K(X), geodesics “bounce” back from a flop wall and “re-trace” their
original path. If we have two isomorphic flop walls, giving rise to an infinite flop sequence,
then the geodesic motion in the downstairs picture corresponds to an “oscillation” between
these two walls, along the same trajectory.

At a type (a) Zariski wall the metric also remains finite and non-singular just like for
a flop, so in the naive effective theory they arise at finite geodesic distance. In fact, we
have seen that it is possible to switch between flop and type (a) Zariski walls by a choice
of complex structure, without changing the metric Gij . However, unlike flop walls, type
(a) Zariski walls mark the end of the moduli space. This is not apparent from the naive
effective theory, in which geodesic evolution proceeds just as for a flop, that is through to
the other side of the wall. Of course, for a correct description of the physics near a type
(a) Zariski wall the SU(2) gauge theory which appears there has to be included in the
low-energy theory. We note that this modified geodesic evolution has been determined in
a simplified setting in ref. [22].

For type (b) Zariski walls the metric is non-divergent but singular at the wall. This
means the wall can be reached at finite geodesic distance (at least within the naive effective
theory) but one combination of “velocities” ḃi is not bounded by the energy condition (5.10)
and can, hence, diverge. This is indeed what happens near a type (b) Zariski wall as our
explicit solution in the next subsection will show. Of course, as the velocity grows beyond
the string or compactification scale the low-energy theory becomes invalidated. Hence, the
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naive low-energy theory retains some memory of the new physics which is expected at a
type (b) Zariski wall, quite unlike for a type (a) Zariski wall. For a correct low-energy
description the infinite towers of light states expected at a type (b) Zariski wall have to be
included and they will modify the geodesic evolution near the wall.

Finally, for an effective cone wall the metric diverges, so the energy condition (5.10)
implies that velocities ḃi go to zero. This suggests effective cone walls are at infinite geodesic
distance and this is shown explicitly by our solutions in the next subsection.

5.4 Geodesics for h1,1(X) = 2

For h1,1(X) = 2 CYs the two equations (5.14) completely determine the geodesic solutions.
In fact, the actual geodesic curve is already determined by the first equation, the constant
volume constraint κ̃ = 6, but in order to find the evolution and geodesic distance we have
to solve both equations. In principle this is straightforward by solving the first eq. (5.14)
for one of the shape moduli in terms of the other, inserting into the second eq. (5.14) and
solving the resulting first-order non-linear differential equation. In practice, this is difficult
to carry out for a generic intersection form. However, the classification of intersection forms
in section (3.2) shows that we only need to do this for the four normal forms in table 3. In
fact, case 0 is irrelevant since the metric is never positive definite, so only three interesting
cases remain. We will now show that analytic solutions for the geodesics can be obtained
for these three cases. As before, we denote the two shape moduli by (x, y) = (b1, b2).

Case 1. The case 1 normal form from table 3 (multiplied by a convenient overall factor
of 6) is κ̂ = 6x3 + 6y3 and inserting this into eqs. (5.14) gives

x3 + y3 = 1 , xẋ2 + yẏ2 = −1
6Ẽ . (5.17)

Solving the first equation for y and inserting into the second gives

y = (1− x3)1/3 ,
xẋ2

1− x3 = −1
6Ẽ =: −1

6ε
2 . (5.18)

The differential equation can be solved analytically which leads to

x = − 3
√

sinh2(rk(s)) , y = 3
√

cosh2(rk(s)) , rk(s) =
√

3
8 εs+ k , (5.19)

where k is an integration constant and we are choosing the branch such that the solution
is real. This solution satisfies the first Kähler cone condition (x < 0, y > −x) in table 3, so
it resides in the upper cone in figure 3 on the left. The other solution, which resides in the
lower cone, is obtained by exchanging x and y. Note that the constant volume constraint
κ̂ = 6 is a result of the identity cosh2 x− sinh2 x = 1. Both branches of the geodesic have
been plotted in the left figure 3. They are evidently equivalent and we can focus on the
y > 0 branch for simplicity.

The maximal (upper) cone in the left figure (3) has two boundaries. We know that
the boundary at x = −y corresponds to an effective cone wall while the boundary at x = 0
is a type (b) Zariski wall. Let us discuss the behaviour of the geodesic (5.19) at both of
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these boundaries. The geodesic asymptotes to the boundary at x = −y as σ → ∞ which
shows that it is at infinite geodesic distance, as expected. The type (b) Zariski wall at
x = 0 is approached by the geodesic as rk(s) → 0 and it is evident from eq. (5.19) that ẋ
diverges in this case. As discussed above, this will eventually lead to a break-down of the
naive effective theory near the type (b) Zariski wall.

Of course the Kähler cone K̂(X) of an actual CY with case 1 intersection form can
fill out the entire maximal cone, only one of its boundaries may coincide with a maximal
cone boundary, or it may be entirely in the interior of the maximal cone. Any boundary
of K̂(X) in the interior must be either a flop or a type (a) Zariski wall.

It is interesting to note that, from our classification, we can exclude certain combina-
tions of Kähler cone wall types for CYs with case 1 intersection forms. For example, it is
impossible for both Kähler cone boundaries to be type (b) Zariski walls or for both to be
effective cone walls.

Case 2. From table 3, the case 2 normal form is given by κ̂ = x2y, so that the eqs. (5.14)
become

x2y = 6 , ẋ(yẋ+ 2xẏ) = −3Ẽ . (5.20)

Solving the first equation for y and inserting into the second, the solution is easily found
to be

x = keεs , y = 6
k2 e

−2εs , (5.21)

where k is an integration constant and ε2 = Ẽ/3. Depending on the choice for the sign
of k, we get solutions which reside in either of the two maximal cones and both of these
branches are shown in the middle figure 3. They are equivalent and we can focus on the
maximal cone which coincides with the positive quadrant.

Both boundaries of the maximal cone are effective cone walls. If ε > 0, the
geodesic (5.21) asymptotes towards the x = 0 boundary as s → −∞ and towards the
y = 0 boundary as s → ∞, so either of these walls is at infinite geodesic distance, as
expected. As before, the Kähler cone K̂(X) of an actual CY need not fill out the entire
maximal cone, and flop and type (a) Zariski walls arise at boundaries of K̂(X) in the inte-
rior of the maximal cone. But just as for case 1, certain wall types are excluded for CYs
with case 2 intersection forms. Specifically, any combination of wall types which involves
a type (b) Zariski wall is ruled out.

Case 3. From table 3, the case 3 normal form (with a convenient factor of 3) is κ̂ =
3x2y + 3xy2, so that eqs. (5.14) become

x2y + xy2 = 2 , ẋ2y + 2(x+ y)ẋẏ + xẏ2 = −Ẽ . (5.22)

Solving the first equation for y and inserting into the second equation gives

y± = −x
2 ±
√

8x+ x4

2x ,
2 + x3

x2(x3 + 8) ẋ
2 = Ẽ

6 =: ε2 . (5.23)

Note that both roots y± lead to the same differential equation for x. The square root (and
hence y±) is real for (i) x ≤ −2 or (ii) x ≥ 0. In case (i), y± is positive for either of the
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solutions, and hence satisfies the first Kähler cone condition in table 3. In case (ii), y+ is
negative and satisfies the second Kähler cone condition, while y− is positive and satisfies
the third Kähler cone condition. An analytic solution to (5.23) is given by

x = 3

√
−2 + 6 cosh(3εs) sin

(1
3 arccos (tanh(−3εs))

)
, y± = −x

2 ±
√

8x+ x4

2x , (5.24)

where we have fixed the integration constant such that x(0) = 1. Note that w1 =
tanh(−3sε) ∈ (−1, 1) and w2 = arccos(w1) ∈ (0, π), such that sin(w2/3) ∈ (0,

√
3/2).

The three branches of the geodesic solution are shown in figure 3, on the right.
In fact, the intersection form κ̂ = 3(x2y + xy2) has a symmetry group H = 〈h1, h2〉

generated by

h1 =
(
−1 −1

0 1

)
, h2 =

(
0 1
1 0

)
, (5.25)

which is of order 6 and isomorphic to S3. This group permutes the three maximal cones in
figure 3 along with the corresponding geodesic branches which are, hence, equivalent. We
can, therefore, focus on the maximal cone which fills out the positive quadrant.

This cone has two boundaries at x = 0 and y = 0, both of which are effective cone walls.
They are approached asymptotically as s → ±∞ and are, therefore, at infinite geodesic
distance, as expected. As before, the Kahler cone K̂(X) may not fill out the entire maximal
cone and its boundaries in the interior of the maximal cone are flop or type (a) Zariski
walls. Note that type (b) Zariski walls are excluded for CYs with case 3 intersection forms,
just as they were for case 2.

Let us summarise these results. We have obtained explicit geodesic solutions for the
three non-trivial normal forms in table 3. These solution prove that effective cone walls are
always at infinite distance. Flop walls are reached in finite geodesic distance and the same
is true for Zariski walls when considered within the naive effective theory as described by
the standard geodesic equation. However, for both type (a) and type (b) Zariski walls new
massless states arise at the wall which can be expected to modify the geodesic evolution
near the wall. We have also seen that type (b) Zariski walls are, in a certain sense, rare.
They can only arise for CYs with a case 1 intersection form and then for at most one of
the Kähler cone boundaries.

6 Examples

In this section, we illustrate our general results with a number of examples taken from the
collections of h1,1(X) = 2 CICYs and THCYs, whose data is presented in appendices A
and B. From this data we know the structure of the extended Kähler cone. We can
work out the intersection form for each constituent Kähler cone, determine its case in the
classification of table 3 and the coordinate transformation to the corresponding normal
form. The geodesic solution for an intersection normal form is given by one of the explicit
solutions given in the previous section. Transforming these back to the original field basis
for each Kähler cone and matching bi and ḃi continuously at all flop walls gives the geodesic
in the entire extended Kähler cone.
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Figure 4. Effective cone of the THCY example (4, ·), showing Kähler cones of CYs X0 and X1, as
well as two adjacent Zariski chambers, with a geodesic curve superimposed.

6.1 Example for case 1 — flop to one isomorphic CY

As an example for case 1, we consider a THCY X0 with a flop to an isomorphic CY X1,
listed as example number (4, ·) in the long table of appendix B. This flop is inherited from a
flop of the ambient toric variety, which is perhaps the most well-known situation. The two
toric varieties A0 and A1 are described by a GLSM charge matrix, and a Stanley-Reisner
ideal which specifies the fine regular star triangulation,7

X0 ⊂ A0 ∼
z0 z1 z2 z3 z4 z5
-1 2 1 1 3 0
1 -1 0 0 -1 1

, X1 ⊂ A1 ∼
z0 z1 z2 z3 z4 z5
2 -1 1 1 0 3
-1 1 0 0 1 -1

.

SRI0 : 〈z0z5, z1z2z3z4〉 SRI1 : 〈z1z4, z0z2z3z5〉
(6.1)

The Kähler cone generators are 1
3(z4 +z5) and z5 or z4 for the CYs X0 and X1, respectively.

For the following discussion, all coordinates are given relative to the basis (D1 = z5, D2 =
1
3(z4 + z5)) of the Kähler cone generators of X0. The structure of the effective cone is
presented in figure 4.

There are two Kähler cones corresponding to isomorphic CYs, and two Zariski cham-
bers with type (b) Zariski walls that bound the extended Kähler cone on either side. The
Kähler cones of X0 and X1 are given by

K(X0) = {x0 > 0 , y0 > 0} , K(X1) = {x1 < 0 , 3x1 + y1 > 0} . (6.2)

The involution that maps these two Kähler cones onto one another is given by

M1 =
(
−1 0

3 1

)
, (6.3)

and the intersection polynomials of X0 and X1 in the Kähler cone divisor basis of X0 are
given by

κ0 = 3x3
0 + 9x2

0y0 + 9x0y
2
0 + 2y3

0 , κ1 = −3x3
1 + 9x2

1y1 + 9x1y
2
1 + 2y3

1 . (6.4)
7Here and below the two charge matrices are equivalent, but we choose them to match the two Kähler

cone bases.
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We see that the flop changes the triple intersection number d111 by 6 and leaves all other
intersection numbers invariant. These two intersection forms can be brought into the
(rescaled) normal form 6x3 + 6y3 of case 1 using the transformations(

xi
yi

)
= Pi

(
x

y

)
, P0 = 3√6

(
1 1

3√3
−1 0

)
, P1 = 3√6

(
−1 − 1

3√3
2 ( 3√3)2

)
. (6.5)

There are two choices for these maps, corresponding to the two maximal cones in the left
figure 3 and we have selected the one which maps to the upper cone. The normal form
solution in terms of the variables (x, y) is given in (5.19). Using the above maps P0 and P1,
we can transform this solution back to the original coordinates (x0, y0) of X0 and (x1, y1)
of X1. We fix the integration constants in eq. (5.19) by demanding that the flop occurs
at s = 0, explicitly k0,1 = ∓arccosh

(√
3/2

)
, and demand that the solutions are continuous

and differentiable across the flop, so that

x0(0) = x1(0) = 0 , y0(0) = y1(0) , ẋ0(0) = ẋ1(0) , ẏ0(0) = ẏ1(0) . (6.6)

Setting Ẽ = 1, α = 0 (i.e. fixing the volume of the CY along the geodesic), and k0,1 =
∓arccosh

(√
3/2

)
, the geodesics are(

x0(s)
y0(s)

)
=
(

3
√

2 cosh2[rk0 (s)]− 3
√

6 sinh2[rk0 (s)]
3
√

6 sinh2[rk0 (s)])

)
s ≤ 0 (cone K0)(

x1(s)
y1(s)

)
=
(

− 3
√

2 cosh2[rk1 (s)] + 3
√

6 sinh2[rk1 (s)]
3 3
√

2 cosh2[rk1 (s, k)]− 2 3
√

6 sinh2[rk1 (s)]))

)
s ≥ 0 (cone K1)

(6.7)

We have plotted the solutions in figure 4. We can see the high-speed escape/crash at the
Zariski wall and the continuous smooth transition across the flop wall. Since X0 and X1
are equivalent we should identify the two cones K0 and K1, dividing out by the involution.
In the downstairs picture we can then describe the entire evolution within the cone K(X0).
It amounts to a high-speed escape from the Zariski wall, a motion towards and a bounce
back from the flop wall and retracing the same trajectory which ends in a high-speed crash
at the Zariski wall. Since the flop arises at parameter value εs = 0 and the Zariski wall at
εs = −

√
8/3 arccosh(

√
3/2) ≈ 1.08, it takes a geodesic distance of

∆τ =
√

2 ε∆s ' 1.52 (6.8)

to traverse the Kähler cone K(X0) along an isochore.
The above discussion has focused on isochores, but solutions with varying volume are

easily obtained from eq. (5.13). For such solutions, with a volume expansion rate α, the
geodesic distance to traverse the Kähler cone K(X0) is

∆τ =
√

2ε2 + α2 ∆s '

√
1 + α2

2ε2 1.52 , (6.9)

which is bounded from below by the isochore result (6.8).
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6.2 Example for case 1 — ambient space flop without CY flop

A flop in the toric ambient space does not always descend to the CY hypersurface. If
it does not, the geodesic evolution across such an ambient flop locus takes place within a
single CY Kähler cone and, hence, leaves the CY topology unchanged. An explicit example
is realised by the hypersurfaces X0 and X1 in the two four-dimensional toric varieties A0
and A1 given by the following two fine regular star triangulations

X0 ⊂ A0 ∼
z0 z1 z2 z3 z4 z5
1 0 0 0 1 1
-1 1 1 1 -2 0

, X1 ⊂ A1 ∼
z0 z1 z2 z3 z4 z5
1 -1 -1 -1 2 0
0 1 1 1 -1 1

,

SRI0 : 〈z0z4z5, z1z2z3〉 SRI1 : 〈z0z4, z1z2z3z5〉
(6.10)

which are related by a flop. This is example number (17, ·) in the long table of appendix B,
with A0 and A1 corresponding to triangulations 2 and 1 respectively. The Kähler cones
of A0 and A1 share a common generator z5, and the other generator is 1

2(z5 ∓ z4). We
choose the basis (D1 = 1

2(z5 − z4), D2 = z5) of the A0 Kähler cone generators to present
our results. Then, we find the Kähler cones of A0 and A1 are given by

K(A0) = {x0 > 0 , y0 > 0} , K(A1) = {x1 < 0 , x1 + y1 > 0} , (6.11)

and the intersection forms κ0 = κ1 = 9x2
0y0 + 27x0y

2
0 + 21y3

0 on the CY hypersurfaces
are, in fact, equal. The fact that the intersection form does not change across the ambient
space flop locus illustrates that the CY Kähler cone K(X0) is just given by the union of
the Kähler cones K(A0) and K(A1). In particular, while there is an ambient space flop
across x0 = 0 the CY itself does not flop. The cone structure for this example is illustrated
in figure 5. There is a single Kähler cone K(A0) ∪ K(A1) ∪ {x0 = 0 , y0 > 0}, bounded at
y0 = 0 by an effective cone wall and at x0 + y0 = 0 by a type (b) Zariski wall.

The transformation which converts the intersection form into the (rescaled) case 1
normal form is given by(

x0
y0

)
= P

(
x

y

)
, P = 3√2

(
−2 −1

1 1

)
. (6.12)

We can fix the integration constants such that the ambient space flop is at s = 0, which
implies k = arccosh(

√
8/7) and the resulting solution is plotted in figure 5. There is a

high-speed escape/crash at the Zariski wall and the geodesic asymptotes to the effective
cone wall which is at infinite geodesic distance. As before, non-isochore solutions can be
obtained from eq. (5.13).

6.3 Example for case 2 — flop to a non-isomorphic CY

As an example for a flop between two non-isomorphic CYs with case 1 and case 2 intersec-
tion forms, we consider CICY #7885 with configuration matrix

X0 ∼
[
P1 1 1
P4 4 1

]
. (6.13)
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}
K(X0)

Figure 5. Effective cone of THCY example (17, ·), showing Kähler cone of CY X0, which is a
union of ambient space Kähler cones for two triangulations, as well as an adjacent Zariski chamber,
with a geodesic curve superimposed.

-1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Figure 6. Effective cone of CICY #7885, showing Kähler cones of CYs X0 and X1, as well as an
adjacent Zariski chamber, with a geodesic curve superimposed.

As a basis we use the divisors (D1, D2) which generate the Kähler cone of X0 and are dual
to the restrictions J1, J2 of the standard ambient Kähler forms of the two projective space
factors. The relevant data for this manifold is contained in the table in appendix A and has
already been discussed in section 4.1. The Kähler cones of the CICY X0 and the flopped
CY X1 are

K(X0) = {x0 > 0 , y0 > 0} , K(X1) = {x1 < 0 , 4x1 + y1 > 0} . (6.14)

and they share a flop wall at x0 = 0. The other boundaries of K(X0) and K(X1) are an
effective cone wall and a type (b) Zariski wall, respectively, as shown in figure 6.

The two intersection forms

κ0 = 12x0y
2
0 + 5y3

0 , κ1 = −16x3
1 + 12x1y

2
1 + 5y3

1 , (6.15)

are case 2 and case 1, respectively, and can be related to the corresponding normal forms
in table 3 via the transformations(

xi
yi

)
= Pi

(
x

y

)
, P0 =

(
− 5c

12
1

12c2

c 0

)
, P1 = 1

3√3

(
−1

2 −
3√2

2 3√2

)
, (6.16)

where c is a non-zero real constant. The choice of c does not affect the physics and it
can, in fact, be absorbed into the integration constant k of the solution 5.21. Its choice
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also does not affect the image of the Kähler cone K(X1) in normal form coordinates. For
the sake of being explicit, we set c = 12/5. We use these transformations to convert the
case 2 and case 1 normal form solutions in eqs. (5.21) and (5.19) back into the original
coordinates.8 We fix integration constants such that the flop occurs at s = 0 and require
that bi and ḃi are continuous across the flop. For the integration constants Ẽ0, k0 of the
case 2 solution (5.21) and the integration constant Ẽ1, k1 of the case 1 solution (5.19) this
leads to

Ẽ0 =
√

2Ẽ1 , k0 = 1
2

(5
6

)2/3
, k1 = 1

2 log
(5

3

)
. (6.17)

The resulting geodesic is shown in figure 6. Again, solutions along non-isochores can be
obtained from eq. (5.13).

6.4 Example for case 3 — infinitely many flops

Let us finally discuss an example which combines a case 3 intersection form with an infinite
flop chain. We choose CICY #7863, which is given by the configuration matrix

X ∼
[
P3 2 1 1
P3 2 1 1

]
, (6.18)

with Kähler cone and intersection form given by

K(X0) = {x0 > 0 , y0 > 0} , κ0 = 2x3
0 + 18x2

0y0 + 18x0y
2
0 + 2y3

0 . (6.19)

The space has an isomorphic flop wall at both boundaries, y0 = 0 and x0 = 0, leading to
an infinite flop chain whose associated symmetry group is generated by

M1 =
(
−1 0

6 1

)
, M2 =

(
1 6
0 −1

)
. (6.20)

The cone structure is plotted in figure 7. There are infinitely many Kähler cones on either
side of the primary cone, as schematically indicated in figure 2 on the right, but those cones
become so narrow that only one on each side can be resolved in figure 7. The boundaries
of this infinite flop sequence are along (−1, 3 + 2

√
2) and (3 + 2

√
2,−1) and these are the

generators of the effective cone.
There are several choices for the map which converts the intersection form κ0 into the

case 3 normal form and for concreteness we will work with(
x0
y0

)
= P

(
x

y

)
, P = 1

c2
+ − c2

−

(
c+ −c−
−c− c+

)
, P−1 =

(
c+ c−
c− c+

)
, (6.21)

where

c± =
(

7± 9
√

3
5

)1/3

'
{

1.67 +
0.21 −

. (6.22)

8We use here the case 1 solution in the fourth quadrant, since this allows for a more natural choice for
the branch cuts used in Mathematica.
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Figure 7. Effective cone of CICY #7863, showing Kähler cone of CY X, with infinitely many
adjacent Kähler cones of isomorphic CYs (only two of which can be resolved), with a geodesic curve
superimposed. The boundaries of the extended Kähler cone are generated by (−1, 3 + 2

√
2) and

(3 + 2
√

2,−1).

The image K̂(X0) of the Kähler cone under the map P−1 lies within the positive quadrant
in figure 3 on the right. However, since the boundaries of K̂(X0) are flop walls this image
cannot possibly take up the entire positive quadrant. In fact, the generators of K̂(X0) are
(c+, c−) and (c−, c+). To obtain the geodesics we proceed as before and map the case 3
solution (5.24) to the (x0, y0) coordinates using P . For our choice of P , the solution (x, y+)
will be mapped into the CY Kähler cone. The resulting geodesic is plotted in figure 7.

The geodesic length between the two flops we can worked out in either the normal
form coordinates (x, y) or the CY coordinates (x0, y0). Using the former, we find that the
intersections of the geodesic with the flop lines happens when

x(s±)/y(s±) = c±/c∓ ⇔ εs±(x) ' ±0.62 . (6.23)

This means the geodesic length between the two flops along the geodesic is

∆τ = 2
√

12 εs+ ' 4.30 (6.24)

in 5D Planck units. More generally, non-isochore geodesics can be obtained from eq. (5.13)
and the geodesic distance for such solutions, with volume expansion rate α is

∆τ =

√
1 + α2

12ε2 2
√

12εs+ '

√
1 + α2

12ε2 4.30 . (6.25)

This provides us with the solution in the primary Kähler cone X0. The solution in all other
Kähler cones is obtained9 by acting with the elements of the symmetry group G ∼= Z2 nZ,
generated by the matrices in eq. (6.20). In this way we obtain the geodesic across the
entire infinite sequence of isomorphic flops. Equivalently, we can describe the situation in
the downstairs picture where we use the primary cone K(X0) only. In this case, we should
think of the isochore geodesic as “oscillating” along the same trajectory between the two

9We note that, as described in ref. [22], for the distinct case of a type (a) Zariski wall, at which an SU(2)
gauge theory appears, there is also a notion of continuing the geodesic evolution into the Kähler cone of an
isomorphic CY, based on the existence of an elementary transformation, which is discussed in ref. [18].
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flop-boundaries. Either way, if k Kähler cones have been crossed the corresponding isochore
geodesic distance is of course ' 4.30k so the geodesic length is unbounded. On the other
hand, the physical theory remains unchanged from cone to cone since all CYs involved are
isomorphic. The apparent contradiction with the distance conjecture is resolved because
G is a gauge symmetry and has to be divided out. Hence, all Kähler cones should be
identified so that the shortest geodesic between a point and its equivalent in another cone
is not, in fact, the above geodesic but the constant geodesic.

For all our examples of infinite flop sequences all CYs which appear are isomorphic.
Even if a finite number of non-isomorphic CYs were involved there does not appear to be
a conflict with the distance conjecture. However, an infinite flop sequence with an infinite
number of non-isomorphic CYs is likely to cause a problem.10 However, such examples
would be excluded by the Kawamata-Morrison conjecture, as discussed in more detail
in ref. [14].

7 Conclusion

In this paper, we have studied the Kähler moduli space of CY threefolds in relation to
geodesic motion, focusing on h1,1(X) = 2 manifolds and compactifications of M-theory to
5d supergravity.

We have presented a classification of intersection forms for h1,1(X) = 2 CY threefolds
which shows that they fall into three different cases (see table 3). These cases constrain the
possible wall types of the Kähler cone. For example, type (b) Zariski walls (where divisors
collapse to a point) can only arise for case 1 intersection forms and even then for at most
one of the two Kähler cone boundaries.

We have compiled detailed data on the Kähler moduli space structure for all h1,1(X) =
2 CICY and THCY manifolds. This should be a valuable resource for studying topology
change in string theory. While the manifolds under consideration are relatively simple and
easily constructed they show a remarkably rich structure of walls and cones. For some of
these examples, the flops arise only on the CY itself but not on the ambient space which
makes them different from the cases traditionally studied in string theory. Isomorphic
flops and infinite flop sequences are much more common than perhaps naively expected.
The data also shows that all three cases of intersection form are realised by actual CY
manifolds, although CICY manifolds only realise two of the cases.

Using the intersection normal forms (table 3) we can find explicit solutions for the
geodesics of all h1,1(X) = 2 CYs. These can be used to study geodesic motion near walls
and across flop transitions. Effective cone walls are identified by a diverging moduli space
metric and they are located at infinite geodesic distance. However, geodesic evolution, as
described by the simple geodesic equation, does not distinguish between flops and type
(a) Zariski walls - both are associated with a non-divergent and non-singular metric and
are located at finite geodesic distance. Formally, the geodesic can be continued beyond
the wall in either case, however, only in the flop case does this correspond to a physical

10This could perhaps be avoided if the intersection numbers conspire to keep the geodesic distance finite.
However, this seems to require a somewhat contrived “fine-tuning” of intersection numbers.
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evolution which takes place within the adjacent Kähler cone of a birationally equivalent
CY manifold. Type (a) Zariski walls (where a divisor collapses to a curve) mark the end of
the moduli space and the inclusion of states becoming light at the wall (in the form of an
SU(2) gauge theory) is expected to curtail the evolution. The choice of complex structure
can switch between flop and type (a) Zariski walls and we presented an explicit example for
this phenomenon. It is, therefore, expected that simple geodesic motion in Kähler moduli
space does not distinguish between those two cases. Finally, type (b) Zariski walls (where
a divisor collapses to a point) are associated to non-divergent but singular metrics. They
are reached within finite geodesic distance but the effective theory breaks down close to
the wall due to diverging modular velocities. As for type (a) Zariski walls, the inclusion of
additional light states (indeed an infinite tower of light states) near the wall is required for
a correct low-energy description.

We have constructed geodesics across flop walls for both isomorphic and non-isomorphic
flops as well as for infinite flop sequences. In the latter case this leads to infinite length
geodesics between equivalent theories. A contradiction with the distance conjecture is
avoided thanks to an infinite discrete gauge symmetry which identifies all Kähler cones of
the infinite flop sequence. Flop sequences which contain an infinite number of inequivalent
CYs would likely be a problem for the distance conjecture but they are excluded provided
the Kawamata-Morrison conjecture holds.

There are various extensions of the present work. First, we expect many of our results
to generalise to CYs with h1,1(X) > 2. Preliminary investigation shows that complicated
cone structures, isomorphic flops and infinite flop sequences are common features among
CYs with h1,1(X) = 3, 4. It would also be desirable to include the additional light states
which appear at Kähler cone walls into the discussion of geodesics. This has been accom-
plished, to some extent, for flops [21, 26, 27] where the additional light hypermultiplets
can be shown not to significantly affect the dynamics, at least under certain plausible as-
sumptions. However, as we have argued, the additional light states must have a non-trivial
effect on the geodesics near Zariski walls and it would be interesting to study this. Finally,
it is desirable to have explicit constructions for the manifolds obtained from CICYs and
THCYs via flops and work in this direction is currently underway [25].
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A Picard number 2 CICYs and their effective cone structure

The table below lists the 36 complete intersection CY manifolds (CICYs) with h1,1(X) = 2
and the structure of their effective cones. The meaning of the various entries is as follows.
The first column contains the CICY number, which indicates its position in the standard

– 33 –



J
H
E
P
0
3
(
2
0
2
2
)
0
2
4

list of ref. [12]. Column two provides the configuration matrix
(
q1

1 q
1
2 · · · q1

K

q2
1 q

2
2 · · · q2

K

)h1,1(X), h2,1(X)

χ(X)
(A.1)

where each column of this matrix specifies the bi-degree of a defining polynomial in the
ambient space A = Pd1 × Pd2 where di =

∑K
a=1 q

i
a − 1, and where the Hodge numbers

and the Euler number χ(X) are included as superscripts and subscript respectively. The
standard Kähler forms of the two projective space factors, restricted to X, are denoted by
J1 and J2, with Poincaré dual divisors D1 and D2. All generators in the table are given
relative to the basis (D1, D2).

Column three lists the four intersection numbers of X and column four indicates the
case of the intersection form on X, as defined in table 3. Column five provides the two
generators v1 = (v11, v12)T and v2 = (v21, v22)T of the effective cone. When these generators
are irrational X has an infinite flop sequence.

The matrices in the last column summarise the information on the cone structure of
X. Each numerical row in the centre of the matrix is the generator of a cone boundary.
Note that the generators (0, 1), (1, 0) always appear as the generators of the Kähler cone
of X. In case of an infinite flop sequence, only the boundaries of the primary cone and
the two adjacent cones are listed. The nature of each boundary is indicated to the right
of the generator, with E for an effective cone wall, Z for a Zariski wall, Fn1,n2 for a non-
isomorphic flop wall, and Imn1,n2 for an isomorphic flop wall. Here n1, n2 are the Gromov-
Witten invariants which determine the change in intersection numbers, as explained in
section 2.3. Further, m determines the generator of the involution for an isomorphic flop
and equals m1 in eq. (2.13) if the boundary is above (1, 0) and m2 in eq. (2.17) if it is below
(0, 1). Finally, to the left of the generators the nature of the cones is indicated, with Z for
a Zariski cone and Kc for a Kähler cone with a case c intersection form.

The information on effective cones and the nature of cones and cone boundaries in
the table has been determined for generic complex structure by studying line bundle co-
homology formulae, along the lines of ref. [24] and the earlier refs. [28–34]. Line bundle
cohomology has been computed using the CICY package11 (see also the pyCICY pack-
age [40]). For special choices of complex structure new effective divisors can appear, al-
tering the structure of the effective cone. For two manifolds we were not able to obtain
enough cohomology data to identify the full structure of the effective cone, and so we have
left the corresponding entries empty.

# configuration
(
d122 d222
d112 d111

)
case

(
v11 v12
v21 v22

)
cones

7643
(

0 0 2 1
2 2 1 1

)2,46

−88

(
12 8
4 0

)
3

(
−1 3
1 0

) (
K3
K3

−1 3
0 1
1 0

E

I3
40,4
E

)

11Based on methods described in [35–39].
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7644
(

2 0 1 1 1
0 2 1 1 1

)2,46

−88

(
12 4
12 4

)
3

(
−1 3 + 2

√
2

3 + 2
√

2 −1

)


...
K3
K3
K3
...

−1 6
0 1
1 0
6 −1

...
I6

64,20
I6

64,20
...


7668

(
0 2 1
3 1 1

)2,47

−90

(
9 6
3 0

)
3

(
−1 3
1 0

) (
K3
K3

−1 3
0 1
1 0

E

I3
30,3
E

)

7725
(

0 0 1 1 1
2 2 1 1 1

)2,50

−96

(
12 12
4 0

)
3

(
−1 2
1 0

) (
K3
K3

−1 2
0 1
1 0

E

I2
24,0
E

)

7726
(

0 1 1 1 1
2 1 1 1 1

)2,50

−96

(
12 8
8 2

)
3

(
−1 3

2 +

√
15
2

2
4 + 2

√
10
3 −1

) 
...
K3
K3
K3
...

−1 3
0 1
1 0
8 −1

...
I3

40,0
I8

80,0
...


7758

(
0 2 1
2 1 2

)2,52

−100

(
10 4
4 0

)
3

(
−1 5
1 0

) (
K3
K3

−1 5
0 1
1 0

E

I5
62,16
E

)

7759
(

0 2 1 1
2 1 1 1

)2,52

−100

(
10 4
8 2

)
3

(
−1 5

2 +
3
√

5
2

2
4 + 6

√
2
5 −1

) 
...
K3
K3
K3
...

−1 5
0 1
1 0
8 −1

...
I5

70,8
I8

72,26
...



7761
(

1 1 1 1 1
1 1 1 1 1

)2,52

−100

(
10 5
10 5

)
3

(
−1 2 +

√
3

2 +
√

3 −1

)


...
K3
K3
K3
...

−1 4
0 1
1 0
4 −1

...
I4

50,0
I4

50,0
...



7799
(

2 1 1
1 2 1

)2,55

−106

(
7 2
7 2

)
3

(
−1 7

2 + 3
√

5
2

7
2 + 3

√
5

2 −1

)


...
K3
K3
K3
...

−1 7
0 1
1 0
7 −1

...
I7

80,15
I7

80,15
...


7806

(
0 2
3 2

)2,56

−108

(
6 6
0 0

)
2

(
−1 2
1 0

) (
K2
K2

−1 2
0 1
1 0

E

I2
24,0
E

)

7807
(

0 1 1 1
2 2 1 1

)2,56

−108

(
10 8
4 0

)
3

(
−1 2
1 0

)  Z

K1
K3

−1 2
−1 3

0 1
1 0

E

Za
F34,0
E


7808

(
0 1 1 1
3 1 1 1

)2,56

−108

(
9 9
3 0

)
3

(
−1 2
1 0

) (
K3
K3

−1 2
0 1
1 0

E

I2
18,0
E

)
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7809∗
(

1 1 1 1
2 1 1 1

)2,56

−108

(
9 5
7 2

)
3

(
−1 3
20 −3

)

Z

?
K3
K3
?
Z

−1 3
? ?
0 1
1 0
7 −1
? ?

20 −3

E

?
F46,0
I7

84,10
F46,0
?
E


7816

(
0 1 1
2 2 2

)2,58

−112

(
8 8
0 0

)
2

(
−1 2
1 0

) (
K2
K2

−1 2
0 1
1 0

E

I2
32,0
E

)

7817
(

0 0 1 1
2 2 2 1

)2,58

−112

(
8 12
0 0

)
2

(
−1 1
1 0

)  Z

K1
K2

−1 1
−1 2

0 1
1 0

E

Zb
F16,0
E


7819

(
0 0 0 1 1
2 2 2 1 1

)2,58

−112

(
8 16
0 0

)
2

(
−1 1
1 0

) (
K2
K2

−1 1
0 1
1 0

E

I1
8,0
E

)

7821∗∗
(

1 1 1
2 2 1

)2,58

−112

(
8 5
4 0

)
3

7822
(

0 0 2
2 2 2

)2,58

−112

(
8 8
0 0

)
2

(
−1 2
1 0

) (
K2
K2

−1 2
0 1
1 0

E

I2
32,0
E

)

7823
(

0 0 0 2
2 2 2 1

)2,58

−112

(
8 16
0 0

)
2

(
−1 1
1 0

) (
K2
K2

−1 1
0 1
1 0

E

I1
8,0
E

)

7833
(

2 1
1 3

)2,59

−114

(
7 2
3 0

)
3

(
−1 7
1 0

) (
K3
K3

−1 7
0 1
1 0

E

I7
64,27
E

)

7840
(

0 1 1
3 2 1

)2,62

−120

(
6 9
0 0

)
2

(
−1 1
1 0

)  Z

K1
K2

−1 1
−1 2

0 1
1 0

E

Zb
F12,0
E


7844

(
2 1
2 2

)2,62

−120

(
6 2
4 0

)
3

(
−1 6
1 0

) (
K3
K3

−1 6
0 1
1 0

E

I6
80,8
E

)

7853
(

0 2 1
2 2 1

)2,64

−124

(
8 4
4 0

)
3

(
−1 4
1 0

) (
K3
K3

−1 4
0 1
1 0

E

I4
64,2
E

)

7858
(

1 1
3 2

)2,66

−128

(
6 5
0 0

)
2

(
−1 2
1 0

)  Z

K1
K2

−1 2
−1 3

0 1
1 0

E

Zb
F36,0
E



7863
(

2 1 1
2 1 1

)2,66

−128

(
6 2
6 2

)
3

(
−1 3 + 2

√
2

3 + 2
√

2 −1

)


...
K3
K3
K3
...

−1 6
0 1
1 0
6 −1

...
I6

80,4
I6

80,4
...
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7867
(

0 0 1 1
3 2 1 1

)2,68

−132

(
6 12
0 0

)
2

(
−1 1
1 0

) (
K2
K2

−1 1
0 1
1 0

E

I1
6,0
E

)

7868
(

1 1 1
3 1 1

)2,68

−132

(
7 5
3 0

)
3

(
−1 2
1 0

)  Z

K1
K3

−1 2
−1 4

0 1
1 0

E

Za
F34,0
E


7869

(
0 0 2
3 2 1

)2,68

−132

(
6 12
0 0

)
2

(
−1 1
1 0

) (
K2
K2

−1 1
0 1
1 0

E

I1
6,0
E

)

7873
(

0 1 1
2 3 1

)2,72

−140

(
6 8
0 0

)
2

(
−1 1
1 0

)  Z

K1
K2

−1 1
−1 3

0 1
1 0

E

Zb
F18,0
E


7882

(
0 2
2 3

)2,76

−148

(
6 4
0 0

)
2

(
−1 3
1 0

) (
K2
K2

−1 3
0 1
1 0

E

I3
54,0
E

)

7883
(

2 1
3 1

)2,77

−150

(
5 2
3 0

)
3

(
−1 5
1 0

) (
K3
K3

−1 5
0 1
1 0

E

I5
72,1
E

)

7884
(

3
3

)2,83

−162

(
3 0
3 0

)
3

(
0 1
1 0

) (
K3

0 1
1 0

E

E

)

7885
(

1 1
4 1

)2,86

−168

(
4 5
0 0

)
2

(
−1 1
1 0

)  Z

K1
K2

−1 1
−1 4

0 1
1 0

E

Zb
F16,0
E


7886

(
0 1 1
4 1 1

)2,86

−168

(
4 8
0 0

)
2

(
−1 1
1 0

) (
K2
K2

−1 1
0 1
1 0

E

I1
4,0
E

)

7887
(

2
4

)2,86

−168

(
4 2
0 0

)
2

(
−1 4
1 0

) (
K2
K2

−1 4
0 1
1 0

E

I4
64,0
E

)

7888
(

0 2
4 1

)2,86

−168

(
4 8
0 0

)
2

(
−1 1
1 0

) (
K2
K2

−1 1
0 1
1 0

E

I1
4,0
E

)

∗ For the manifold 7809 we had insufficient cohomology data to produce a complete description of
the effective cone structure. The extended Kähler cone is 〈(−1, 4), (27,−4)〉 and there are two
rigid divisor classes (−1, 3) and (20,−3). However, we are uncertain of how many cones (at
least 2) lie between the rays (0, 1) and (−1, 4) and between the rays (7,−1) and (27,−4).
∗∗ For the manifold 7821 we were not able to identify one boundary of the effective cone, due to
insufficient cohomology data.

B Picard number 2 THCYs and their effective cone structure

The table below lists the Picard number 2 CYs constructed as hypersurfaces in toric va-
rieties (THCYs) associated with the 36 reflexive four-dimensional polytopes with six rays,
and their various triangulations. We also provide the information describing the structure
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of the effective cones of these THCYs. The first column of the table indicates first the label
of the polytope and second of the triangulation, and also includes the Hodge numbers and
the Euler number χ(X) of the CY.

Column two provides the toric variety data: the weight system (charge matrix),12 the
Stanley-Reisner ideal (SRI), as well as the rays generating the ambient toric variety Kähler
cone. The basis of H2(X) is chosen such that the positive quadrant corresponds to the
restriction of the ambient space Kähler cone to the CY threefold X. In many, but not all of
the cases this is also the Kähler cone of X. The Kähler cone of X is denoted as Kc where
c is the case number included in the fourth column. Whenever the positive quadrant is a
subcone of the effective cone appearing in the last column, it is also the Kähler cone of X.
In all the other cases there is no danger of confusion.

The meaning of the remaining columns remains unchanged from appendix A. As for the
case of CICYs, the structure of the effective cone has been determined for generic complex
structure by studying line bundle cohomology formulae computed algorithmically using the
CohomCalg package13 and SAGE. For several manifolds we were not able to obtain enough
cohomology data to identify the structure of the effective cone. Nevertheless, we included
these manifolds in the table, for the sake of completeness, while leaving the effective cone
information empty.

This table can be compared with table 11 of ref. [45] which identifies K3-fibrations and
manifolds of Swiss cheese type amongst h1,1 = 2 THCYs.

(#)h
1,1, h2,1
χ toric variety

(
d122 d222
d112 d111

)
case

(
v11 v12
v21 v22

)
cones

(1, 1)2,29
−54

z0 z1 z2 z3 z4 z5
1 0 0 0 1 1
0 1 1 1 0 0

SRI = 〈z0z4z5, z1z2z3〉
KC gen = {z5, z3}

(
1 0
1 0

)
3

(
0 1
1 0

) (
K3

0 1
1 0

E

E

)

(2, 1)2,38
−72

z0 z1 z2 z3 z4 z5
0 0 1 1 0 1
1 1 0 0 1 −3

SRI = 〈z0z1z4, z2z3z5〉
KC gen = {3z4 + z5, z4}

(
1 9
3 9

)
1

(
0 1
1 −3

) (
K1
Z

0 1
1 0
1 −3

E

Zb
E

)

(3, 1)2,74
−144

z0 z1 z2 z3 z4 z5
−1 1 1 0 2 3

1 0 0 1 0 −2
SRI = 〈z0z3, z1z2z4z5〉

KC gen = { z4
2 ,

3z4
4 −

z5
2 }

(
3 3
3 2

)
1

(
−1 1

3 −2

)  Z

K1
Z

−1 1
0 1
1 0
3 −2

E

Zb
Za
E



(4, 1)2,74
−144

z0 z1 z2 z3 z4 z5
−1 2 1 1 3 0

1 −1 0 0 −1 1
SRI = 〈z0z5, z1z2z3z4〉
KC gen = { z4

3 + z5
3 , z5}

(
3 3
3 2

)
1

(
−1 1

2 −1

) 
Z

K1
K1
Z

−1 1
0 1
1 0
3 −1
2 −1

E

Zb
I3

6,0
Zb
E


12When there are multiple triangulations, the charge matrices are equivalent, but we choose them to

match the respective Kähler cone bases.
13High-performance line bundle cohomology computation, based on methods described in [41–44].
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(4, 2)2,74
−144

z0 z1 z2 z3 z4 z5
2 −1 1 1 0 3
−1 1 0 0 1 −1
SRI = 〈z1z4, z0z2z3z5〉
KC gen = { z4

3 + z5
3 , z4}

(
3 3
3 2

)
1

(
−1 1

2 −1

) 
Z

K1
K1
Z

−1 1
0 1
1 0
3 −1
2 −1

E

Zb
I3

6,0
Zb
E



(5, 1)2,83
−162

z0 z1 z2 z3 z4 z5
1 0 1 0 0 1
0 1 0 1 1 0

SRI = 〈z0z2z5, z1z3z4〉
KC gen = {z5, z4}

(
3 0
3 0

)
3

(
0 1
1 0

) (
K3

0 1
1 0

E

E

)

(6, 1)2,84
−164

z0 z1 z2 z3 z4 z5
1 −1 1 1 2 0
0 1 0 0 −1 1

SRI = 〈z1z5, z0z2z3z4〉
KC gen = { z4

2 + z5
2 , z5}

(
5 5
5 3

)
1

(
−1 1

2 −1

) 
Z

K1
K1
Z

−1 1
0 1
1 0
5 −1
2 −1

E

Zb
F20,0
Zb
E



(7, 1)2,86
−168

z0 z1 z2 z3 z4 z5
0 0 1 1 1 1
1 1 0 0 0 −2

SRI = 〈z0z1, z2z3z4z5〉
KC gen = {z4,

z4
2 −

z5
2 }

(
0 0
4 8

)
2

(
0 1
1 −2

) (
K2
Z

0 1
1 0
1 −2

E

Za
E

)

(8, 1)2,86
−168

z0 z1 z2 z3 z4 z5
0 1 1 0 1 1
1 −1 −1 1 0 0

SRI = 〈z0z3, z1z2z4z5〉
KC gen = {z5, z3}

(
0 0
4 8

)
2

(
0 1
1 −1

) (
K2
K2

0 1
1 0
1 −1

E

I1
4,0
E

)

(8, 2)2,86
−168

z0 z1 z2 z3 z4 z5
1 0 0 1 1 1
−1 1 1 −1 0 0

SRI = 〈z1z2, z0z3z4z5〉
KC gen = {z5, z5 − z3}

(
0 0
4 8

)
2

(
0 1
1 −1

) (
K2
K2

0 1
1 0
1 −1

E

I1
4,0
E

)

(9, 1)2,86
−168

z0 z1 z2 z3 z4 z5
1 0 0 0 0 1
0 1 1 1 1 0

SRI = 〈z0z5, z1z2z3z4〉
KC gen = {z5, z4}

(
4 2
0 0

)
2

(
−1 4

1 0

) (
K2
K2

−1 4
0 1
1 0

E

I4
64,0
E

)

(10, 1)2,86
−168

z0 z1 z2 z3 z4 z5
1 0 0 1 0 1
0 1 1 0 1 −1

SRI = 〈z0z3z5, z1z2z4〉
KC gen = {z4 + z5, z4}

(
3 0
5 5

)
3

(
0 1
1 −1

) (
K3
Z

0 1
1 0
1 −1

E

Za
E

)

(11, 1)2,86
−168

z0 z1 z2 z3 z4 z5
1 0 0 1 1 0
0 1 1 −1 −1 1

SRI = 〈z0z3z4, z1z2z5〉
KC gen = {z4 + z5, z5}

(
3 0
7 11

)
3

(
0 1
1 −1

) (
K3
K2

0 1
1 0
1 −1

E

F1,0
E

)

(12, 1)2,86
−168

z0 z1 z2 z3 z4 z5
1 −1 −1 1 2 0
0 1 1 0 −1 1

SRI = 〈z0z3z4, z1z2z5〉
KC gen = { z4

2 + z5
2 , z5}

(
10 14
6 3

)
3

(
−1 1

2 −1

) K2
K3
Z

−1 1
0 1
1 0
2 −1

E

F1,0
Za
E
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0
3
(
2
0
2
2
)
0
2
4

(13, 1)2,86
−168

z0 z1 z2 z3 z4 z5
1 0 1 1 0 1
0 1 0 0 1 −1

SRI = 〈z1z4, z0z2z3z5〉
KC gen = {z4 + z5, z4}

(
0 0
4 5

)
2

(
0 1
1 −1

) K2
K1
Z

0 1
1 0
4 −1
1 −1

E

F16,0
Zb
E



(14, 1)2,86
−168

z0 z1 z2 z3 z4 z5
1 −1 −1 1 3 0
0 1 1 0 −2 1

SRI = 〈z0z3z4, z1z2z5〉
KC gen = { z4

3 + 2z5
3 , z5}

(
13 17
9 6

)
1

(
−1 1

3 −2

) K2
K1
Z

−1 1
0 1
1 0
3 −2

E

F1,0
Za
E



(15, 1)2,86
−168

z0 z1 z2 z3 z4 z5
1 0 0 0 0 1
0 1 1 2 1 −1

SRI = 〈z0z5, z1z2z3z4〉
KC gen = {z4 + z5, z4}

(
3 1
3 3

)
1

(
−1 5

1 −1

) 
Z

K1
K1
Z

−1 5
−1 6

0 1
1 0
1 −1

E

Zb
I6

60,0
Zb
E



(16, 1)2,90
−176

z0 z1 z2 z3 z4 z5
1 0 0 0 0 1
0 1 1 1 1 −1

SRI = 〈z0z5, z1z2z3z4〉
KC gen = {z4 + z5, z4}

(
5 2
5 5

)
1

(
−1 4

1 −1

) 
Z

K1
K1
Z

−1 4
−1 5

0 1
1 0
1 −1

E

Zb
I5

60,0
Zb
E



(17, 1)2,92
−180

z0 z1 z2 z3 z4 z5
1 −1 −1 −1 2 0
0 1 1 1 −1 1

SRI = 〈z0z4, z1z2z3z5〉
KC gen = { z4

2 + z5
2 , z5}

(
12 21
6 3

)
1

(
−1 1

2 −1

) (
K1
Z

−1 1
1 0
2 −1

E

Zb
E

)

(17, 2)2,92
−180

z0 z1 z2 z3 z4 z5
1 0 0 0 1 1
−1 1 1 1 −2 0

SRI = 〈z0z4z5, z1z2z3〉
KC gen = {z5,

z5
2 −

z4
2 }

(
3 0
9 21

)
1

(
0 1
1 −2

) (
K1
Z

0 1
1 −1
1 −2

E

Zb
E

)

(18, 1)2,95
−186

z0 z1 z2 z3 z4 z5
1 0 0 1 1 0
0 1 1 0 −2 1

SRI = 〈z0z3z4, z1z2z5〉
KC gen = {z4 + 2z5, z5}

(
3 0
7 14

)
1

(
0 1
1 −2

) (
K1
Z

0 1
1 0
1 −2

E

Za
E

)

(19, 1)2,102
−200

z0 z1 z2 z3 z4 z5
1 0 0 0 1 0
0 1 1 1 −2 1

SRI = 〈z0z4, z1z2z3z5〉
KC gen = {z4 + 2z5, z5}

(
6 2
12 24

)
1

(
−1 4

1 −2

) 
Z

K1
K1
Z

−1 4
−1 6

0 1
1 0
1 −2

E

Zb
I6

48,0
Zb
E



(20, 1)2,106
−208

z0 z1 z2 z3 z4 z5
1 1 1 0 −3 8
0 0 0 1 1 −2

SRI = 〈z3z4, z0z1z2z5〉
KC gen = {z4 + z5

2 , 4z4 + 3z5
2 }

(
12 36
4 1

)
1

(
−3 1

5 −1

) 
Z

K1
K1
Z

−3 1
0 1
1 0
8 −1
5 −1

E

Zb
I8

40,0
Zb
E



(21, 1)2,106
−208

z0 z1 z2 z3 z4 z5
1 −3 1 1 5 0
0 1 0 0 −1 1

SRI = 〈z1z5, z0z2z3z4〉
KC gen = { z4

5 + z5
5 , z5}

(
12 36
4 1

)
1

(
−3 1

5 −1

) 
Z

K1
K1
Z

−3 1
0 1
1 0
8 −1
5 −1

E

Zb
I8

40,0
Zb
E



– 40 –



J
H
E
P
0
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2
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0
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4

(22, 1)2,106
−208

z0 z1 z2 z3 z4 z5
1 0 0 0 1 0
0 1 1 2 −3 1

SRI = 〈z0z4, z1z2z3z5〉
KC gen = {z4 + 3z5, z5}

(
4 1
12 36

)
1

(
−1 5

1 −3

) 
Z

K1
K1
Z

−1 5
−1 8

0 1
1 0
1 −3

E

Zb
I8

40,0
Zb
E



(23, 1)2,116
−228

z0 z1 z2 z3 z4 z5
−2 3 −2 −4 5 0

1 0 1 2 −1 3
SRI = 〈z1z4, z0z2z3z5〉

KC gen = { 3z4
5 + z5

5 , z5}

(
25 98
5 1

)
1

(
−2 1

5 −1

) (
K1
Z

−2 1
1 0
5 −1

E

Zb
E

)

(23, 2)2,116
−228

z0 z1 z2 z3 z4 z5
0 1 0 0 1 2
2 −3 2 4 −5 0

SRI = 〈z0z2z3, z1z4z5〉
KC gen = {z5,

z5
5 −

2z4
5 }

(
2 0
16 98

)
1

(24, 1)2,120
−236

z0 z1 z2 z3 z4 z5
1 −1 1 2 0 3
−1 4 −1 −5 3 0
SRI = 〈z1z4, z0z2z3z5〉
KC gen = {z5, z4}

(
8 2
32 101

)
1

(24, 2)2,120
−236

z0 z1 z2 z3 z4 z5
1 −4 1 5 −3 0
0 1 0 −1 1 1

SRI = 〈z0z2z3, z1z4z5〉
KC gen = { z5

3 −
z4
3 , z5}

(
23 101
5 1

)
1

(
−4 1

5 −1

)  Z

K1
Z

−4 1
−3 1

1 0
5 −1

E

Zb
Za
E



(25, 1)2,122
−240

z0 z1 z2 z3 z4 z5
−3 1 1 1 0 7

1 0 0 0 1 −2
SRI = 〈z0z4, z1z2z3z5〉

KC gen = { 2z4
7 + z5

7 , z4}

(
21 63
7 2

)
1

(
−3 1

7 −2

) 
Z

K1
K1
Z

−3 1
0 1
1 0
7 −1
7 −2

E

Zb
I7

28,0
Zb
E



(26, 1)2,122
−240

z0 z1 z2 z3 z4 z5
1 −3 1 1 4 0
0 1 0 0 −1 1

SRI = 〈z1z5, z0z2z3z4〉
KC gen = { z4

4 + z5
4 , z5}

(
21 63
7 2

)
1

(
−3 1

7 −2

) 
Z

K1
K1
Z

−3 1
0 1
1 0
7 −1
7 −2

E

Zb
I7

28,0
Zb
E



(27, 1)2,122
−240

z0 z1 z2 z3 z4 z5
1 0 0 0 1 0
0 1 1 1 −3 1

SRI = 〈z0z4, z1z2z3z5〉
KC gen = {z4 + 3z5, z5}

(
7 2
21 63

)
1

(
−2 7

1 −3

) 
Z

K1
K1
Z

−2 7
−1 7

0 1
1 0
1 −3

E

Zb
I7

28,0
Zb
E



(28, 1)2,128
−252

z0 z1 z2 z3 z4 z5
0 0 1 1 3 1
1 1 0 0 0 −2

SRI = 〈z0z1, z2z3z4z5〉
KC gen = { z4

3 ,
z4
6 −

z5
2 }

(
0 0
2 4

)
2

(
0 1
1 −2

) (
K2
Z

0 1
1 0
1 −2

E

Za
E

)

(29, 1)2,128
−252

z0 z1 z2 z3 z4 z5
0 1 1 0 1 3
1 −1 −1 1 0 0

SRI = 〈z0z3, z1z2z4z5〉
KC gen = { z5

3 , z3}

(
0 0
2 4

)
2

(
0 1
1 −1

) (
K2
K2

0 1
1 0
1 −1

E

I1
2,0
E

)
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(29, 2)2,128
−252

z0 z1 z2 z3 z4 z5
1 0 0 1 1 3
−1 1 1 −1 0 0

SRI = 〈z1z2, z0z3z4z5〉
KC gen = { z5

3 ,
z5
3 − z3}

(
0 0
2 4

)
2

(
0 1
1 −1

) (
K2
K2

0 1
1 0
1 −1

E

I1
2,0
E

)

(30, 1)2,128
−252

z0 z1 z2 z3 z4 z5
1 0 1 1 0 3
−2 3 −2 −2 3 0
SRI = 〈z1z4, z0z2z3z5〉
KC gen = {z5, z4}

(
0 0
18 108

)
2[24pt]

(30, 2)2,128
−252

z0 z1 z2 z3 z4 z5
0 1 0 0 1 2
2 −3 2 2 −3 0

SRI = 〈z0z2z3, z1z4z5〉
KC gen = {z5,

z5
3 −

2z4
3 }

(
4 0
24 108

)
2[24pt]

(31, 1)2,128
−252

z0 z1 z2 z3 z4 z5
1 −1 −1 2 0 1
−2 3 3 −5 1 0
SRI = 〈z0z3z5, z1z2z4〉
KC gen = {z5, z4}

(
16 6
42 109

)
1

(
−1 3

2 −5

) K2
K1
Z

−1 3
0 1
1 −2
2 −5

E

F1,0
Zb
E



(31, 2)2,128
−252

z0 z1 z2 z3 z4 z5
2 −3 −3 5 −1 0
0 1 1 −1 1 2

SRI = 〈z0z3, z1z2z4z5〉
KC gen = {z5 − 2z4, z5}

(
25 109
5 1

)
1

(32, 1)2,128
−252

z0 z1 z2 z3 z4 z5
1 −3 −3 1 4 0
0 1 1 0 −1 1

SRI = 〈z0z3z4, z1z2z5〉
KC gen = { z4

4 + z5
4 , z5}

(
30 108
8 2

)
2

(
−3 1

4 −1

) (
K2
Z

−3 1
1 0
4 −1

E

Za
E

)

(32, 2)2,128
−252

z0 z1 z2 z3 z4 z5
1 0 0 1 1 3
−1 3 3 −1 −4 0
SRI = 〈z1z2, z0z3z4z5〉

KC gen = {z5,
z5
4 −

3z4
4 }

(
0 0
18 108

)
2

(33, 1)2,132
−260

z0 z1 z2 z3 z4 z5
1 −1 −1 −1 2 0
0 1 1 1 −1 2

SRI = 〈z0z4, z1z2z3z5〉
KC gen = { z4

2 + z5
4 ,

z5
2 }

(
8 14
4 2

)
1

(
−1 1

2 −1

) (
K1
Z

−1 1
1 0
2 −1

E

Zb
E

)

(33, 2)2,132
−260

z0 z1 z2 z3 z4 z5
1 0 0 0 1 2
−1 1 1 1 −2 0

SRI = 〈z0z4z5, z1z2z3〉
KC gen = { z5

2 ,
z5
4 −

z4
2 }

(
2 0
6 14

)
1

(
0 1
1 −2

) (
K1
Z

0 1
1 −1
1 −2

E

Zb
E

)

(34, 1)2,132
−260

z0 z1 z2 z3 z4 z5
1 −2 −2 −4 7 0
0 1 1 2 −3 1

SRI = 〈z0z4, z1z2z3z5〉
KC gen = { z4

7 + 3z5
7 , z5}

(
49 114
21 9

)
1

(
−2 1

7 −3

) (
K1
Z

−2 1
1 0
7 −3

E

Zb
E

)
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(34, 2)2,132
−260

z0 z1 z2 z3 z4 z5
1 0 0 0 1 2
−1 2 2 4 −7 0

SRI = 〈z0z4z5, z1z2z3〉
KC gen = {z5,

z5
7 −

2z4
7 }

(
2 0
16 114

)
1

(35, 1)2,144
−284

z0 z1 z2 z3 z4 z5
1 −2 −2 −2 5 0
0 1 1 1 −2 1

SRI = 〈z0z4, z1z2z3z5〉
KC gen = { z4

5 + 2z5
5 , z5}

(
50 124
20 8

)
1

(
−2 1

5 −2

) (
K1
Z

−2 1
1 0
5 −2

E

Zb
E

)

(35, 2)2,144
−284

z0 z1 z2 z3 z4 z5
1 0 0 0 1 2
−1 2 2 2 −5 0

SRI = 〈z0z4z5, z1z2z3〉
KC gen = {z5,

z5
5 −

2z4
5 }

(
4 0
24 124

)
1

(36, 1)2,272
−540

z0 z1 z2 z3 z4 z5
0 0 0 2 3 1
1 1 1 0 0 −3

SRI = 〈z0z1z2, z3z4z5〉
KC gen = { z4

3 ,
z4
9 −

z5
3 }

(
1 0
3 9

)
1

(
0 1
1 −3

) (
K1
Z

0 1
1 0
1 −3

E

Zb
E

)
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