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Abstract

For n = 3 or n = 7 let Tn be the space of oriented lines in Rn. In a
previous article we characterized up to equivalence the metrics on Tn which
are invariant by the induced transitive action of a connected closed subgroup
of the group of Euclidean motions (they exist only in such dimensions and
are pseudo-Riemannian of split type) and described explicitly their geodesics.
In this short note we present the geometric meaning of the latter being null,
time- or space-like.

On the other hand, it is well-known that Tn is diffeomorphic to G (Hn),
the space of all oriented geodesics of the n-dimensional hyperbolic space. For
n = 3 and n = 7, we compute now a pseudo-Riemannian invariant of Tn

(involving its periodic geodesics) that will be useful to show that Tn and
G (Hn) are not isometrically equivalent, provided that the latter is endowed
with any of the metrics which are invariant by the canonical action of the
identity component of the isometry group of H.

THE SPACE OF ORIENTED LINES OF Rn.

We begin by recalling the definitions and some notation and results from [4]. An
oriented line in Rn is a pair ` (u, v) := ({tu + v | t ∈ R}, u) for some u, v ∈ R, |u| = 1,
where u is the direction (orientation) of the oriented line. Let Tn denote the set of
all oriented lines of Rn and

TSn−1 = {(u, v) ∈ Rn × Rn | |u| = 1, 〈u, v〉 = 0}
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the tangent space of the (n− 1)-dimensional sphere. Then ` : TSn−1 → Tn is a
bijection whose inverse is given by

F : Tn → TSn−1, F (` (u, v)) = (u, v − 〈v, u〉u) (1)

(here v − 〈v, u〉u is the point on the line which is closest to the origin). This cor-
respondence is called in [2] the minitwistor construction. By abuse of notation we
sometimes identify Tn with TSn−1.
The group SOn n Rn of Euclidean motions of Rn, with multiplication given by
(k, a) (k′, a′) = (kk′, a + ka′), acts transitively on Tn in the canonical way (k, a) ·
(Ru + v, u) = (Rku + a + kv, ku).
Two pseudo-Riemannian metrics g1, g2 on a smooth manifold M are said to be
equivalent if there exists a diffeomorphism f and a constant c 6= 0 such that f :
(M, g1) → (M, cg2) is an isometry. Given an inner product 〈, 〉 we denote ‖x‖ = 〈x, x〉
and |x| =

√
|〈x, x〉|. Let A denote either of the normed division algebras H or O

(quaternions and octonions, respectively) and let × denote the cross product in
ImA, the vector space of purely imaginary elements of A. Let KA be the group of
automorphisms of ×, that is, KH = SO3 and KO = G2.

INVARIANT METRICS ON Tn FOR n = 3 AND n = 7.

For n = 3 or n = 7 we identify Rn with ImH or ImO, respectively. For µ ∈ R
we defined in [4] the split pseudo-Riemannian metric gµ on Tn as the one whose
associated norm is given by

‖(x, y)‖µ = 〈x, u× y〉+ µ |x|2 (2)

for any (x, y) ∈ T(u,v)TSn−1 = T`(u,v)Tn. The metric gµ is of type (2, 2) or (6, 6)
and is invariant by the induced action of H = SO3 n R3 or H = G2 n R7 on Tn,
depending on whether n = 3 or n = 7.
We proved in the same article that only for those dimensions there exist a pseudo-
Riemannian metric which is invariant by the induced transitive action of a connected
closed subgroup of SOn n Rn (as usual, we consider Riemannian metrics as a par-
ticular case of pseudo-Riemannian ones). The metrics gµ are not isometric to each
other. Moreover, for µ 6= 0, gµ is equivalent to g1 and not equivalent to g0.
We recall some further notation from [4].

Notation. In the following we set m = n−1 and consider the canonical orthonormal
basis {e0, e1 . . . , em} of Rn. We take o := ` (e0, 0) as origin in Tn.

The isotropy subgroup at o of the action of H on Tn is Ho := Ko × Re0, where
Ko = {k ∈ K | ke0 = e0}, the isotropy subgroup at e0 of the action of K on Sm,
that is, Ko = SO2 or Ko = SU3 for m = 2 or m = 6, respectively The infinitesimal
isotropy action of Ho is given by

(d (k, ce0))o (x, y) = (kx, k (y − cx)) (3)

for any (x, y) ∈ Rm × Rm = ToTn.
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Let h, ho, k, ko be the Lie algebras of H, Ho, K and Ko, respectively. We have
the following direct sum decompositions: Rn = Re0 + Rm, ho = ko + Re0 and also,
since K acts transitively on Sm, k = ko + m, where m = {x̃ | x ∈ Rm}, with x̃ =(

0 −xt

x 0m

)
∈ k. Hence h decomposes as h = ho⊕ p, with p = m⊕Rm (by abuse of

notation we denote the subgroup {1} × Rn of H by Rn, and use the same notation
for its subgroups).

NULL, TIME - AND SPACE -LIKE GEODESICS OF Tn.

We obtained in [4] the complete description of the geodesics of (Tn, gµ) for n = 3
and n = 7:

Proposition 1 For n = 3 or n = 7, the geodesics in (Tn, gµ) through o are exactly
the curves s 7→ expH (sX) · o, for X ∈ p. In particular they are defined on the whole
real line and do not depend on µ.

In this short note we present the geometric meaning of a geodesic being null, time- or
space-like. We begin by stating a relationship with the ruled (parametrized) surface
associated to it. The following proposition, which holds for all n ∈ N, is elementary
and well-known, we include it and its proof for the sake of completeness.

Proposition 2 If σ (s) = ` (us, vs) is a curve in Tn with u′s 6= 0 for all s, then there
exists a unique curve

ασ (s) = vs − τ (s) us

in the parametrized (possible singular) ruled surface φσ (s, t) = vs + tus in Rn,
satisfying 〈u′, α′σ〉 = 0. This curve is called the striction line of φσ.
Moreover, if σ (0) = o and (F ◦ σ)′ (0) = (x, y), then

ασ (0) = 0 ⇐⇒ 〈x, y〉 = 0 ⇐⇒ |J | takes its minimum at t = 0,

where J is the Jacobi field along the parametrization t 7→ te0 of σ (0) associated to
the variation by geodesics determined by σ.

Proof. Take τ = 〈u′, v′〉 / |u′|2 and use that |u| = 1 implies 〈u, u′〉 = 0. Uniqueness is
clear. The first equivalence of the second assertion is a consequence of (F ◦ σ)′ (0) =
(u′0, v

′
0 − 〈v′0, e0〉 e0), which follows from (1) since u0 = e0⊥u′0 and v0 = 0. Finally,

the Jacobi field along the given parametrization of σ (0) is J (t) = d
ds

∣∣
0
vs + tus and

satisfies
(|J |2)′ (t) = 2 〈u′0, v′0〉+ 2t |u′0|2. ¤

Let now again n = 3 or n = 7 and suppose as before that Rn = ImA, with A = H
or A = O. If σ is a curve in Tn as in the Proposition above, the ×-pitch of σ is the
function ρ = 〈u× u′, v′〉 / |u′|2, which is well-defined, since the expression does not
change if one substitutes v with v + τu, where τ is any smooth function.
For example, if σ describes a helicoid passing through the origin, that is, φσ (s, t) =
sv + tus, where u describes, with unit angular speed, a unit circle in a plane or-
thogonal to v, then its striction line is ασ (s) = sv. (By abuse of notation we admit
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degenerate helicoids, in the case v = 0.) For n = 3 its ×-pitch is the constant ρ
such that 2πρ is the (signed) length travelled along the striction line whilst u gives
one complete positive turn around it. For n = 7, one has to consider instead the
(signed) length travelled along the projection of the striction line onto the ×-normal
to the oriented plane determined by the oriented circle u (here, the ×-normal to the
oriented plane determined by an orthonormal set {x, y} is x× y).
According to the definition, if two curves in Tn are H-congruent, then they have
the same ×-pitch, but if n = 7, they might have different pitches if they are just
congruent by an element of SO7 nR7.

Next we make explicit the identification of Rn with ImH and ImO, if n = 3 or n = 7,
respectively. Let {1, i, j, k} be the standard orthonormal basis of H. Let i⊥ denote
the orthogonal complement of Ri in ImA. Given any unit element e ∈ O orthogonal
to H ⊂ O, we consider the orthonormal bases B2 = {j, k} or B6 = {j, e, je, k, ie, ke}
of i⊥ = TiS

m and use them to identify this vector space with Rm. Let Li : i⊥ → i⊥

be defined by Li (z) = iz = i× z. We identify as usual (Rm, Li) = Cm/2.
In the following Lemma we consider on C3 the canonical real inner product of the
underlying six-dimensional Euclidean space.

Lemma 3 Let x, y ∈ C3, with x 6= 0 and 〈x, y〉 = 0. Then there exists g ∈ SU3 and
a, b, c ∈ R, b, c > 0, such that g (x) = cj and g (y) = ak + be.

Proof. Let c = |x| and write y = a′x + a
c
ix + y′, with y′⊥Cx. Clearly a′ = 0

since 〈x, y〉 = 0. Since SU3 acts transitively on S5, there exists g1 ∈ SU3 such
that g1 (x) = cj. Hence g1 (ix) = ck and g1 (y′) ∈ (Cj)⊥ ∼= C2 (with the induced
orientation). Since SU2 acts transitively on S3, there exists g2 ∈ SU3 fixing j (and
hence also k) such that g2 (g1 (y′)) = be for some b ≥ 0. Thus, g = g2 ◦ g1 satisfies
the requirements. ¤

Proposition 4 Let n = 3 or n = 7. Any nonconstant geodesic in Tn is congruent
by the action of H (up to orientation preserving reparametrization) to exactly one
of the following geodesics

σ0 (s) = ` (i, sk) , σ (s) = ` ((cos s) i + (sin s) j, s (ak + be))

for some a, b ∈ R, b ≥ 0. Moreover, σ0 is a null geodesic for any µ and its corre-
sponding ruled surface is a plane. The number a is the ×-pitch of the ruled surface
determined by σ (a helicoid) and ‖σ′‖µ = µ− a. That is, σ is a space-, time-like or
null geodesic if and only if the ×-pitch of the corresponding ruled surface if smaller,
bigger or equal to µ, respectively.

Proof. First we show that σ0 and σ are geodesics. We call y = ak + be, consider
(0, k) and (̃, y) as elements of p ⊂ h and observe that

σ0 (s) = ` (i, sk) = (1, sk) · ` (i, 0) = expH (s (0, k)) · o.
We also have that expK (s̃) i = i cos s + j sin s. Moreover, by definition of the mul-
tiplication on H, expH s (̃, y) = (expK (s̃) , sy), since 〈y, j〉 = 0. Hence,

σ (s) = ` (i cos s + j sin s, sy) = expH s (̃, y) · o.
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Therefore, σ0 and σ are geodesics by Proposition 1.
Given a nonconstant geodesic γ in Tn, since the action of H on Tn is transitive,
we may suppose that γ (0) = o. Hence (F ◦ γ)′ (0) = (x, y) ∈ Rm × Rm. If x = 0,
there exists g ∈ Ko (which acts transitively on Sm−1) with g (y) = ck. Hence,
(g ◦ γ) (s) = σ0 (cs) for all s. If x 6= 0, by looking at the action (3) of Ho on ToTn,
one may suppose additionally that 〈x, y〉 = 0 (see the geometric meaning of this
condition in Proposition 2). If n = 7, by Lemma 3, there exists g ∈ Ko = G ∼= SU3

such that g ◦ γ and σ differ in an orientation preserving reparametrization. The
case n = 3, where Ko = SO2

∼= U1, is clear. The curve σ0 is not H-congruent to a
reparametrization of σ, since by (3) the Ho-orbit of σ′0 (0) consists of the elements
(0, y) with y in a sphere. On the other hand, one has

‖σ′ (0)‖µ = ‖(j, ak + be)‖µ = 〈j, i× (ak + be)〉+ µ |j|2
= 〈j,−aj + bie〉+ µ = µ− a,

and the ×-pitch of σ is ρ (s) = 〈(i cos s + j sin s)× (j cos s− i sin s) , ak + be〉 = a.
Hence, the last assertion is true. ¤

Remark. For n = 3 and µ = 0, the geometric interpretation given above of a
geodesic in (Tn, gµ) being null, time- or space-like is of course a rephrasing of that
given in [1] involving angular momentum.

A GEOMETRIC INVARIANT OF Tn

It is well-known that Tn is diffeomorphic to G (H), the space of all oriented geodesics
of H, for any Hadamard manifold of dimension n (see [3]). For n = 3 and n = 7, we
compute now a pseudo-Riemannian invariant of Tn (involving its periodic geodesics)
that will be useful in [5] to show that if H is the n-dimensional hyperbolic space, then
Tn and G (H) are not isometrically equivalent, provided that the latter is endowed
with any of the metrics which are invariant by the canonical action of the identity
component of the isometry group of H.
We remark that in [4] we obtained the geodesics of Tn without needing to compute
explicitly the Levi-Civita connection. That is why we give this pseudo-Riemannian
invariant instead of a more standard one, like the curvature, since the computation
of the latter would have been probably rather cumbersome.
For n = 3 or n = 7 and ` ∈ Tn let A denote the subset of T`Tn consisting of the
initial velocities of periodic geodesics of Tn though `.

Proposition 5 The frontier of A in T`Tn is a subspace of dimension m.

Proof. Since Tn is homogeneous we may suppose that ` = o. Clearly the geodesic σ
in Proposition 4 is periodic if and only if a = b = 0, while σ0 is not periodic. By that
proposition, A is the orbit of the isotropy action (3) of the multiples of the initial
velocity of σ (s) = ` ((cos s) i + (sin s) j, 0). Under the identification ToTn ∼= Rm×Rm

one has σ′ (0) = (j, 0). Therefore A = {(x, cx) ∈ Rm × Rm | c ∈ R}, since Ko acts
transitively on the unit sphere in Rm.
We show that the frontier of A equals {0}×Rm. Since clearly (0, y) /∈ A if y 6= 0 and
(0, y) = limn→∞ (y/n, ny/n) for all y ∈ Rm, we have that {0}×Rm is contained in the
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frontier of A. Next we verify the other inclusion. Suppose that limn→∞ (xn, cnxn) =
(x, y). If x = 0 we are done. If x 6= 0, we have cn |xn|2 = 〈cnxn, xn〉. Hence
limn→∞ cn = 〈y, x〉 / |x|2 := c. Therefore (x, y) = (x, cx), which belongs to the
interior of A. This completes the proof of the proposition. ¤
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