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Introduction. We are concerned in this paper with the behavior in the
large of the geodesic lines on a class of surfaces of revolution. The central
theme is the number and the distribution of the double points of these geo-
desies, and one of the main theorems establishes a "zoning" of the surfaces
in a manner dictated by this distribution. A second theorem sets up a classi-
fication of admissible surfaces on the basis of the number of the double points
of its geodesic lines.

An admissible surface 5 is formed by revolving about Oy a curve which
rises monotonically from the origin to infinity as x increases, and which
possesses a continuously turning tangent (save possibly at certain exceptional
points). On every geodesic of 5 there is a point P, the "point of symmetry,"
which is nearest to the vertex of S, and at which the curve is tangent to a
parallel of 5. The two branches of the geodesic proceed in either direction
from P, and spiral symmetrically in opposite senses around the axis of S
toward infinity. Under special conditions the two branches may fail to inter-
sect one another. More generally, however, they cut each other repeatedly
in a sequence of double points, which may conveniently be numbered by
starting with the one nearest the vertex. We may thus speak of the "first
double point," the "second double point," and so on. This sequence may be
finite or infinite, but if it is finite for one geodesic of 5 it is finite for all. The
above discussion is of course not meant to apply to the meridians of S, whose
special nature is perfectly clear.

A discrete sequence of parallels, Pi, Pi, • • • , can be found on 5 dividing
it into a corresponding sequence of "zones," Zi, Z2, ■ ■ • . The first zone Zi
is the portion of 5 containing the vertex and bounded by (but not including)
the parallel Pi. The «th zone Z„, for «>1, is the portion of 5 bounded by
Pn-i and P„, including the points of the former parallel, but not those of the
latter. In the case of a surface whose generating curve is tangent to Ox at 0,
it is shown that every point of the «th zone is the 1st, 2nd, • • • , (« —l)th
double point of certain geodesies of S, but is a double point of higher order of
no geodesic of 5. In the case of Zi this is taken to mean that no point of this
first zone, or "cap," is the double point of any geodesic of S. In the case of a
generatrix not tangent to the x-axis this conclusion appears in a suitably
modified form. The zones may be finite or infinite in number; and in particu-
lar the cap may extend over the whole of S.
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The results sketched here are developed in the first three sections of the
paper.

§4 is devoted to a classification of admissible surfaces in accordance with
the number of the double points of their geodesies. Either every geodesic
of 5 (the meridians always excepted) has infinitely many double points ("cy-
lindrical surface," or "surface of the first kind"), or else each geodesic has but
a finite number of them ("surface of.the second kind"). Surfaces of the second
kind are in turn of one of two types : either there is an upper bound to the
number of double points on any geodesic of 5 ("conical surface"), or else it
is possible to find geodesies the number of whose double points is arbitrarily
large ("semi-cylindrical surface"). The existence of this latter class of surfaces
seems not to have been specifically remarked before. Appropriate analytic
criteria are set up to distinguish between the several classes.

In §5 a small class of examples is adduced. While these are somewhat arti-
ficial in nature, they serve very well to illustrate the material, and furnish
counterexamples to the converses of several of the earlier theorems.

In §6 it is indicated briefly that the condition of a continuously turning
tangent for the generating curve can in large measure be relaxed without in
any way impairing the validity of our conclusions.

The zoning property appears first to have been established for the para-
boloid of revolution in a paper by the author and Leon Recht (.4 theorem con-
cerning the geodesies on a paraboloid of revolution, Bull. Amer. Math. Soc. vol.
47 (1941)). However, a kind of first zone, or cap, was discussed by Cohn-
Vossen for surfaces of a somewhat more general nature (Totalkrümmung und
geodätische Linien auf einfachzusammenhängenden offenen vollständigen
Flächen, Rec. Math. (Mat. Sbornik) N.S. vol. 43 (1936)).

1. The nature of the geodesies. Let 5 be the surface obtained by revolving
the curve y ~f(x) around the y-axis. We shall suppose that :

1. f(x) is continuous and single-valued for x^O.
2. f(x) has everywhere a continuous derivative, including a finite right

derivative at x = 0.
3. f'(x) is everywhere positive except possibly at x = 0, where it may van-

ish.
As coordinates of a point P (not the vertex) of S we choose x, the per-

pendicular distance of P from the axis of S, and 0, the angle which the half-
plane determined by P and the axis makes with some fixed half-plane con-
taining the axis. The quantity x is essentially positive, and the sign of 0 is
determined by a suitable convention. The coordinate network is thus the
orthogonal system composed of the semi-meridians 0 = const, and the parallels
x = const.

If we write u(x) = (l+/'2(x))1/2, the differential equation of the geodesies
of S becomes (cf. Darboux, Théorie des surfaces, vol. 3)

(1.1) dd/dx = tp.(x)/x(x2 - t2)1'2,
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where t is a parameter which may assume any real value. Corresponding to
¿ = 0 are the semi-meridians 6 = const. These need concern us no further, so
that we may assume t y*0. The totality of extremals can be written in the form

(1.2) e = 8i + tf ß(z)dz

,1 z(z2 - Í2)1'2

A fixed positive value of t in (1.2) yields one branch of a geodesic, the corre-
sponding negative value the other branch. The two meet at x = t, d = di, the
"point of symmetry" of the geodesic, and the curve is tangent to the parallel
of S which passes through this point. It is clear from (1.2) that the two
branches of the extremal are symmetric with respect to the plane containing
the point of symmetry and the axis of S—the "plane of symmetry." Moreover,
6 increases or decreases monotonically with x according as t is positive or
negative. Accordingly the geodesies may possess no singularities other than
double points, and these must lie in the plane of symmetry.

If we fix |/|, (1.2) represents a one-parameter family of geodesies, each
tangent at its point of symmetry to the parallel x= \ t\. These curves are all
congruent, so that we may single out for study any representative member,
say that for which di =0, and call it the "geodesic (t)." Moreover, owing to the
symmetry of the curve, we may confine our attention to that branch for which
f >0. We have thus as the object of our investigation the equation

/*       n(z)dz-—- (x^t> 0).
,  z(z2-t2yi2

Roughly speaking, 0 is the amount by which the geodesic (t) winds around
the axis of S between its point of symmetry and its intersection with the
parallel x.

2. The functions 6(x, t) and 0*(;c). We introduce a function 0(x, t) whose
domain of definition is the sector of the (x, i)-plane bounded by the lines t = 0
and t=x, and with the origin deleted. It is defined as follows:

/'x        u(z)dz- for x > 0 and 0 < t < x,
t    z(z2 — t2)112

(2.1b) 6(x, x) = 0 for x > 0,
(2.1c) e(x, 0) = m(0)tt/2 for x > 0.

Lemma 2.1. 6(x, t) is continuous throughout its domain.

This is most readily seen if we cast the integral of the definition in the
form

J'1"      uiwt)dw
, \      1W2 (0 < * < x)

i       wiw2 — I)1'2

by means of the substitution z = wt. It is evident on the basis of well known
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theorems concerning generalized integrals that 0(x, /) is continuous, as de-
fined, for 0 <t <x and for x = t ( ¿¿0). The proof of its continuity for t = 0 (x^O)
can be sketched as follows :

Choose any xi>0, and an as yet unspecified positive number e. Let St be
less than e, and write

•lit       »nut    ß(wst)dw
= I + J./> tiöt fxih

+
1 J t/ht w(w2 - l)1'2

Denoting by A the upper bound of p(x) in Ogx^Xi, then we have 0^/
¿A (arcsec(xi/Si) — arcsec(e/5/)). No matter what fixed value is given to e, Si
can be taken so small as to make the right member of this inequality vanish-
ingly small. In the integral I, the argument of ß is confined to the interval
S/Sx^e, and, for some f between bt and e, 7 = /i(f)arcsec e/ôt. One can now
adjust « so that m(D> which is continuous at the origin, differs by an arbi-
trarily small amount from u(0), and then take bt so small that arcsec(e/5¿)
approximates as closely as is desired to ir/2. Thus, for any Xi>0, 0(xi, 5/)
approaches p(0)ir/2 as ôt tends to zero. To complete the proof it is merely nec-
essary to remark that {0(xx+5x, S/)-0(xi, 0)} = {0(xi+5x, bt)-6(x1, St)}
+ {d(xi, ôt) — 0(xi, 0)}, and to observe that for any 5/>0 the first expression
in braces on the right-hand side tends to zero with Sx, in accordance with
known theorems on integrals.

For a fixed positive value of x, 0(x, t) is a continuous function of / in the
interval O^iSjx, and consequently must attain its upper bound at some
point (possibly of course at several points) of this interval. The value of this
upper bound we denote by 0*(x), and we set as a matter of definition
0*(O) =ß(0)ir/2. The geometric significance of this new function can be
brought out in the following way. Let r(Q) denote the line segment dropped
from the point Q of 5 normal to the axis of 5. As Q traces the geodesic (t)
from its point of symmetry to its intersection with parallel x, r(Q) undergoes
a rotation 0(x, t). For at least one geodesic (/) the amount of this rotation
must be an absolute maximum; and this maximal rotation is 0*(x).

Lemma 2.2. 0*(x) is continuous and nondecr easing for 0 ^x < oo.

It is apparent from the defining equations (2.1) that, for a given /, 0(x, t)
increases or remains constant as x increases. Consequently its upper bound in
O^i^ï cannot decrease when x increases. That limx„od*(x)=u(0)ir/2 was
implied in the proof of the preceding lemma. The proof that 0*(x) is continu-
ous at the interior points of its domain is a perfectly straightforward one, and
need not be given here.

As x becomes infinite 0*(x) may itself become infinite, or it may approach
a finite limit. The discussion of the conditions which govern these important
alternatives will be reserved for a later section, in order not to interrupt the
continuity of the present line of investigation.
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3. The zones. Let Q be a double point of the geodesic (t). That portion
of the complete geodesic lying between the parallel through Q and the parallel
through its point of symmetry P we call a "geodesic loop." Q is the "vertex"
of the loop, and by its "order" we mean the total number of its double points,
Q included. Since P and Q lie in the plane of symmetry, their angular coordi-
nates, which are 0 and dix, t) respectively, differ by a multiple of ir. This mul-
tiple is precisely the order of the loop, since each increase of dix, t) by the
value ir marks another intersection of the plane of symmetry by the two
branches of the geodesic, that is, another double point. We have established

Lemma 3.1. A necessary and sufficient condition that the vertex of a geodesic
loop of order k lie on the parallel x is that, for some t, 0<t<x, we shall have
0(x, t)=kir.

dix, t) as a continuous function of t must assume in the interval O^t^x
every value between its lower bound zero (for t=x) and its upper bound
6*ix). From this follows

Lemma 3.2. If k is a positive integer or zero, and if kw^6*(x) <ik + l)ir,
then every point of the parallel x is the vertex of at least one loop of each of the
orders 1,2, • • • , k, but is the vertex of no loop of higher order.

Let N denote the smallest integer greater than /¿(0)/2. N must be at least
equal to unity, for p(x)}£l. By definition 0*(O)=/¿(O)7r/2, and accordingly

(3.1) (AT - l)w á 0*(O) < Nt.

Since 6*ix) increases continuously, there exists a strictly increasing sequence
of positive values of x, £i, £2, • • • , each £„ being the smallest number with
the property

(3.2) 0*(£„) = iN + n - l)x (n = 1, 2, 3, • • • ).

This sequence is infinite if Ximx*J)*(x) = «°. If, on the other hand, limXJ.x,6*(x)
= X< oo, the sequence ends with the term %m-n+i, M being the integer de-
fined by the inequalities irM<X^Tr(M+l).

The sequence (£„) determines a sequence of parallels *=&, x = %2, • • • ,
which divide 5 into "zones." The first zone is characterized by the inequality
0=tf<£i, the «th zone (»>!) by Çn-i^x<Ç„. It follows from (3.1), (3.2) and
the monotonicity of 0*(x) that, for every point of the «th zone (« = 1,2,3, • ■ •),
(N+n — 2)ir^6*(x)<(N+n — l)ir. An application of Lemma 3.2 then yields

Theorem 1. There exists a sequence of parallels x = £i, # = £2, • • • dividing
S into zones, as described above. Every point of the nth zone is the vertex of at
least one loop of each of the orders 1, 2, • • • , N+n — 2 (where N is the smallest
integer greater than n(0)/2), but is the vertex of no loop of higher order.

In the important case for which f'(0) —0, we have p(0) = 1, and likewise

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



420 D. P. LING [May

2V=1. The theorem just proved indicates that no point of the first zone—
which in this case we call the "cap" of S—can be a double point of any geodes-
ic of S.

4. The number of windings and the index. Surfaces of the sort under dis-
cussion fall into two classes. On a "surface of the first kind" every geodesic
winds an infinite number of times around the axis, while on a "surface of the
second kind" each geodesic makes but a finite number of turns. No inter-
mediate case is possible. Surfaces of the first kind we shall sometimes call
"cylindrical," since with respect to the number of windings the geodesies of
such a surface behave as do those on a circular cylinder.

Illustrative of these surfaces of the first kind is the paraboloid of revolu-
tion. As an example of a surface of the second kind we may cite the cone,
to be specific let us say the cone generated by revolving the line y = mx
about Oy. It is then a simple matter to show that (l+m2)1,2/4 furnishes an
upper bound for the number of turns which the geodesies of S may make
about its axis. Surfaces of the second kind having the property that the num-
ber of windings of their geodesies possesses an upper bound we accordingly
call "conical." On the other hand, it is an interesting fact that there exist
admissible surfaces of the second kind for which no such bound exists, that
is, on which one can find geodesies the number of whose windings is arbi-
trarily large. Such surfaces we call "semi-cylindrical," since, in common with
the cylindrical surfaces, they possess infinitely many zones.

In this section we propose to demonstrate these facts and to set up various
analytic criteria.

Theorem 2. S is of the first or second kind according as

-/
/»(*)(4.1) /=  |

diverges or converges.

For J converges or diverges with

p(z)dzs:z(z2 - t2)1'2

and this integral represents the total number of windings of the geodesic (/),
that is, the limit of 0(x, t) as x approaches infinity.

We assume henceforth that J exists, and define the "index" <f>(t) oí the
geodesic (/) as follows:

/CO

n(z)dz/z(z2 - t2)1'2 for t> 0,

(4.2b) <6(0) = m(0)x/2.

Lemma 4.1. <b(t) is continuous for 0 ^f < ».
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That p(t) is continuous for t >0 becomes clear when the integral is written
in the form

ix(wt)dw

/, i     w(w2 - l)1'2

by means of the substitution z=wt. To demonstrate its continuity at t = 0,
we write

J'1 rm       fi(z)dz+ t I ———,
, Ji z(z2-t2yi2

¡i(z)dz/' •     fi(z)dz C—^- < t
t z(z2-t2yi2     Ji z(z2 - l)1'2

The second of the latter pair of terms tends to zero with t, while the former
tends to p(Q)ir/2, as follows from Lemma 2.1.

The index p(t) represents the total angle of turn made by either branch
of the geodesic (f) around the axis of S. Thus a surface is conical or cylindrical
according as its index function is bounded or unbounded.

In the discussion of the conditions which determine the boundedness or
the unboundedness of p(t), four functions (two of them very closely related)
play a prominent role. They are

1    cil"
(4.3a) a(t) = —- ß(z2 + t)dz (t > 0; a(0) = m(0)),

t ' J o

(4.3b) ß(t) = tf^-dz (t > 0; 0(0) = M(0)),
J t      zzs

(4.3c) 7«) = — f   u(z)dz (t > 0; 7(0) = m(0)),
t J t
1    Cu    ß(z)dz

(4.3d) 5W=T7¡ ?       Ml, (<> 0; 5(0) = 2M(0)).tll2J t    (z — 0

Lemma 4.2. The functions a(t), /3(f), y(t), and 8(f) are continuous for
0^f < »,c«d

(4.4) 5(f) = 2a(f).

The latter part of the lemma is proved by replacing z by 2s+f in the in-
tegral for 5(f). The continuity of the four functions for f>0 is evident, and
we need only show that a(t), ß(t), and 7(f) approach ju(0) as f tends to zero.
If we observe that

1 rM
a(t) - —■ n(r2 + f) dz = M(r2 + f), 0 < r < f1'2,

t ' J 0

the desired result follows upon letting f approach zero. A similar proof applies
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for y(t). To take care of ß(t), we choose a positive number e, and write

/•        r °°  p(z) C'dz C°  u(z)+ tj      —rdz = tti(r)J     ■¿ + t)      -¡T^       (t<r<t),

ß(t) - u(0) = u(r) - M(0) - - u(t) + tf°°^-dz.
e J,       z2

Because of continuity considerations we may take e so that ß(r) — p(0) is ar-
bitrarily small for any t <e. Allowing t to tend to zero, the last pair of terms
become vanishingly small, and we conclude ß(t)—+ß(0).

Lemma 4.3. There exist positive constants ci, Ct, c8, and c4 such that, for ¿2:0,

(4.5) cia(t) + aß(2t) ^ <¡>(t) g c3a(t) + Ciß(2t).

We may write <b(t) = Ii+Ii,

/'2t      p(z)dz                             ra       ß(z)dz
——-, It = t\      ——/■-

(    z(z2-t2Y'2 Ju   z(z2-t2y'2

In the interval t^x^2t (t>0)

1                   1                  1.-<-<-
2t(3t)1'2 ~ x(x + tyi2 ~ t(2tyi2

and consequently

1       1    r2t    ¡x(z)dz 1      1    r2t    n(z)dz

2(3)i/2 ~JTiJ t    (z _ tyi*        1 = 2^"i^J,    (z - t)1'2
or, making use of (4.3d) and Lemma 4.2,

(4.6) a(t)/31'2 ^ Ii^21'2a(t).

For the second integral we have at once

X" ¡x(z)dz       1
jí       z 2

On the other hand, we may write

Ai(z)

/i   0021 z2      (z2 - t2)1'2
dz.

The second factor of the integrand is a monotonically decreasing function
of z in 2/^z< oo, and is bounded in that interval by 2/31/2. Thus

2      fM  ¿t(z) 1
(4.7b) It á — íj      — dz = —ß(2t).

31'2 Ju     z2 31'
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Combining (4.6), (4.7a), and (4.7b) we obtain

a(t)/31i2 + ß(2t)/2 g p(t) = 21'2a(f) + ß(2t)/31'2.

A simple numerical calculation shows that these inequalities subsist for f = 0.
An immediate consequence of Lemma 4.3 is

Lemma 4.4. A necessary and sufficient condition that p(t) be bounded in
O^f < oo is that a(t) and ß(t) be bounded in the same interval.

Lemma 4.5. The boundedness of a(t) in O^f < oo implies that of /3(f).

Let us suppose that for fjäO we have a^A/2, so that, by Lemma 4.2,
5(f) =¿4. Now it is clear that

1    r2t    ¡x(z)dz I   r2t

Jt       f2 J t      z2

and thus, for all f §0,
r21 p(z)

t -^~dz ^ 8(t) &A.
J t      z2

This inequality continues to hold if we replace f by 2nf (» = 1, 2, • • • ):

/,2n+1<

int

Adding corresponding sides for « = 1, 2, • • • , k gives

r2kHt   ix(z) (       1 1\
t -dz^ All+— + ••■ -\-) <2A
J t z2 \        2 2 V

and, upon letting k increase without limit, we find that /3(f) ̂ 2.4.

Theorem 3. A surface of the second kind is conical or semi-cylindrical ac-
cording as a(t) (or 5(f)) is or is not bounded as t—»oo.

This is a direct consequence of Lemmas 4.2, 4.4, and 4.5.

Theorem 4. A necessary condition that a surface of the second kind be conical
is that

1   rïl
7(f) = —        n(z)dz

t J t
be bounded as t—» «.

For the first inequality of (4.8) shows that 5(f) ^ 7(f), and the rest follows
from Theorem 3.

ix(z) 1
-^ dz < —A.

z2 2»
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In practice this test is frequently decisive, and it has the advantage of
being easily applied. It should be remarked how severely it restricts the class
of functions p(x) which give rise to conical surfaces, for it implies that the
mean value of p(x) over the interval i^x^2i must be bounded as i—►«>.
Even though p itself may be unbounded, it must still possess in this sense the
asymptotic quality of a constant.

From Theorems 3 and 4 follow

Theorem 5A.   The surface S is conical if p(x) is bounded.

Theorem 5B. A surface of the second kind is semi-cylindrical if
lim inf*..«, p(x) = co.

In the case of the important subclass of admissible surfaces for which
f'(x)—and consequently p(x)—increases monotonically, the criteria become
particularly simple:

Theorem 6A. A surface of monotonically increasing p(x) is:
(a) conical if p(x) is bounded;
(b) semi-cylindrical if J exists and p(x)—>=o ;
(c) cylindrical if J fails to exist.

These are merely restatements of Theorems 5A, 5B, and 2 respectively
Somewhat more generally we have the following theorem.

Theorem 6B. If for x large p(x)~xa, then S is:
(a) cylindrical for a >: 1 ;
(b) semi-cylindrical for 0<a<l;
(c) conical for a <0.

5. Illustrative examples. Surfaces of monotonically increasing ju(x) are
easily exemplified by virtue of Theorem 6. In this section we shall introduce
a special class of surfaces of non-monotonic u(x), which serve very well to
illuminate much of the foregoing material.

Let hn and dn (n = 1, 2, 3, • • • ) be positive numbers subject for the pres-
sent only to the conditions ¿n2~2n—»0 (¿„<22") and &„—><». We take for u(x)
the continuous function whose Ordinate maintains the constant value 2 except
over the intervals 22ngx^22n+2¿n (w = l, 2, 3, • • • )• Over the first half of
the «th of these exceptional intervals it rises linearly from 2 to 2+A„, while
over the second half it drops linearly back to 2. Analytically

(5.1a)   /*(*) = 2 + (hn/dn)(x- 22") for   22" g x g 22" + dn,

(5.1b)  ß(x) = 2 - (hn/dn)(x - 22n - 2dn)      for    22n + dn ^ x á 22» + 2dn,

(5.1c)   fi(x) = 2 elsewhere.

The generating curve itself may be described as a sequence of line segments
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of slope 31'2 connected by 5-shaped arcs whose central portions become in-
creasingly steep. This surface we shall call S(hn, dn).

Theorem 7A. The surface S(hn, dn) is of the first kind if the quantities
A„d„2-4" are bounded away from zero.

Taking the lower limit of the integral J as unity, we have

/•-   u(z)              ra   2                        *    /•2t"+2*l     (z) _ 2
(5.2)    /=  I      ^--dz=  I      — dz+lim  22 \ —-dz.

Jl Z2 J 1        Z2 ÍÍ-.»   nZlJi^ Z2

Denoting the sum in the final term by Sn, we obtain the following inequality
by integrating over only the first half of each of the exceptional intervals.
(We remark that ¡i(z)—2 is different from zero only over these intervals.)

»   r2'"^   K z - 22" j       *   hn(     /       dn\ dn     ï

Now for *>0, log(l+«;)>*—x2/2, and

"   hndn(        1 1)
sn > 2-, -\-f ■i     2in  ll + d„2-2"        2 j

Since by hypothesis d„2_2n—»0, the factor in braces of this last expression is
greater say than 1/4 for n large. If, then, the sequence hndn2~in is bounded
away from zero, limAr-.«$# = °o, and / fails to exist.

Theorem 7B. The surface S(hn, d„) is of the second kind if the quantities
hndn2~3n are bounded.

Using the representation (5.2), it is easily verified that

tf       -2*»+2in    h »      hndn
sn<22 \        —dz < 222 -Z7--

1    Jfn z2 1 24n

This latter sum clearly has a limit as N—* oo provided the condition of the
hypothesis holds, and thus / exists.

Theorem 8A. The surface S(hn, dn) is conical if the quantities ftn2¿„2_2n are
bounded.

Since, as we assumed at the outset, limn*.x,hn= °°, the condition of the
hypothesis implies that the sequence hndn2~3n is bounded, so that by the pre-
ceding theorem J exists. We shall now show that 5(f) is bounded. First it
should be remarked that, for any value of f, the range of integration of

1    r2t    ii(z)dz
S(t) =- -^-

t^Jt    (z-t)1'2
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■ dz

2    r. *-+!«.    M(z) _ 2
< 4 +- -P^-dz.

contains points of at most one of the exceptional intervals. If no point of such
an interval occurs in the range, ju(x) maintains the constant value 2, and
5(2) =4. In the contrary case we may suppose that the range contains the «th
interval in its entirety. It can be verified that this assumption involves no
loss of generality. Then, since r>22(n-1),

l   r 22"+2d» (p(z) - 2)
S(t) =4 +- —--

fiiiJ*' (z-t)1'2
(5-3)                                                          „

2nJi*»       (z-ty>2

On the other hand, the integral over the first half of its range is greater than
that over the second half, for at the two points of equal p the denominator in
the first half is less than in the second. Consequently

4    c 22"+dn   z - 22n
S(t) <4-\-■- dz.

2*J¿* (z-t)1"

By direct evaluation of this integral we find

8      hn(dn)112
(5.3a) S(2)<4 + —3 2n

Thus, under the given conditions, 5(2) is bounded and 5 conical (Theorem
3B).

Corollary. The converse of Theorem 5A fails to hold.

For the condition of Theorem 8A can be met (in a multiplicity of ways)
with unbounded hn's, that is, with /x(x) unbounded.

Theorem 8B. The surface S(hn, dn) is semi-cylindrical if the sequence
hndn2~3n is bounded, but hn2dn2~2n is not.

Here / exists, and the surface is of the second kind. Starting with (5.3),
a laborious calculation, not reproduced here, yields

(5.4) 5(22«) = A + Bhn(dn)ll22-»

where A and B are constants independent of n. Thus, under the given condi-
tions, 5(2) is unbounded, and the surface semi-cylindrical (Theorem 3B).

This furnishes us with an example of a surface of semi-cylindrical type for
which lim iníx^Ku(x) is not infinite.

Theorem 9. The converse of Lemma 4.5 fails to hold.

To show this, let 5 be such that the sequence fe„d„2_2n (and consequently
hndn2~3n) is bounded, while hn2dn2~2n is not. By Theorem 8B, 5 is semi-cylindri-
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cal, and a(t) is unbounded (Theorem 3A). Now it is not difficult to show that,
under the given conditions, ß(t) is bounded provided the quantities ß(22n) are
bounded. Over the nth exceptional interval p(x)^2+hn, and

ß(2
2dz       JL        r 22i"+*)+2d»+*    h./' °° 2dz        " C

22n    Z2 i=0 Ji

n+k

2»(n+« 22

= 2 + 22"¿ hn+k j-1
*_o (22<«+*>       22<»+*> + 2án+J

= 2 + 2 ¿   hn+kdn+k 1

tZo    22<"+*>    22* + 2d„+k2-2n

„    ,     „ TT-*     hn+kd„+k        1
<2 + 2Y, ■-

¿r0 22("+*)   22*

Given, then, that hndn2~2n is less than some positive -<4[for all n, we conclude
that °°     1 8

jS(22") ¿2 + 2AY, -= 2 + —- A.
0    22* 3

Thus ß(t) is bounded, while a(t) is not.
6. The case of discontinuous/'(x). For the sake of simplicity, we have

assumed up to the present that/'(x) is everywhere continuous. In this section
we shall show that this restriction can to a large extent be relaxed without
invalidating the results of §§1 to 4. We replace the conditions of §1 by the
following :

1. f(x) is continuous and single-valued for x^O.
2. f'(x) is continuous except on a discrete sequence of points x = Oi, x=a2|

with 0<di<a2< • ■ ■ . At each of these points the left and right derivatives
exist, but are different.

3. f'(x) is everywhere positive except possibly at x = 0, where it may
vanish.

On 5, the surface formed by revolving y=/(x) about Oy, the parallels
x = ai, x=at, • ■ • are composed of singular points. These are the "parallels
of division," and the regions between consecutive parallels of division we
shall call "regions of regularity." The function tc(x) is continuous throughout
any region of regularity, but changes abruptly in value when a parallel of di-
vision is crossed. With this in mind, we can again define the "geodesic (t)n
as the union of the two branches (1.2) with parameters 2 equal in magnitude
but opposite in sign. When we do so, all the remarks of §1 remain valid.

If Pi and P2 are nearby points of the same region of regularity, then it is
well known that the arc of the geodesic (2) joining them furnishes the shortest
path between them. This is, however, by no means so obvious when these
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points are separated by a parallel of division. The following lemma demon-
strates that this is, in fact, the case.

Lemma 6.1. Let Pi and P2 be nearby points on opposite sides of a parallel
of division, and let [P1P2] denote the geodesic arc, as defined above, which joins
them. Then [P1P2] is the shortest path joining them.

The proof will merely be sketched. It is at once evident that those portions
of the shortest path from Pi to P2 which lie in the two separate regions of
regularity must be geodesic arcs. It is thus a question of showing that the
minimal path is obtained by preserving the value of the parameter f across
the parallel of division.

Let Po be an arbitrary point of the parallel of division, determined by
some parameter, say 0O. The parameters fi and Í2 of the geodesic arcs [PiPo]
and [P0P2] are functions of 0O. From the differential element of S, ds2 = n2dx2
+x2dd2, we find that the differential of arc along a geodesic of S is given by

xn(x)

This enables us to set up the expression L, the sum of the arc lengths [PiPo]
and [PoP2]- Differentiating this expression with respect to do and setting the
derivative equal to zero, we find that L has an extremum only for fi = f2. On
geometrical grounds, this must be a minimum of L.

Passing to the results of §2, the definition and the continuity of d(x, f)
are handled exactly as in the simpler case. Lemma 2.1 requires that p(x) be
continuous near x = 0; but this remains true since we have postulated ai>0.
For the rest, it is only necessary that p(x) be positive, bounded and in-
tegrable. Once more d*(x) appears as a continuous nondecreasing function
of x, and the zoning phenomenon reemerges with the results of §3 unchanged.

Likewise, the conclusions of §4 carry through as before, for the continuity
of fi(x) is required only at the origin.

Thus the whole theory exposed in this paper remains true for the more
general type of surfaces considered in this section.

A final brief remark is in order concerning surfaces for which f'(x) has an
infinite discontinuity. This can come about in one of two ways. The generat-
ing curve may have a vertical asymptote for some finite x, in which case 5
is obviously cylindrical. Otherwise, the slope at the origin may be infinite.
If u(x) increases monotonically to infinity as x decreases to zero, there exists,
for any arbitrarily large positive number A, a value £ of x so small that, for
x<£, n(x)>A. Then, for x<!- and t<x, we have
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By choosing t sufficiently small, we can make 0(x, t) >A. As a moving point
P traces the geodesic (t) from the point x to its point of symmetry, the radius
vector r(P) rotates around the axis of S, and the amount of this rotation can
be made arbitrarily large by taking t small enough. It is obvious that here
the zoning property disappears entirely.

Columbia University,
New York, N. Y.
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