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S U M M A R Y

The volcanism of the Eifel volcanic field (EVF), in west-central Germany, is often considered

an example of hotspot volcanism given its geochemical signature and the putative mantle

plume imaged underneath. EVF’s setting in a stable continental area provides a rare natural

laboratory to image surface deformation and test the hypothesis of there being a thermally

buoyant plume. Here we use Global Positioning System (GPS) data to robustly image vertical

land motion (VLM) and horizontal strain rates over most of intraplate Europe. We find a

spatially coherent positive VLM anomaly over an area much larger than the EVF and with a

maximum uplift of ∼1 mm yr−1 at the EVF (when corrected for glacial isostatic adjustment).

This rate is considerably higher than averaged over the Late-Quaternary. Over the same area that

uplifts, we find significant horizontal extension surrounded by a radial pattern of shortening, a

superposition that strongly suggests a common dynamic cause. Besides the Eifel, no other area

in NW Europe shows significant positive VLM coupled with extensional strain rates, except

for the much broader region of glacial isostatic adjustment. We refer to this 3-D deformation

anomaly as the Eifel Anomaly. We also find an extensional strain rate anomaly near the Massif

Central volcanic field surrounded by radial shortening, but we do not detect a significant

positive VLM signal there. The fact that the Eifel Anomaly is located above the Eifel plume

suggests that the plume causes the anomaly. Indeed, we show that buoyancy forces induced by

the plume at the bottom of the lithosphere can explain this remarkable surface deformation.

Plume-induced deformation can also explain the relatively high rate of regional seismicity,

particularly along the Lower Rhine Embayment.

Key words: Satellite geodesy; Europe; Continental tectonics: extensional; Dynamics: con-

vection currents, and mantle plumes; Intra-plate processes.

1 I N T RO D U C T I O N

Intraplate volcanic activity in west-central Europe has long been

associated with mantle upwellings (Granet et al. 1995; Hoernle

et al. 1995). Most effort has focused on the Eifel Volcanic Field

(EVF) where a period of late Quaternary volcanism (Fig. 1) con-

tinued until ∼11 ka and included the explosive eruption of Laacher

See in the eastern EVF at 12.9 ka (Nowell et al. 2006; Schmincke

2007). Although the volcanism does not exhibit a clear space-time

progression indicative of a hotspot track, geochemical analyses

(Griesshaber et al. 1992; Hoernle et al. 1995; Aeschbach-Hertig

et al. 1996; Wedepohl & Baumann 1999; Buikin et al. 2005; Bräuer

et al. 2013; Caracausi et al. 2016) have shown that EVF (and some

other central European) volcanic rocks and gases have the charac-

teristics of a mantle source, while seismological studies have shown

evidence for a mantle plume underneath the Eifel (Ritter 2007).

Specifically, there exists a low seismic velocity anomaly down to

∼410 km depth (Ritter et al. 2001; Keyser et al. 2002; Pilidou et al.

2005; Budweg et al. 2006; Montelli et al. 2006; Zhu et al. 2012).

Some studies have imaged a low seismic velocity anomaly under-

neath this location in the lower mantle (Goes et al. 1999; Grunewald

et al. 2001; Zhao 2007), but the 660 km discontinuity seems unaf-

fected (Budweg et al. 2006), which suggests that there is no physical

connection between the lower and upper mantle anomalies. There

is evidence for a broader low velocity zone at ∼50 km depth that

could be interpreted as the plume head (Budweg et al. 2006; Mathar

et al. 2006), which is consistent with the lithosphere-asthenosphere

boundary (LAB) underneath the Eifel being relatively shallow at

∼40–50 km depth (Plomerová & Babuška 2010; Seiberlich et al.

2013). For the Massif Central (France), the other major Quaternary
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3D GPS Surface Deformation above Eifel Plume 1317

Figure 1. Black dots are epicentres of earthquakes between 1000 and 2006 in the SHEEC-SHARE database (Grünthal et al. 2013; Stucchi et al. 2013). Colours

are epicentre density for circular areas with radius (R) of 30 km (with each event in a circle weighted by (1–D/R), where D is distance from event to centre

of circle). Blue dots are centres of Quaternary EVF activity, and blue triangle is location of latest activity in Massif Central. Light blue lines are seismogenic

faults (Basili et al. 2013), and the Rhenish Massif is outlined in green. B, Belgium; NL, The Netherlands; LRE, Lower Rhine Embayment; URG, Upper Rhine

Grabren. Inset: red solid/dashed polygon is extent of data and model, respectively, blue polygon is extent of results presented here, blue dashed polygon is area

of Fig. 7.

volcanic field in western Europe (with the most recent eruption at

∼7 ka of Lac Pavin (Juvigné & Gilot 1986; Nowell et al. 2006;

Chapron et al. 2010)), some earlier tomographic studies (Granet &

Trampert 1989; Granet et al. 1995; Sobolev et al. 1997) suggested

an underlying plume, but only few studies have convincingly repro-

duced those findings (Spakman & Wortel 2004; Barth et al. 2007;

Koulakov et al. 2009). Limited geochemical analyses have revealed

a mantle signature there (Matthews et al. 1987; Aeschbach-Hertig

et al. 1999; Zangana et al. 1999).

Despite the above indications suggesting EVF volcanism be-

ing the result of decompression melting of a buoyant mantle up-

welling, the fact that volcanism seems to flare up at the end of

glacial periods (also at Massif Central) has been interpreted as

volcanism instead being caused (or modulated) by glacial un-

loading (Nowell et al. 2006). Alternatively, the location of the

EVF near the major European Cenozoic Rift System has been

used to argue that volcanism is the product of fluid/gas path-

ways caused by Alpine-collision induced dilatancy along shear

bands in the upper mantle and lower crust (Regenauer-Lieb 1998)

and/or passive partial melting of the asthenospheric mantle induced

by lithospheric stretching (Wilson & Downes 1992; Lustrino &

Carminati 2007).

If a thermally buoyant plume is present, it is predicted to

cause significant domal uplift at the surface, although the amount

of uplift and spatial extent thereof depend on the stage of up-

welling, temperature contrast, viscosity, width of the plume (head)

(Griffiths & Campbell 1991; Hill 1991), the plume’s inherent com-

position/density (Dannberg & Sobolev 2015), and lateral strength

variations in the lithosphere induced by thermal weakening (Garcia-

Castellanos et al. 2000). Vertical strength stratification within the

lithosphere may even yield topographic undulations rather than a

singular dome (Burov & Guillou-Frottier 2005; Burov & Gerya

2014), and one study argued this to be the case for the Eifel (Guillou-

Frottier et al. 2007). By measuring the rate and spatial extent of

present-day surface motion, the specifics and mere existence of a

buoyant Eifel or Massif Central plume can be assessed. More gen-

erally, northwestern Europe provides a unique natural laboratory to

contrast current surface deformation with plume model predictions,

because other active hotspots are either underneath oceans or in ar-

eas that are tectonically and/or volcanically too active to assess the

secular deformation (i.e. Yellowstone and Afar).

Hints of significant present-day uplift of the central Rhenish Mas-

sif (i.e. the area surrounding the EVF, Fig. 1) have existed for

decades (Mälzer et al. 1983), but inconsistencies between differ-

ent geodetic studies in the surrounding area have put into question

whether measured VLM even reflected tectonic movement (De-

moulin & Collignon 2000, 2002; Camelbeeck et al. 2002; Camp-

bell et al. 2002; Francis et al. 2004). Long-running absolute gravity

measurements revealed significant regional uplift at a number of

stations in the Belgium part of the Rhenish Massif (i.e. Ardennes)

(Van Camp et al. 2011), but that study lacked the density and broad

spatial extent of measurements, nor the horizontal sensitivity, that

our study provides.

The results of the 3-D surface motion in NW Europe presented

here are part of a larger study encompassing most of intraplate Eu-

rope (Fig. 2). By investigating both vertical and horizontal deforma-
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1318 C. Kreemer, G. Blewitt and P. M. Davis

Figure 2. Locations of GPS stations used, coloured by the length of the time-series. Black triangles are locations of velocities added from the literature (Kierulf

et al. 2013, 2014; Lahtinen et al. 2019).

tion, by using robust estimations techniques (of the model and their

uncertainties), and by doing this over most of intraplate Europe, our

study is better suited to detect significant regional anomalies than

previous studies, which had limited spatial reach and/or focused

on only vertical (Kontny & Bogusz 2012; Serpelloni et al. 2013;

Husson et al. 2018; Bogusz et al. 2019) or horizontal deformation

(Ward 1998; Marotta et al. 2004; Nocquet et al. 2005; Tesauro et al.

2006; Bogusz et al. 2014; Keiding et al. 2015; Craig et al. 2016;

Neres et al. 2018; Masson et al. 2019). This paper focuses mostly

on the only significant 3-D deformation anomaly observed in our

model (i.e. the ‘Eifel Anomaly’), but results for the Massif Central

will be presented as well.

2 G P S DATA A NA LY S I S

2.1 Processing details

We processed all the available geodetic-quality GPS data from con-

tinuously operating stations in our study area (red polygon inset

Fig. 1). Our study benefited tremendously from the data made avail-

able to us from many regional state and commercial networks and

that made this type of study possible for the first time for all of NW

Europe (see Acknowledgements). The GPS data were retrieved from

archives in the form of daily station-specific RINEX files, which

contain raw, dual-frequency carrier phase and pseudo-range data,

typically for every 15- or 30-s epoch. We then reduced the data for
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3D GPS Surface Deformation above Eifel Plume 1319

each station to a time-series of daily precise point positions (Zum-

berge et al. 1997) using the GipsyX version 1.0 software (released

January 2019) licensed by the Jet Propulsion Laboratory (JPL),

together with JPL’s high-precision GPS orbit and clock products.

Data were processed for each station independently, and thus the

results are insulated from potential data problems at other individ-

ual stations. Metadata required for correct processing options were

provided by the RINEX header information, corrected by custom-

software and alias tables for commonly known errors such as field

misplacement, typos, and non-standard receiver-type and antenna-

type fields. One exception is that metadata from the International

GNSS Service (IGS) was used for antenna types if available, which

is the case for approximately 4 per cent of the data. Another ex-

ception is that we used our own metadata for approximate coordi-

nates, which should be accurate to < 10 m to ensure the validity

of linearized observation equations. After editing the data using

the TurboEdit algorithm (Blewitt 1990) available with GipsyX, the

GPS data were reduced to 300-s epochs using decimation for carrier

phase, and using carrier-smoothing for pseudo-range.

In addition to the RINEX files, we used essential input data

produced by JPL, including precise GPS orbits, Earth orientation,

eclipse shadow events, clock offsets, and WLPB biases (Bertiger

et al. 2010) for carrier phase ambiguity resolution. The satellite or-

bits were minimally constrained, which requires that we transform

the estimated station coordinates every day by a global, seven-

parameter transformation into the IGS14 reference frame, using

daily values provided by JPL. For modelling ocean tidal loading,

we used coefficients of the FES2004 model (Lyard et al. 2006) com-

puted by Chalmers University, Sweden, produced by the email inter-

face to the server described at http://holt.oso.chalmers.se/loading/.

For modelling neutral atmospheric delay (commonly known as

‘tropospheric delay’, but includes stratospheric delay), we used

VMF1GRID gridded map products from University of Vienna, Aus-

tria (Boehm et al. 2006), which is based on the ECMWF numeric

weather model based on global meteorological data. VMF1GRID

allowed us to calibrate for nominal so-called dry and wet delays,

and epoch-dependent mapping function parameters for each sta-

tion. For first-order ionospheric calibration, GipsyX implements

the so-called ionosphere-free linear combination of observables. For

higher-order ionospheric calibration, we used JPL’s IONEX gridded

map product available in daily files, together with the NOAA’s 12th

generational magnetic field model IGRF12. The inclusion of these

higher-order calibrations has been shown to substantially improve

geodetic position estimates (Kedar et al. 2003; Fritsche et al. 2005;

Hernández-Pajares et al. 2007). For antennas, we used calibrations

made available by the IGS (Schmid et al. 2007). Following IGS stan-

dards, if a calibration was not available for a particular antenna, we

did not use the data. If a calibration was not available for particular

radome, we used the no-radome calibration for an antenna. Inter-

nally, the GipsyX software implements JPL’s planetary ephemeris

to compute tidal effects.

The estimation strategy was set by default according to the dis-

tributed version of GipsyX Version 1.0, which we now describe.

Satellite positions and clocks are held to their nominal values,

whereas station clocks are estimated freely as white noise every

300-s epoch. Carrier phase biases are initially estimated freely as

constants in between detected cycle-slips (integer-wavelength dis-

continuities), then double-difference carrier phase biases to IGS

stations (using the WLPB file produced daily by JPL) are con-

strained to integer-wavelength values on both frequencies (which

are linearly combined for the ionospheric-free bias). Parameters of

the neutral atmosphere are estimated as random walk processes at

every 300-s epoch. These parameters include wet zenith delay (with

constraints at 5 cm per square-root hour), and two gradients param-

eters (with constraints at 5 mm per square-root hr). The three station

Cartesian coordinates were estimated as a constant over each 24 hr

period. Data are processed with several iteration cycles to clean up

the data using a series of post-fit residual outlier tests set by default.

Our official data analysis strategy summary can be found in the

Supporting Information.

2.2 Time-series analysis

The output of each station-day process includes a 24-hr estimate of a

constant station position in the IGS14 frame which is obtained by us-

ing daily 7-parameter transformations produced by JPL. The IGS14

reference frame is computed by the International GNSS Service

(IGS) as a GPS-compatible realization of the International Terres-

trial Reference Frame ITRF2014 (Altamimi et al. 2016). For this

study we consider 3-D position time-series between 2000 January 1

and 2019 October 5 , but use only stations for which the time-series

span at least 2.5 yr and for which there are at least 304 data points

(which translates into a theoretical minimum 33 per cent and 4.2

per cent completeness for the shortest and longest time-series con-

sidered). We estimate velocities for 2383 stations (Fig. 2), of which

1414 are in the area presented here (blue polygon inset Fig. 1).

The GPS velocities are estimated in a multistep process. First, we

fit to the position time-series a station motion model that includes

an intercept, trend, annual and semi-annual periodic signal, and

offsets due to known equipment changes or other unknown causes.

We then iteratively identify position outliers in the residual time-

series and remove them from the position time-series. Outliers are

being defined as a position that exceeds 3σ from the median, and

σ is defined as 1.4826 × M AD, where MAD (‘median absolute

deviation’) is the absolute deviation around the median, that is,

median(|res(t)-median(res(t))|) (Gauss 1816; Hampel 1974). With

this definition we follow the general suggestion by Leys et al. (2013)

and a GPS time-series specific practice advocated by Klos et al.

(2016). The 1.4826 factor is there so that σ equals the traditional

standard deviation describing the variance in res(t) in case res(t)

is normally distributed (Huber 1981). Our algorithm removes a

median 0.76 per cent, 0.72 per cent, 0.85 per cent of the positions

in the original East, North and Up time-series, respectively.

Next, the cleaned residual time-series (i.e. the time-series minus

the station motion model and minus outliers) are used to construct

time-series of regional common-mode components (CMC), which

are removed from the original time-series. CMC removal is im-

portant because otherwise strain rates or VLM anomalies can arise

from combining velocities inferred from different time-spans for

which the time-series can be biased by long-period CMC signals

(Márquez-Azúa & DeMets 2003, Serpelloni et al. 2013) (Support-

ing Information Figs S3 and S8). The CMC estimation procedure

used here is described in Kreemer & Blewitt (in preparation); it

uses cross-correlation-based weights, is explicitly robust against

outlier data, and takes advantage of all data (including stations with

short time-series). The key features are: 1) the CMC of stations

with longer time-series are used to correct the shorter time-series

of other stations in a hierarchical scheme, 2) as a result, all stations

can potentially be ‘filter stations’ (although we identify outliers) and

the precision and the spatio-temporal appropriateness of the CMC

is dictated by the spatio-temporal density of the data, and 3) each

step in the procedure is based on robust median statistics.
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1320 C. Kreemer, G. Blewitt and P. M. Davis

After we fit the station model once more to the ‘filtered’ time-

series, and we correct the offsets, we estimate the final trend and

uncertainty using the robust MIDAS algorithm (Blewitt et al. 2016).

MIDAS-derived velocity uncertainties are typically similar to, and

tend to be more conservative than those derived from stochastic

models (Santamarı́a-Gómez et al. 2017; Simon et al. 2018; Murray

et al. 2019).

To help constrain the far-field glacial isostatic adjustment (GIA)

signal, we add 80 published velocities in southern Scandinavia

(Kierulf et al. 2013, 2014; Lahtinen et al. 2019). We also exclude

three stations located above abandoned coal mines in the Kempen

(Belgium) and Limburg (The Netherlands) areas and which ex-

perience anomalously fast uplift due to underground groundwater

flooding (Caro Cuenca et al. 2013; Vervoort 2016).

3 M E T H O D O L O G Y

3.1 VLM imaging

We interpolate the GPS station vertical velocities to obtain a robust

VLM map using a method that is based on the GPS Imaging algo-

rithm of Hammond et al. (2016), but differs in some aspects. The

major difference is that we do not use a spatial structure function to

determine how the weight the rates of stations as function of their

distance from a station/point-of-interest. Such function implies a

similar spatial coherence in vertical rates across the entire study

area. This is an inappropriate assumption here, because our study

area includes both potential long-wavelength (e.g. GIA (e.g. Noc-

quet et al. 2005; Husson et al. 2018)) and short wavelength (e.g.

subsidence above the Groningen gas field (Ketelaar 2009)) signals.

Instead, we aim to consider a set of stations that are as local as pos-

sible. We do this by applying a Delaunay triangulation of the station

locations (Renka 1997). To reduce the influence of stations that are

relatively far away, we try to find more local stations. We do this by

calculating the median distance from the station/point-of-interest to

all Delaunay-connected stations. We then include the rates of ad-

ditional stations in the median VLM estimation when the distance

to those stations is less than the median distance calculated above.

In case the rate of a relatively far away station is anomalous, the

addition of these extra stations would effectively down-weight the

outlier (even more so than a typical median approach of the neigh-

bouring stations would already do). Moreover, the addition of other

nearby stations would make the median as local as possible and

constrained by the density of stations and spatial variation therein.

In practice, when station density is rather uniform, zero to few

extra stations will be identified. In our case this approach matters

only for places where the station density changes laterally, such as

along coast lines. It is also important to note that in the algorithm of

Hammond et al. (2016) one needs to subjectively choose the weight

of the station itself, while here the station itself has objectively the

same weight as the other nearby stations (i.e. in case the standard

deviations in the observations are the same, see below). Another

important difference between our algorithm and that of Hammond

et al. (2016) is how we estimate uncertainties and how we estimate

the weighted median (see below)

In short, our alternative GPS Imaging approach (which we call

‘Robust Network Imaging’ (RNI) since it could be applied to any

type of geospatial network data) includes the following steps. First,

the vertical rate of each station i (xi ) is replaced by a weighted me-

dian (or ‘despeckled’) value (x̂i ) derived from the rates of the N most

local stations. These most local stations include the station itself,

those connected to it in a Delaunay scheme, and any other station

that is closer to the station itself than the median distance between

the station itself and those connected to it. The weights are given

by 1/σi , where σi is the standard deviation in the observed rate.

The weighted median algorithm is based on that most recently pre-

sented by Bowden et al. (2016), and also implemented by Kreemer

& Blewitt (in preparation). For the standard deviation in x̂i we use

the MAD, similarly as was defined for the outlier detection.

In a second step we use these despeckled rates and standard

deviation therein (x̂i , σ̂i ) to estimate the weighted median vertical

rate at a gridded set of M evaluation points j within the convex hull

of the station locations. A new Delaunay triangulation is calculated

on a set of points that includes the evaluation point together with all

station locations. The weighted median x̂ j is then estimated from x̂i

and σ̂i of all local stations defined by the same procedure as in the

first step. The standard deviation for the median at the evaluation

point σ̂ j is estimated similarly as above. For this we use the absolute

deviation from typically the original observed rates (i.e. xi) which

would yield conservative uncertainties. However, in a few instances

(i.e. Supporting Information Fig. S2(b) and the dark shaded blue in

Fig. 6) we use the absolute deviation from the despeckled values

(x̂i ), which would typically yield a smaller uncertainty that reflects

the spatial variation in the imaged VLM rather than in the underlying

data. Either way, these robust estimates of standard deviation differ

from those in the method of Hammond et al. (2016), which were

either defined as the root-mean-square residual scatter in xi, or as

the weighted mean of xi.

In practice, the Delaunay triangulation does not work if two sta-

tions are exactly collocated. We therefore allow for station coordi-

nates and rates to be averaged when stations are within 1 m distance

from each other. This is done before RNI starts. Also, when we add

stations that are within a median distance, we add 100 m to that

distance so that, when the median distance is in fact the distance to

a station that is nominally collocated with others, the rates of those

stations are considered as well.

3.2 Strain rate imaging

The horizontal strain rates are estimated with a modification of the

‘MELD’ (Median Estimation of Local Deformation) imaging algo-

rithm of Kreemer et al. (2018). As was shown by Kreemer et al.

(2018), MELD is very robust against outlier velocities, and gives

realistic uncertainties. MELD-derived strain rates are derived at an

evaluation point from the multivariate median of a set of strain rates

from a number of station-based local triangles (see Kreemer et al.

(2018)) and requires two parameters. The first one is the minimum

number of triangles to use for estimating the strain rate (Nmin).

We use here Nmin = 56, which can theoretically be reached with

as few as 6 stations. The second MELD input parameter is based

on the theoretical standard deviation in strain rate in a triangle of

stations based on the triangle’s geometry and size. The maximum

allowed value (σ max) is used to exclude triangles that are too small

or skinny, which would make the strain rate estimate uncertain. We

set σ max = 11.1364, which was chosen such that noise of the am-

plitude of the median 1-D standard deviation in the GPS velocities

(∼0.11 mm yr−1) does not result in strain rates > 1 × 10−9 yr−1.

That is, no strain rates from a triangle of stations are considered if

the standard deviation in strain rate in any one component exceeds

σ max. In general, σ max ≈ 1.225/σ GPS. An equilateral triangle that

yields a standard deviation in strain rate of 11.1364 × 10−9 yr−1 has

an area with equivalent circle radius of 47.2 km, which is thus our
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3D GPS Surface Deformation above Eifel Plume 1321

minimum theoretical spatial resolution. The general relationship

between σ max and this minimum radius (Rmin) is Rmin ≈ 525.2/σ max.

We make one change to the MELD algorithm as presented by

Kreemer et al. (2018). This change is applied after the strain rate

at each evaluation point (typically part of a grid of points) is es-

timated. Because the strain rates are based on triangles with areas

equivalent to circles with radii typically larger than the distance

between evaluation points, we replace the results at the evalua-

tion points with a weighted spatial average based on all evaluation

points within a distance Rmedian from the evaluation point consid-

ered (including the point itself). Here Rmedian is the corresponding

radius for the median area of all triangles considered at a point.

Rmedian is by definition ≥ Rmin. The spatial smoothing not only

better aligns the spatial resolution of the model results to a cor-

responding spatial smoothness, the smoothed field also minimizes

significant model differences between two neighbouring evaluation

points which could exist if each of those points are inside a different

station triangle which could have yielded a significantly different

set of stations to be considered. The Appendix details the estimation

of standard deviation in each spatial average given that model pa-

rameters between neighbouring grid points are derived from many

common velocity data yielding a large degree of correlation.

4 R E S U LT S

4.1 Vertical land motion

Observed VLM (Fig. 3a) for individual GPS stations shows some

regional patterns, but also large variability. In a first step, we pre-

process the VLM by applying our RNI algorithm. Based on this

despeckled VLM field (Fig. 3b), we then use RGI again to estimate

the VLM at a grid of evaluation points (Fig. 3c). Offshore areas are

clipped in the figures, because chequerboard tests (Fig 4. and Sup-

porting Information Fig. S1) reveal an expected lack of resolution

there. The same tests show that at the Eifel area 200 × 200 km and

100 × 100 km VLM patches (i.e. Fig 4. and Supporting Informa-

tion Fig. S1, respectively) can be significantly recovered at the 2σ ,

but that at the Massif Central area only the larger patches can be

resolved only at the 1σ level, because of there being fewer stations

there compared to the Eifel area. Because the results presented here

are part of a larger study that covers most of intraplate western Eu-

rope (Fig. 2), they do not suffer from boundary effects. Numerical

results are given in the Supplementary Material.

We observe an area of positive VLM over most of the Rhenish

Massif, including the EVF, and it is centred on the central Rhenish

Massif (Fig. 3c). This VLM signal is anomalous given that most of

intraplate Europe south of Scandinavia is subsiding, which likely re-

flects forebulge collapse related to GIA. Given that GIA models can

differ significantly, we choose to subtract from our results the VLM

predicted by the GIA model that is most consistent with our regional

observations of the rate of forebulge collapse (Husson et al. 2018).

When we present our result relative to this GIA model (Fig. 3d),

we find that the EVF uplift anomaly is the only coherent signifi-

cant signal (at the 2σ level) in NW Europe. The area of anomalous

uplift covers a roughly circular/oval area and includes most of the

west-central Rhenish Massif as well as southeastern Netherlands

(i.e. Limburg). The highest uplift is slightly above 1 mm yr−1 rela-

tive to the regional GIA-associated subsidence, and is located right

at the EVF. While VLM at the Massif Central is higher than in

surrounding areas in France, the VLM signal is insignificant (i.e.

at the 2σ level, but even so at the 1σ level, which suggest there

either does not exist a significant VLM anomaly or the anomaly

is much less than 200 × 200 km in scale (Supporting Information

Fig. S1)).

Note that our study also contains a couple areas of anomalous

subsidence (i.e. > 1 mm yr−1). Examples are the western Paris

Basin, the western part of The Netherlands, and the northernmost

part of The Netherlands (Groningen). Subsidence in the western

part of The Netherlands has previously been observed with InSAR

and is explained by peat decomposition (Caro Cuenca & Hanssen

2008). Subsidence in Groningen has previously also been detected

by InSAR (Ketelaar 2009) and is due to gas extraction (van Thienen-

Visser & Breunese 2015; Jagt et al. 2017). This anthropogenically

induced subsidence is the only significant negative VLM signal (at

the 2σ level) in our model, with imaged subsidence up to ∼6 mm

yr−1 (not corrected for GIA).

4.2 Horizontal deformation

We use the velocities derived from the horizontal time-series of the

same set of GPS stations used in the VLM analysis to infer the hori-

zontal strain rate field (a subset of the velocities is shown in Fig. 5a).

For all models the results are estimated on a 0.1◦ grid of evaluation

points. For almost all areas in our preferred model the strain rates

represent deformation for an area with ∼50–60 km radius (Sup-

porting Information Fig. S4a) and this is inherently controlled by

the station spacing and, more importantly, our choice to exclude

strain rate estimates based on stations that are close together. The

uncertainty in the dilatational strain rates is shown in Supporting

Information Fig. S4(b).

Numerical results are given in the Supplementary Material, and

we visualize the results in terms of style (Fig. 5b) and the dilatational

amplitude of the strain rate field (Figs 5c and d). We show the dilata-

tional strain rates, because in most places the strain rate tensor in the

study area is dominated by either extension or contraction. A large

part of the area is dominated by contractional strain rates, which

can be explained by contraction of the GIA forebulge, as evidenced

by the systematic rotation of the contraction direction in the regions

directly surrounding the former ice-sheet. In the southeastern part

of our model area, i.e. southern Germany, we see enhanced contrac-

tion that could be associated with Alpine shortening protruding into

intraplate Europe. The pattern of the wide-scale contraction appears

to be interrupted by a dilatational strain rate anomaly centred NNW

of the EVF and defined by significant ∼N-S oriented extension and

a maximum dilatation rate of ∼3.6 ± 0.9 × 10−9 yr−1. Furthermore,

the orientations of the contractional strain rates in most of the areas

directly surrounding the extension anomaly exhibit a radial pattern

oriented towards that anomaly. For the Massif Central we find a sig-

nificant (at the 2σ level) extensional strain rate anomaly just west of

the area of the most recent volcanic activity, with extension being

bi-axial and a magnitude of ∼1−2 × 10−9 yr−1. The pattern of con-

tractional strain rate around this extensional anomaly also shows a

radial pattern, as seen for the Eifel, but it is less convincing.

To illustrate the robustness of our results, we also show the results

for models with minimum triangle sizes at 50 per cent (i.e. mini-

mum ∼23 km radius, Supporting Information Fig. S5) and 150 per

cent (i.e. ∼71 km, Supporting Information Fig. S5) compared to our

preferred model. When the spatial scale is reduced, other strain rate

features appear but the only significant feature is a high-dilatation

feature centred at the same place as the extensional anomaly NNW

of the Eifel in our preferred model. When the spatial scale is in-

creased, the same anomaly persists but at a lower rate than in our
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1322 C. Kreemer, G. Blewitt and P. M. Davis

Figure 3. (a) Observed VLM, (b) despeckled VLM, (c) imaged VLM (outline of Rhenish Massif (green polygon), centre of Eifel plume (Ritter et al. 2001)

(black triangle) and Massif Central (purple triangle) are shown for reference), (d) imaged VLM corrected for GIA and shown only where corrected VLM > 2σ .

preferred model. We do observe extensional strain rates > 2 × 10−9

yr−1 just west of recent volcanism in the Massif Central when we

reduce the spatial scale (Supporting Information Fig. S5b), but for

that model (as well as for the one with increased spatial scale) the

dilatational strain rate anomaly is not significant at the 2σ level

(Supporting Information Figs S5c and S6c).

To illustrate that our preferred MELD-derived model is robust

against outlier velocities, we also present a model based on a set

of velocities minus outliers and that looks very similar (Supporting

Information Fig. S7) to the one presented in Fig. 5. Supporting In-

formation Fig. S8 shows a model that is based on velocities derived

from time-series that do not have CMC removed. That model shows

a significant contractional area of 2–3 × 10−9 yr−1 (with contraction

in NS orientation) in northern France, which is also present in the

model with the reduced spatial resolution (Supporting Information

Fig. S5b), and this anomaly was also recently observed by Masson

et al. (2019). We now show this anomaly to be mostly insignifi-

cant. Masson et al’s observation may either be an artefact of CMC

in the time-series possibly not entirely removed by their first-order

filtering and/or the fact that they assumed a spatial resolution that

is too small (given the data noise) and an underestimation of their

uncertainties (given that spatial scale). Finally, in Supporting In-

formation Fig. S9 we show, for comparison, a result based on the

original MELD algorithm that does not include the added spatial

averaging and which inherently more scattered, but still reveals the

major anomalies.
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3D GPS Surface Deformation above Eifel Plume 1323

Figure 4. (a) Input chequerboard with alternating +1 and −1 mm yr−1 VLM in 200 × 200 km cells. Open/closed triangle is location of Eifel and Massif

Central, (b) Imaged value at GPS locations, (c) Imaged VLM at 0.1◦ grid, (d) Imaged VLM where absolute value is ≥1σ of imaged VLM, (e) Imaged VLM

where absolute value is ≥2σ of imaged VLM.
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1324 C. Kreemer, G. Blewitt and P. M. Davis

Figure 5. (a) Observed horizontal velocities relative to the extension anomaly that encompasses the Eifel (panel b). For clarity, velocities which differ

> 0.25 mm yr−1 from the local velocity gradient are not shown. (b) Colours and vectors show style and (normalized) principal axes of strain rate tensor

(averaged over non-overlapping equal areas), respectively. Outline of Rhenish Massif and centre of Eifel and Massif Central are shown (black and purple

triangles, respectively). Also shown for reference are green dashed lines, which are ellipses around Scandinavia and to which contractional strain rates in the

northern part of the model are oriented orthogonally. Orange dashed circles indicates deviation from that pattern and highlights that contractional axes around

the Eifel and Massif Central are oriented radially to their respective extension anomalies, (c) contours are rate of dilatation (red is extension, blue is contraction)

and model velocities (based on inferred strain and rotation rates) are in same reference frame and with same scale as in (a). (d) Same contours as in (c), but

only where dilatation rate is > 2σ .

5 T H E E I F E L A N O M A LY

To further illustrate the significance of the VLM result across the

Eifel, we plot the results across the profile defined in Fig. 3d (Fig. 6).

The profile (corrected for GIA) highlights the broad nature and sig-

nificance of positive VLM across the broader Eifel/Rhenish Massif

area. We define the ‘Eifel Anomaly’ by the area where we see su-

perimposed significant uplift and significant extensional strain rate,

which is the same area where there is enhanced seismicity, the

EVF, and which sits above the imaged mantle plume (Fig. 7a). The

area undergoing the most significant extension is a bit offset NNW

from the area of largest uplift. The centre of the uplift anomaly

is, in turn, slightly offset to the north from the projected mantle

plume and coincides with the EVF. Across the anomaly, the max-

imum horizontal separation rate is ∼0.33 mm yr−1 (in a roughly

NS direction), compared to the maximum GIA-corrected uplift of

∼1 mm/yr.
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Figure 6. GIA-corrected VLM for profile shown in Fig 3(d). Open circles are original VLM (inside profile box), orange squares are despeckled VLM (errors

bars are 1σ ), red line is imaged VLM along profile, dark and light blue outline is 1σ in imaged VLM defined, respectively, by deviation from original VLM

and despeckled VLM.

Figure 7. (a) Colours are imaged VLM corrected for GIA, vectors are principal axes of horizontal strain rate tensor (averaged over non-overlapping equal

areas), purple dashed line outlines area of significant dilatation rate (at 2σ level). Focal mechanisms of regional studies (Hinzen 2003; Camelbeeck et al. 2007),

colour coded for the implied extensional (red), contractional (blue), or strike-slip (green) deformation. Blue dots are centres of Quaternary EVF activity, and

black lines are seismogenic faults (Basili et al. 2013). Green outline is Rhenish Massif and triangle is the projected centre of Eifel plume (Ritter et al. 2001).

(b) VLM and strain rate predicted from our best-fitting plume model. Green star is centre of gain function applied to vertical force.

We do not correct the horizontal strain rate model for the effect of

GIA. Available GIA models do either not present/predict horizontal

motions (e.g. Husson et al. 2018; Simon et al. 2018) or their hori-

zontal prediction is questionable, as Kreemer et al. (2018) showed

to be the case for the ICE6G C(VM5a) model (Argus et al. 2014;

Peltier et al. 2015) in North America. From looking elsewhere in our

model we assess that there could be ∼1 × 10−9 yr−1 NNE-oriented

contraction related to GIA at the latitude of the Eifel Anomaly. So,

if we would have attempted a GIA correction, it would increase

the extensional strain rate at the Eifel anomaly by that amount. We

furthermore note that in the plume modelling, discussed below, we

do account for gradients in strain rates, which could be there partly

due to GIA.

6 P LU M E M O D E L L I N G

We use a simple model to test if a buoyant plume can explain the

long-wavelength 3-D surface deformation. A rising plume will ex-

ert dynamic and buoyancy forces on the elastic lithosphere and we

focus here on the buoyancy forces. In order to mimic those forces

coming from a mantle plume head, we model them as a bi-modal

Gaussian areal distribution of half-space vertical forces (Mindlin

1936; Anderson 1937) exerted on a plane at depth (corresponding

to the elastic lithosphere). The relationship between surface de-

formation is schematically given as: [u,v,w] = A(x,y:σ 1,σ 2,θ ,c) ×

F(u,v,w:x,y,c). The 3-D surface deformation is represented here as

displacement rates (u,v,w, being east, north and vertical velocities,
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1326 C. Kreemer, G. Blewitt and P. M. Davis

Table 1. Plume model parameters (see the text for explanations).

Parameter Value st. dev.

Vertical Force F (1e11 N) 15.6438 0.1194

σ 1 (km) 186.5662 1.6380

σ 2 (km) 105.4722 1.2793

Lon0 (◦ E) 6.5000 0.0101

Lat0 (◦ N) 50.5000 0.0050

θ (radians CCW from East) 0.2542 0.0082

u0 (regional offset, mm) 0.3502 0.0064

v0 (regional offset, mm) − 0.0113 0.0001

w0 (regional offset, mm) − 0.0016 0.0002

du/dE (regional slope, mm km−1) 0.2421 0.0069

du/dN (regional slope, mm km−1) − 0.7635 0.0124

dv/dE (regional slope, mm km−1) − 0.0001 0.0002

dv/dN (regional slope, mm km−1) 0.0048 0.0002

dw/dE (regional slope, mm km−1) − 0.0130 0.0002

dw/dN (regional slope, mm km−1) − 0.0103 0.0002

dexx/dE (regional slope, mm km−1) 0.0136 0.0005

dexx/dN (regional slope, mm km−1) − 0.0230 0.0005

deyy/dE (regional slope, mm km−1) − 0.0158 0.0004

deyy/dN (regional slope, mm km−1) 0.0297 0.0006

dexy/dE (regional slope, mm km−1) − 0.0083 0.0004

dexy/dN (regional slope, mm km−1) 0.0026 0.0005

Figure 8. Graphical representation of gain function A(x,y). See the text for

explanation.

respectively), but we also invert for strain rates. The gain function,

A(x,y), is a normalized bi-modal Gaussian amplitude distribution

with standard deviations (σ 1,σ 2), centred on x0,y0, with a rotation

relative the East axis (θ ), and a fixed depth of c = 50 km, and F is

the vertical force. This 6-parameter model is fit to the measured dis-

placement and strain rates, with regional trends removed. Removing

the regional trends involves linear fits that added another 9 param-

eters, for a total of 21. The gain function has a maximum value

of 1 at its origin and is evaluated on a grid of 40 km spacing that

spans the area (515 × 422 km). Given it is a coarse model, smooth-

ing of the horizontal displacements is necessary, and the resultant

strains. A smoothing boxcar of 110 km was used on both horizontal

velocities and strain data and corresponding model values, but not

on the vertical data. The kinematic indicators are evaluated on an

∼10 km grid. The associated matlab program is made in available

in the Supplementary Material.

For our best-fitting model, we find the half-widths of the bi-

modal Gaussian distribution to be 174 and 98 km in the roughly

EW and NS directions, respectively, and the centre is found at

50.5◦ N 6.4◦ E. Table 1 lists all the model parameters, and Fig. 8

graphically shows function A. Our simple model adequately fits the

long-wavelength measured displacement and strain rates (Fig. 7b

and Supporting Information Fig. S10). We constrain the plume

head to be at 50 km depth (consistent with imaged depth of LAB

and plume head (Budweg et al. 2006; Mathar et al. 2006)), because

of trade-offs between the Gaussian widths and the depth of the

model. Supporting Information Fig. S11 shows the predicted surface

deformation for the best-fitting model that forces the depth to be at

27 and 100 km.

7 D I S C U S S I O N A N D C O N C LU S I O N S

The remarkable superimposition of significant uplift, horizontal ex-

tension, and volcanism in the Eifel area strongly suggests a causal

relationship with the putative underlying mantle plume. The circu-

lar VLM pattern is consistent with the Quaternary uplift but at odds

with studies, some specific to the Eifel area, that predict an undulat-

ing pattern (Burov & Guillou-Frottier 2005; Guillou-Frottier et al.

2007; Burov & Gerya 2014). Those predicted undulations are at

a shorter wavelength than when just having a central dome, but if

those undulations were present we would have expected to see those

in the VLM field as we can resolve 100 km wide anomalies around

the Eifel (Supporting Information Fig. S1).

To first order, most model studies would predict to find uplift

(Campbell 2005; Dannberg & Sobolev 2015) and extension (Burov

et al. 2007; Cloetingh et al. 2013) above a buoyant mantle plume.

Indeed, we obtain a good regional fit to the long-wavelength aspects

of the surface deformation by applying buoyancy forces related to

the plume head at the bottom of the lithosphere. This is the sim-

plest model consistent with seismic evidence, but it should be noted

that an actual inversion for the depth is very poorly constrained.

For example, placing the force distribution at crustal level could

fit our observations too (Supplementary Supporting Information

Fig. S11). There is, however, no evidence of a regional magmatic

sill, although seismic velocities in the lowermost crust underneath

most of the Rhenish Massif are found to be significantly reduced

(Prodehl et al. 2006). We also note that the surface deformation con-

tains some details (such as some sharp edges in the uplift anomaly)

which our simple model does not fit. The fit may improve when

considering lateral variations in the strength of the lithosphere as

caused by plume-induced thermal weakening, which would also

require a shallower source (Garcia-Castellanos et al. 2000). Fur-

thermore, the asymmetry of the deformation pattern and its offset

from the imaged plume could be a consequence of the plume being

tilted and/or the interaction between a rising plume and a moving

plate (Wüllner et al. 2006).

Based on river terrace elevation data, the Rhenish Massif is

known to have uplifted since ∼700–800 ka (i.e. the same time

as Quaternary Eifel volcanism commenced), with maximum uplift

between ∼140 m (Westaway 2001; Demoulin & Hallot 2009) and

250 m (Van Balen et al. 2000; Meyer & Stets 2002) centred on

the Eifel area, where we see the highest uplift. These data imply

∼0.1−0.3 mm yr−1 of average uplift since ∼700−800 ka. Such

rate is considerably lower than we find here and could either be

evidence that uplift has increased since the onset of the volcanism

in the late Quaternary or that the loading/unloading effect related to

glacial periods causes the net VLM to vary considerably over time.

From our spatially integrated force and the first-order assumption

that the plume has effectively been buoyant since between 250 ka

(to explain 250 m Quaternary uplift) and 800 ka (at today’s rate)

ago, we estimate that a 360 km (i.e. 410 minus 50 km) high plume
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requires a ∼57−184 kg m−3 density reduction (i.e. ∼0.7−5.6 per

cent of a 3300 kg m−3 dense reference mantle), which is consistent

with observed seismic velocity reductions (Ritter 2007).

Although the EVF is found in what is typically referred to as

intraplate Europe, the area near the EVF is seismically unusually

active (Fig. 1). Much of that seismicity is attributed to faulting

within the Lower Rhine Embayment (LRE) (Hinzen & Reamer

2007), and those faults appear to have increased their slip rate since

the same time as the onset of late Quaternary uplift and volcanism

(∼700−800 ka) (Gold et al. 2017). In this area of highest seismic

activity we also find the highest extension rates. We particularly note

that the roughly N−S oriented extension we find above the LRE

is favourably orientated to generate extensional earthquakes along

the normal faults within the LRE, as evidenced by the orientation

of the mostly extensional earthquakes there (Plenefisch & Bonjer

1997; Hinzen 2003; Camelbeeck et al. 2007) (Fig. 7a). Our findings

suggest that the surface deformation imposed by the Eifel plume

explains why the LRE is so much more seismically active than many

of the faults associated with other failed rifts in Europe (such as the

Upper Rhine Graben (URG) between the Eifel and Alps). In fact,

we see no deformation anomaly (horizontal or vertical) along the

URG that could be interpreted as localized extension; a finding that

is consistent with some prior studies (Rózsa et al. 2005; Tesauro

et al. 2005), but inconsistent with others (Campbell et al. 2002;

Fuhrmann et al. 2013, 2015).

Recently, it was also found that low-frequency seismic swarms

occur in the lower crust underneath the Laacher See (Hensch

et al. 2019). This activity was interpreted as the vertical migra-

tion of magma or magmatic fluids. Those findings, when com-

bined with ours (as well as observations of continual gas emissions

(Griesshaber et al. 1992; Aeschbach-Hertig et al. 1996; Buikin

et al. 2005; Bräuer et al. 2013; Caracausi et al. 2016) and degassing

events being correlated with seismicity (Berberich et al. 2019)),

strongly suggest that the EVF is an active dynamic system.
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Supplementary data are available at GJI online.

supplementary-material.pdf

Figure S1. (a) Input chequerboard with alternating +1 and –1 mm

yr−1 VLM in 100 × 100 km cells. Open/closed triangle is location

of Eifel and Massif Central; (b) imaged value at GPS locations; (c)

imaged VLM at 0.1◦ grid; (d) imaged VLM where absolute value

is ≥1σ of imaged VLM; (e) Imaged VLM where absolute value is

≥ 2σ of imaged VLM.

Figure S2. (a) Standard deviation defined relative to observed sta-

tion VLM. (b) Standard deviation defined relative to despeckled

VLM.

Figure S3. (a–d) Same as Fig. 3 and (e) same as Fig. 6 but all results

based on VLM derived from time-series not filtered for common-

mode errors

Figure S4. (a) Spatial scale of strain rate estimate expressed as the

radius of a circle whose area is the median area of all triangles

considered in the strain rate estimation. (b) Standard deviation in

the dilatation rate.

Figure S5. Same as Fig. 5(b)–(d) but with a spatial scale that is 50

per cent of preferred model.

Figure S6. Same as Fig. 5(b)–(d) but with a spatial scale that is 150

per cent of preferred model.

Figure S7. Same as Fig. 5(b)–(d) but with outlier velocities

(>1.5 mm yr−1) removed before modelling.

Figure S8. Same as Fig. 5(b)–(d) but based on velocities derived

from time-series that had no common-mode errors removed.

Figure S9. This result is based on the MELD algorithm as originally

presented (Kreemer et al. 2018).

Figure S10. Left: observed (stars) and modelled vertical and hor-

izontal velocities middle of the model in E–W direction: blue is

vertical, red is NS and black is EW velocities, respectively. Right:

Same in N–S direction.

Figure S11. Same as Fig. 7(b) but for different depths: (a) 27 km

and (b) 100 km

Please note: Oxford University Press is not responsible for the con-

tent or functionality of any supporting materials supplied by the

authors. Any queries (other than missing material) should be di-

rected to the corresponding author for the paper.

A P P E N D I X : W E I G H T E D AV E R A G E A N D

I T S VA R I A N C E

For each evaluation point we wish to obtain the weighted average

(W) of the N strain rate estimates mi, i = 1,. . . , N, consisting of the

estimate at the evaluation point itself and those at other evaluation

points within a certain distance. The weights (wi) are defined as

σ−1
i i , normalized by

N
∑

i=1

wi , and σi i = σ 2
i with σ i being the standard

deviation in mi. The expected value of W is given by

E [W ] =

N
∑

i=1

wi mi (A1)

and the variance in W by

Var [W ] =

N
∑

i=1

w2
i σi i + 2

∑

i �= j

wiw jσi j . (A2)

The question is what is σ ij, that is, the covariance between mi and

mj? In our case, each estimate of mi and mj can be thought of as

an average of strain rates (although it is really part of a multivariate

median) for Ti and Tj number of triangles, respectively, and those are

based on GPS velocities at Pi and Pj points, respectively. Unlike the

triangles, the sets of used GPS points provide a straightforward mea-

sure of interdependency between mi and mj. We therefore propose

the following definition of the covariance between two estimates

(E1 and E2) based on P1 and P2 observations, respectively,

Cov [E1, E2] ≈
p0

2

(

P1Var (E1) + P2Var (E2)

P1 P2

)

(A3)

where p0 is the number of common GPS stations that were used in

both estimations.

The proposed covariance (A3) has the following natural proper-

ties:

(1) If the estimations do not use common stations, they are un-

correlated: i.e. p0 = 0 and thus Corr(E1,E2) = 0.

(2) If the estimations use the same stations, they are fully corre-

lated: i.e. p0 = P1 = P2. and thus Corr(E1,E2) = 1.

(3) If the two estimations have very different variances (and the

station number is approximately the same), the examined covariance

is mostly affected by the largest variance.

The approximation in (A3) is based on the following general and

conceptual case. Consider a set of independent random variables

X1, ...., X p0+p1+p2
. Assume that the estimation E1 at the first loca-

tion uses P1 = p0 + p1 observations, and the estimation E2 at the

first location uses P2 = p0 + p2 observations in such a way that

p0 observations (and only those ones) are used at both locations.

Specifically, we may assume that both locations use the common

observations

{

X1, ...., X p0

}

.

In addition, the first location used the unique observations

{

X p0+1, ...., X p0+p1

}

and the second location uses the unique observations

{

X p0+p1+1, ...., X p0+p1+p2

}

.

For convenience, we denote the observations used at the first

locations Yi, i = 1,. . . , P1, and the observations used at the second

location Zi, i = 1,. . . , P2, in such a way that Yi = Zi = Xi for all
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i = 1,. . . , p0. Let us assume that the examined estimations are the

sample averages:

E1 ≡ X̄1 =
1

P1

P1
∑

i=1

Yi E2 ≡ X̄2 =
1

P2

P2
∑

i=1

Z i

The covariance between X̄1 and X̄2 is then given by:

Cov
(

X̄1, X̄2

)

= 1
P1 P2

Cov

(

P1
∑

i=1

Yi ,
P2
∑

i=1

Z i

)

= 1
P1 P2

Cov

(

n0
∑

i=1

Yi +
P1
∑

i=n0+1

Yi ,
n0
∑

i=1

Z i +
P2
∑

i=n0+1

Z i

)

= 1
P1 P2

Cov

(

n0
∑

i=1

X i +
P1
∑

i=n0+1

Yi ,
n0
∑

i=1

X i +
P2
∑

i=n0+1

Z i

)

= 1
P1 P2

Cov

(

n0
∑

i=1

X i ,
n0
∑

i=1

X i

)

= 1
P1 P2

V ar

(

n0
∑

i=1

X i

)

= σ 2 p0

P1 P2

Observe that

σ 2 = V ar
(

X̄1

)

P1 = V ar
(

X̄2

)

P2

and accordingly

Cov
(

X̄1, X̄2

)

= V ar
(

X̄1

) p0

P2

= Var
(

X̄2

) p0

P1

.

However, the assumption of equal variance σ 2 might be violated.

We hence suggest, as a simple heuristic device, to estimate the

covariance as the following average:

Cov
[

X̄1, X̄2

]

≈
1

2

(

Var
(

X̄1

) p0

P2

+ Var
(

X̄2

) p0

P1

)

which is equivalent to (A3).
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