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GEODETIC GRAPHS OF DIAMETER TWO 

BoHDAN ZELINKA, Libcrec 

(Received November 19, 1973) 

Geodetic graphs were defined by O. ORE [1] as graphs in which to any pair of 
vertices there exists a unique path of minimal length joining them. For example, an 
arbitrary tree is a geodetic graph. Planar geodetic graphs were studied by J. G. 
STEMPLE and M. E. WATKINS [2]. Here we shall give some results concerning geodetic 
graphs of diameter two. 

If a graph is geodetic of diameter two, then it does not contain multiple edges and 
any pair of its distinct vertices either is joined by an edge, or is connected by a unique 
path of the length two. 

Theorem 1. Let G be a geodetic graph of diameter two and of vertex connectivity 
degree one. Then G contains exactly one cut-vertex and each block of G is a clique. 

Proof. As G has vertex connectivity degree equal to one, it contains at least one 
cut-vertex. Suppose that it has two distinct cut-vertices a^ and a2. Let G' be the union 
of all simple paths joining a^ and a2 in G; the graph G' is a connected subgraph of G 
consisting of one or more blocks of G. Let G" be the graph obtained from G by deleting 
all edges of G' and all vertices of G' except a^ and a2. Evidently G' is disconnected and 
the vertices a j , «2 ^^^ ^^ different connected components of G". As they are cut-
vertices in G, they cannot be isolated in G'\ Thus let b^ or ^2 be a vertex joined with a^ 
or a2 respectively by an edge in G". Then any path in G joining b^ and ^2 must contain 
both a I Sind a2, therefore its lepgth is at least three, which is a contradiction with the 
assumption that G has diameter two. Therefore G has exactly one cut-vertex; denote 
it by a. Let w, v be two vertices lying in distinct blocks of G and both distinct from a. 
Any path joining и and v must contain a. As G has diameter two, there exists a path 
joining и and v of length two. This path contains only the vertices u, a, v, therefore 
there exist edges au, av. As и and v were chosen arbitrarily, we have proved that each 
vertex of G distinct from a must be joined by an edge with a. Now let MJ, «2 be two 
distinct vertices of the same block of G, ŵ  ф a, W2 + ci. Suppose that they are not 
joined by an edge. Then their distance is two; there exists a path PQ of length two 
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joining them which has the edges aw^, au2. As G is geodetic, no other path of length 
two joining Wi and и2 may exist. However, as м̂  and и2 lie in the same block, there 
exists at least one simple path joining u^ and и2 and having no vertex in common 
with PQ except u^ and 1/2- Let P be such a path of minimal length, let this length be /; 
obviously / ^ 3. Let the vertices of P be Wj = WQ, WJ, ..., Ŵ  = W2 and the edges 
w^Wi + i for z = 0, 1, . . . , / — 1. The vertices u^ = WQ and W2 are not joined by an 
edge; otherwise by deleting the vertex w^ and the edges WQW^, W1W2 and by adding 
the edge W0W2 we should obtain a path of length / — 1 joining u^ and и2, which 
would be a contradiction with the minimality of P. Therefore the distance of WQ 
and W2 is two. But they are joined by two different paths of the length two; one of them 
contains the edges WQW^, W1W2, the other contains awo, aw2. We have obtained a con­
tradiction. Thus we have proved that any two vertices of the same block of G are 
joined by an edge and each block of G is a cHque. 

Fig, 1 shows examples of such graphs. 

Fig. 1. 

Theorem 2. Let G be a geodetic graph of diameter two and of vertex connectivity 
degree at least two. Let G contain a clique К with at least two vertices. Then G 
contains an induced subgraph L described in the following way: L contains К as 
as a subgraph and, moreover, it contains the vertices f(u) for each vertex и of К, 
the vertex w and the edges uf(u),f(u) w for all vertices и of К. The vertices f(u) 
for all и of К and w are pairwise distinct and do not belong to K. 

Proof. First suppose that К is a maximal chque of G, i.e., that it is not a proper 
subgraph of another cHque. The cKque К must be a proper subgraph of G; other­
wise G would have diameter one. As G is connected, there exists at least one vertex 
of G not belonging to К and joined by an edge with a vertex of K; if the latter is Wj, 
then the former will be denoted by/(wi) . As the vertex connectivity degree of G is 
at least two, there exists a path P connecting/(wi) with a vertex of X which does not 
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contain Wi. If we go along P from/(wi), let U2 be the first vertex of К which we meet. 
Let the vertex of P preceding и2 be /(«2). Suppose /(^2) =f{^i)- If the clique К 
consists only of two vertices Wi,W2 then the vertices ^1,^25/(^1) form a cHque 
containing X as a proper subgraph, which is a contradiction with the maximaHty ofK. 
If К has more than two vertices, let г; be a vertex of К distinct from ŵ  and W2. There 
exist two paths of length two between/(wi) and v; one of them has the edges/(wj) u^, 
u^v, the other/(wi) W2, U2V. Therefore Дм 1) and v cannot have distance two, they 
must be joined by an edge. As v was chosen arbitrarily,/(wj) must be joined by edges 
with all vertices of i^ and i^ is a proper subgraph of the chque induced by all vertices 
of К and/(wi). We have proved/(м^) +/(1^2). Now suppose that/(wi) and/(1/2) 
are joined by an edge. Then the vertices MI,/(W2) are joined by two paths of length 
two. One has the edges u^ f{u^, f{u^) f{u2), the other has the edges M1W2, W2/(w2)-
This means again that u^ and/(1/2) must be joined by an edge. Analogously U2 and 
/(wj) must be joined by an edge. If К contains only two vertices, the vertices м ,̂ ^2, 
f{ut),f{u2) induce a cHque properly containing K. ïf К contains a vertex v distinct 
from Wi and U2, then v is connected with/(w^) by two paths of length two; one 
contains the edges vu^.u^fiu^), another the edges Î̂ W2J "2/(^1). Therefore also v 
is joined with/(Mi). Analogously we prove that v is joined with/(w2). Therefore all 
vertices of К are joined with both/(Mi) and/(M2) and the vertices of К together with 
f{ui) and/(M2) induce a chque properly containing K. We have proved that/(Mi), 
/(«2) are not joined by an edge. They must be connected by a path of length two; 
let its inner vertex be w. Suppose that w belongs to K. We have either w ф ŵ  or 
w Ф W2; without a loss of generality let w Ф u^. Then/(Mi) is joined by edges with 
two vertices of X, namely, w ,̂ w. Analogously as in the case/(Mi) = f{u2) we prove 
that/(Mi) is joined with all vertices of X and we have again a clique properly con­
taining K. Thus w is not in K. Evidently also w ф /(wi), w Ф /(^2). Suppose that w 
is joined by an edge with a vertex v of X. Without a loss of generality let again v Ф u^. 
Then the vertices v,f{ui) are connected by two paths of length two; one contains 
the edges vu^, Uif(uj,), the other the edges vw, wf{u^). Therefore v and/(wi) must 
be joined by an edge, which is not possible as proved in the case when w was supposed 
to be in X. The vertex w has distance two from all vertices of X. Let x be a vertex 
of X, X Ф Wi, let/(x) be the inner vertex of the path of length two connecting w and x. 
The vertex f(x) is not in X, because otherwise w would be joined by an edge with 
a vertex of X, which was proyed to be impossible. If f{x) =/(wi), then this vertex 
would be joined by edges with both u^ and x, which is also impossible; the proof is 
analogous to that of the inequality/(м^) ф/(и2)- In the same way we prove that 
/(x) Ф /(1^2)- Analogously to the above proofs we can prove that for any x and у 
of К (not excluding Ui and и 2), x Ф y,WQ have/(x) Ф f{y) and these vertices are not 
joined by an edge. We can prove also that for x ф д̂  the vertices/(x), у are not joined 
by an edge; this is analogous to the proof that/(w^) is not joined with 1/2- We have 
obtained the induced subgraph L of G. It remains to prove the assertion in the case 
when X is not a maximal cHque. Then there exists a maximal clique KQ containing X 
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as a subgraph. We construct the graph Lo for KQ analogously as L for К in the 
previous case. The subgraph of Lo induced by the set of vertices of iC, by the vertices 
f{u) for и from К and by w is the required subgraph L. 

Note that any L is itself a geodetic graph of diameter two and vertex connectivity 
degree at least two. For any n ^ 5, finite or infinite, we can construct L with n 
vertices. We conclude 

Corollary. A geodetic graph of diameter two and of vertex connectivity degree 
at least two can have an arbitrary number of vertices greater than or equal to five. 

Some graphs L are in Fig. 2. 
Nevertheless, there are also geodetic graphs of diameter two and of vertex con­

nectivity degree at least two which have not this form. The well-known Petersen 
graph in Fig. 3 is such a graph. 

m.) m 
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Theorem 3. Let С be a circuit of length five of a geodetic graph G of diameter 
two. Then either С has no diagonal edges or the set of vertices of С induces a clique 
ofG. 

Fig. 3. 

Proof. Let the vertices of С be u^, Ui, u^, 1/4, ul and the edges W1M2, 2̂̂ 3» W3M4, 
M4W5, M5M1. Suppose that С has a diagonal edge; without a loss of generality we may 
suppose that this edge is u^u^. Then u^ and и4. are connected by two paths of length 
two; one contains the edges u^u^, W3M4, the other contains W1W5, W4M5. Therefore u^ 
and W4 must be joined by an edge and the vertex u^ is joined by edges with all vertices 
of C. But analogously, from the existence of the diagonal edge u^u^ or M1M4 we can 
prove that also u^ or W4 respectively is joined with all other vertices of C. Now we 
have edges U2U4., u^u^ and their existence implies that also и2 and и5 are joined 
with all vertices of С (except itself). The vertex set of С induces a clique of G. 

Theorem 4. Let G be a geodetic graph of diameter two and of vertex connectivity 
degree at least two. Then to any two distinct vertices of G there exists a circuit of 
length five without diagonal edges containing both of them. 

Proof. If these two vertices are joined by an edge, they induce a clique К and 
according to Theorem 2 there exists an induced subgraph L of G which contains К 
and is a circuit of length five (the first graph in Fig. 2). Now let м, v be two vertices 
of G not joined by an edge. There exists a path P^ of length two joining them; let its 
inner vertex be w. As G has the vertex connectivity degree at least two, there exists 
at least one path joining и and v and not containing w. Let P be such a path of the 
minimal length /; evidently / ^ 3. If / = 3, we have obtained a circuit of length 
five which is the union of P^ and P. If Z > 3, then let the vertices of P be м = XQ, 
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Xi, ...,Xi = V and let the edges of P be x^x^+i for i = 0, 1 , . . . , / - 1. The vertices 
XQ, ХЗ must have distance one or two; therefore there exists a path P^ of length one 
or two joining XQ and X3. The union of P^ and of the subpath of P joining X3 and X; 
is a path of length / - 1 or / - 2 joining и and v, which is a contradiction with the 
minimaUty of /. Therefore / = 3 and we have a circuit С of length five which is the 
union of PQ and P. It remains to prove that С has no diagonal edge. If С had some 
diagonal edge, then according to Theorem 3 the vertex set of С would induce a clique 
of G and и and v would be joined by an edge, which would be a contradiction. 
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