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SUMMARY
A conservative staggered-grid finite difference method is presented for computing the
electromagnetic induction response of an arbitrary heterogeneous conducting sphere
by external current excitation. This method is appropriate as the forward solution for
the problem of determining the electrical conductivity of the Earth’s deep interior. This
solution in spherical geometry is derived from that originally presented by Mackie
et al. (1994) for Cartesian geometry. The difference equations that we solve are second
order in the magnetic field H, and are derived from the integral form of Maxwell’s
equations on a staggered grid in spherical coordinates. The resulting matrix system of
equations is sparse, symmetric, real everywhere except along the diagonal and ill-
conditioned. The system is solved using the minimum residual conjugate gradient
method with preconditioning by incomplete Cholesky decomposition of the diagonal
sub-blocks of the coefficient matrix. In order to ensure there is zero H divergence in
the solution, corrections are made to the H field every few iterations. In order to
validate the code, we compare our results against an integral equation solution for an
azimuthally symmetric, buried thin spherical shell model (Kuvshinov & Pankratov
1994), and against a quasi-analytic solution for an azimuthally asymmetric configuration
of eccentrically nested spheres (Martinec 1998).

Key words: electrical conductivity, electromagnetic induction, electromagnetic modelling,
mantle, numerical techniques.

it is also an indicator of state (e.g. partial fraction of melt),
1 INTRODUCTION

composition (e.g. iron content) and the presence of volatiles.
The electrical conductivity in the mid-mantle increases withSeismology and electromagnetic induction provide the only
depth, particularly near the 410 km seismic discontinuity, andmeans of propagating energy into the Earth’s deep interior,
near and below the 660 km discontinuity (Schultz et al. 1993;and using this to sense the internal structure and properties of
Xu et al. 1998a,b; Olsen 1999).the mantle from observations at the surface. Realistic estimates

of the radial dependence of the electrical conductivity of the Strong lateral heterogeneity has been detected in mantle
electrical conductivity. Geographically distributed responseupper mantle have been available for 60 years (Lahiri & Price

1939; Banks 1969). Historically, no methods were available functions have been calculated in the period range 2 days to
1 year, under the assumption that the source fields arise fromto model the lateral heterogeneity of global-scale mantle con-

ductivity structure, nor were digital catalogues of geomagnetic the relaxation phase of Dst activity. Such response functions
have been found to be simultaneously consistent with regionalobservatory data of sufficient spatial density and quality to

warrant such analysis. This has greatly diminished the role 1-D earth structure, and at mid-latitudes with cos h colatitudinal
dependence of the source potential (Schultz & Larsen 1987).played by electromagnetic methods in geodynamical studies of

the Earth’s deep interior. Rather, our present knowledge of the It has been established formally that no global 1-D model exists
that fits this global magnetic observatory data set to withinupper and mid-mantle comes primarily from seismology, and

our understanding of this region is based largely on its elastic statistical bounds (Schultz & Larsen 1990). Furthermore,
analysis of 1-D conductivity sounding profiles calculatedparameters.

The electrical conductivity of the materials comprising the from magnetic observatory data reveals significant regional
variability (Schultz 1990).Earth’s mantle is strongly dependent upon temperature, but
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Recently, deep magnetotelluric (MT) experiments have been solvers used to reconstruct the electrical conductivity distri-
bution in the upper to mid-mantle. At the present time, regionalconducted that have substantially increased the resolving
scalar electromagnetic response functions are available (e.g.power of EM investigations of the upper mantle. These have
Schultz & Larsen 1987) that have been calculated with statisticalincluded multiyear experiments on continents using long electric
uncertainties (standard errors) of 3–5 per cent. More recentdipoles (Egbert et al. 1992; Egbert & Booker 1992; Schultz
analysis of a greatly expanded geomagnetic database, takinget al. 1993; Bahr et al. 1993), and also seafloor experiments
into account a more sophisticated source field model (Fujii &employing abandoned submarine telecommunications cables
Schultz 1998) is considerably enlarging the geographical coverage(Lizarralde et al. 1995; Fujii et al. 1995). A correspondence
of such response functions. This work will ultimately result inbetween patterns of electrical heterogeneity and tectonic regime
increased sensitivity to 3-D structure in the mantle.(e.g. Lizarralde et al. 1995; Schultz & Semenov 1993) has been

The statistical confidence level for these new more geo-observed. Such experiments confirm that there are substantial
graphically complete response estimates is similar to thoselevels of lateral electrical heterogeneity in the upper mantle.
calculated previously. Given that the response functions arePetrological evidence as well as laboratory results applied to
calculated from ratios of field components, or ratios of spatialsamples of olivine of varying composition (e.g. Hirsch et al.
gradients in the fields (Olsen 1998; Schultz & Zhang 1994), it1993; Hirsch & Shankland 1993) also sustain this view. Lateral
is necessary to calculate the fields from a given model with anvariations in conductivity are expected as regionally distinct
accuracy substantially better than the level of uncertainty ingeotherms are mapped into regional variabilities in electrical
the observed response functions. For the present work, we deemconductivity.
a forward solution to be suitably accurate if, upon comparisonThis recent progress in regional deep conductivity investi-
with the other numerical or (quasi-)analytical solutions, thegations has stimulated renewed interest in conduction mech-
mismatch between the anomalous part of the calculated fieldsanisms in the upper mantle through the transition zone.
at the Earth’s surface is within 1 per cent.Enhanced electrical conduction can result from the presence

The realization that electromagnetic induction methods mayof hydrogen, and the contamination by volatiles of the impure
play a renewed role in deep geodynamical investigations hassemiconductors comprising the upper mantle (Bai & Kohlstedt
led several workers recently to develop new 3-D forward1993; Karato 1990; Shankland & Duba 1997). A ‘wet’ rather
solution methods. Zhang & Schultz (1992) introduced a vectorthan ‘dry’ olivine model has therefore been proposed to account
Helmholtz equation formulation based on the solution offor elevated upper mantle conductance (Schultz et al. 1993;
the perturbation of the potentials about an underlying 1-DLizarralde et al. 1995), particularly at depths between 200
solution. Schultz & Pritchard (1998) used this approach as

and 410 km.
the basis for generating the first 3-D inverse model of the

The upper mantle mineral Mg1.8Fe0.2SiO4 olivine transforms
conductivity of the upper and mid-mantle. A larger degree

to the polymorph wadsleyite at pressures corresponding to
of heterogeneity was found to be required for some regions

410 km depth, and to ringwoodite at approximately 520 km
than could be accommodated accurately by the perturbation

depth, finally disproportionating to (Mg,Fe)-SiO3 perovskite+
method, leading to an acceptable rms misfit of approximately

(Mg,Fe)O at depths near 660 km. Both upper mantle polymorphs
1.0 at most locations, but a statistically undesirable global rms

have been found to have nearly two orders of magnitude
misfit of approximately 2.0.

higher conductivity than olivine (Xu et al. 1998). This may also
Everett & Schultz (1996) devised a 3-D finite element

help to reconcile the difference between laboratory measure-
forward solution using spherical polyhedra. This approach was

ments for dry single-crystal olivine and field observations that
free from the perturbation expansion restriction of mild lateral

require a higher upper mantle conductance. Xu et al. (1998) conductivity heterogeneities. Tarits et al. (1999) have devised
suggested that a conductivity jump of roughly two orders of a spectral solution for a 3-D heterogeneous earth suitable for
magnitude between 400 and 500 km, observed by Schultz et al. examining internal induction due to time-varying currents in
(1993) beneath the central Canadian Shield, may primarily the core, and also external induction due to magnetospheric
reflect the phase transition between olivine and wadsleyite and ionospheric current sources. Martinec (1999) has recently
at 410 km. applied a spectral–finite element approach to the problem of

The upper mantle conductivity is therefore expected to external electromagnetic induction in an arbitrary hetero-
contain the signature of thermally activated electrical con- geneous conducting sphere. A variety of special solutions
duction processes, of mineral phase transitions, as well as of the have also been devised, including quasi-analytical solutions for
time-integrated effects of mantle convection. This is expressed axisymmetric eccentrically nested conducting spheres (Everett
through contamination of the upper mantle by lithospheric & Schultz 1995); asymmetric eccentrically nested spheres
materials introduced through plate subduction. Above the (Martinec 1998); a buried shell (Kuvshinov & Pankratov 1994)
transition zone, the effect of thermal gradients and the presence and multishells (Kuvshinov et al. 1998), which are based on the
of volatiles and melt may lead to variations in conductivity of modified iterative–dissipative method (Singer 1995). Recently,
several orders of magnitude across a given convection cell. Koyama & Utada (1998) have applied this method to the
In contrast, lateral variations in electrical conductivity in problem of an arbitrary heterogeneous conducting sphere. The
the lower mantle may be less than one order of magnitude existence of such a range of forward solutions makes it feasible
(Shankland et al. 1993). to compare the various new forward solvers against each other,

The mineralogical and experimental case for substantial and against potentially accurate quasi-analytic solutions. Such
heterogeneity in upper mantle conductivity has stimulated the a project involving all the principal groups working in this
development of methods for solving Maxwell’s equations in a area (those referenced above, as well as other workers in
heterogeneous conducting sphere. Such forward solutions, if Russia and the USA) is currently underway, and the results

will be reported in a subsequent publication.suitably accurate, may then be used as the basis for inverse
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The recognition that some of the newly developed 3-D sair=0 (e.g. Everett & Schultz 1996), then at low frequencies
forward solutions may not be sufficiently accurate to calculate Laplace’s equation would hold in the air layer, and the
fields to 1 per cent of their theoretical value has lead us to con- Helmholtz equation would hold in the conducting earth below.
sider an alternative method. Mackie et al. (1993) and Mackie This presents the added complication of needing to match
et al. (1994) have developed an accurate and numerically boundary conditions at the air–earth interface.
efficient solution for the electromagnetic fields due to an arbitrary On the top of the air layer (the outermost portion of the
heterogeneous earth in Cartesian coordinates. We have used computational domain), an appropriate source field con-
the framework of this method as the basis for a new solution figuration is set by assigning values to the contour integrals of
for the fields due to an electrically heterogeneous earth in the tangential components of the H field. That is, we solve a
spherical coordinates. We have devised a means by which the Dirichlet boundary value problem. In all the test cases shown
symmetry properties of the original Cartesian solution may be later, the external source structure we use is the P0

1
con-

maintained, and have applied a new set of boundary conditions figuration, that is, the structure that predominates for external
peculiar to a spherical earth. We shall demonstrate in the current systems related to the equatorial magnetospheric ring
present paper that we have achieved the requisite accuracy in current (Schultz 1990). The air layer should be extended far
the magnetic fields at the earth’s surface by using this latest enough above the earth for all of the secondary, internally
method. In so doing, we show that an efficient and accurate induced H field perturbations to be damped out at the location
3-D forward solution exists that may be applied to the inverse of the source. In the present paper, we locate the source H field
problem of reconstructing the heterogeneities in electrical at a distance of 10r

e
from the earth’s centre. The appropriateness

conductivity in the upper and mid-mantle. of this configuration is discussed further in Appendix A.

The core–mantle boundary (CMB) is taken to be the bottom

of the computational domain. In the core, the conductivity
2 DIFFERENCE EQUATIONS FOR is set to be infinite, which has the effect of forcing H within
STAGGERED GRIDS IN SPHERICAL the core’s interior to vanish identically. We therefore set, as
COORDINATES boundary conditions, H=0 at the bottom of our computation

domain in the core, whilst immediately on the CMB tangentialFor deep global geoelectromagnetic induction investigations,
H field components ≠0 (the values of which are calculated).we have made use of response functions in the period range
In reality, the strong attenuation of externally induced fields2 day≤T ≤1 yr. This period range corresponds to penetration
in the conducting mantle leads all components of H in thedepths spanning approximately 300–1500 km. At these long
vicinity of the CMB to be approximately zero.periods, given that the electrical conductivity of the air layer

In order to obtain solutions of H directly for the geoelectro-is higher than 10−14 S m−1 (e.g. Rokityansky 1982), and given
magnetic induction problem in spherical coordinates, a second-that the dielectric constant is ~10−11 F m−1 everywhere, con-

duction currents dominate over displacement currents through- order difference equation in terms of H is derived based on
out the air–earth domain. Thus, the integral form of Maxwell’s the staggered grid method. This has been applied previously
equations (assuming eivt harmonic time dependence) is given only to the Cartesian problem (Visscher 1989; Mackie et al.
by 1993). In Fig. 1, the mesh division geometry is shown for the

staggered-grid finite difference method in spherical coordinates.

The whole computational domain including the resistive airQ HΩdl=PP JΩdS , (1)
and conductive earth is divided into curved rectangular prisms.

Each prism is bounded by latitudinal, longitudinal and radial

edges along which H field components in the respective edgeQ EΩdl=−PP ivmHΩdS , (2)
directions are defined. We name these prisms, edges and nodes

H-prisms, H-edges and H-nodes, respectively. Conductivity values
J=sE , (3)

are defined to be uniform in the respective H-prisms. We also

define staggered prisms (or E-prisms) whose nodes (E-nodes)where H, E and J denote the magnetic and electric fields and
are located at the centre of the respective H-prisms and whosethe electric current density, and v, s and m are the angular
edges (E-edges) cut halfway through H-surfaces. We name thefrequency, electrical conductivity and magnetic permeability,
surfaces of the H- and E-prisms H- and E-surfaces. Due torespectively. We assume that the electrical conductivity is iso-
the orthogonality of the spherical coordinate system, sets oftropic, but the generalization to anisotropic media is straight-
H-surfaces and E-edges so defined, together with the setsforward. The magnetic permeability is assumed to be that of
of E-surfaces and H-edges are always mutually perpendicular.a vacuum (4p×10−7 H m−1) everywhere. dl is a line element
Latitudinal, longitudinal and radial components of J and Eand dS (=ndS) is a surface element that is defined on a surface
are defined along the E-edges and are thus tangential toenclosed by the contour of dl and orthogonal to the element
surfaces of H-prisms.of the surface. The sign convention for the direction of n is

Hereafter, w(i), h( j) and r (k) specify longitude, colatitudetaken so that n and dl satisfy the right-hand rule.
and distance from the earth’s centre for the ijkth H-nodeAlthough the electrical conductivity of the air layer is often
position. The index i ranges from [1, L ] and is numberedassumed to be zero, we find it convenient to follow Mackie
from west to east, with the zero meridian w=0 associated withet al. (1993) and assign to it a moderately small non-zero value
i=1 and i=L +1. Index j ranges from [1, M+1] with j=1(10−10 S m−1). By so doing, the Helmholtz equation holds
representing an H-node position at the north pole (h=0),throughout the model domain and the matrix system used in
and j=M+1 the south pole (h=p). Index k ranges fromthe forward solution remains acceptably well conditioned, as

will be discussed later. Were the usual assumption taken that [1, N+1] with k=1 at the top of the air layer (r=10r
e
), and
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Figure 1. The mesh division geometry for the staggered-grid finite difference formulation designed for the geoelectromagnetic induction problem

in spherical coordinates. The whole computational domain including the resistive air and conductive earth is divided into curved rectangular

prisms. This primary prism (H-prism drawn with solid curves on the left-hand side and at the bottom on the right-hand side) is bounded by

latitudinal, longitudinal and radial edges along which H field components are defined. Conductivity values are defined to be uniform in the

respective H-prisms. Staggered prisms (E-prisms drawn with shaded curves on the left-hand side and at the top on the right-hand side) are also

defined whose nodes are located at the centre of the respective H-prisms and whose edges cut halfway through H-surfaces. In coordinate indices

for the E field components, (−) means outside the H-prism of uniform conductivity s(i, j, k) and (+) means inside that prism. See text for a more

detailed explanation.

k=N+1 just within the earth’s perfectly conducting core enclosed with the ijkth and [i+1] jkth H-edges in the r-direction

and the ijkth and ij[k+1]th H-edges in the w-direction, or it(r=3480 km). The numbers of H-prisms are assumed to be L ,
M and N in the w-, h- and r-directions, respectively. is defined along an E-edge crossing above the H-surface at its

centre. The length of this E-edge can be calculated byH
w
(i, j, k), H

h
(i, j, k) and H

r
(i, j, k) denote the respective com-

ponents of the magnetic field defined along the ijkth H-edge.
In order to relate the fields to right-handed coordinates,

1

2
l
h
(i+, j−1, k+)+

1

2
l
h
(i+, j, k+)

r-components of H, E and J are taken to be positive when

pointing towards the centre of the earth. Lengths of the ijkth
=

1

2
r(k+ )[h( j )−h( j−1)]+

1

2
r(k+)[h( j+1)−h( j )] . (5)H-edges in the respective directions are defined as l

w
(i, j, k),

l
h
(i, j, k) and l

r
(i, j, k) and are given by

Here i+ represents the (i+1/2)th E-node or edge, and
the coordinate [w(i+), h( j), r (k+)] represents the centre of the
H-surface where J

h
(i, j, k) is defined. Similarly, we will also use

l
w
(i, j, k)=r(k) sin h( j )[w(i+1)−w(i)] ,

l
h
(i, j, k)=r(k)[h( j+1)−h( j )] ,

l
r
(i, j, k)=r(k)−r(k+1) .

(4)
i− to represent the (i−1/2)th E-node (see Fig. 1). The area of
this H-surface normal to the h-direction is denoted as S

h
(i, j, k)

and is calculated byGiven that the H field components are defined on the H-edges
rather than the H-nodes, the coordinate indices for H and l
should differ from those defined above. That is, for H

w
(i, j, k) S

h
(i, j, k)=

1

2
[r(k)2−r(k+1)2] sin h( j )[w(i+1)−w(i)] . (6)

and l
w
(i, j, k), index i ranges from [1, L ], j from [2, M] and k

from [1, N+1]. H
w

is not defined on the staggered grid at Areas of the H-surfaces normal to the other directions are also
the poles (i.e. j=1 or M+1). For H

h
(i, j, k) and l

h
(i, j, k), calculated by

i ranges from [1, L ], j from [1, M] and k from [1, N+1].
The indexing for H

r
(i, j, k) and l

r
(i, j, k) must take into account

the poles (i.e. i=1, and j=1 or M+1), where k ranges from
S
w
(i, j, k)=

1

2
[r(k)2−r(k+1)2][h( j+1)−h( j )] ,

S
r
(i, j, k)=r(k)2[cos h( j )−cos h( j+1)][w(i+1)−w(i)] .

(7)
[1, N]. For non-polar positions, i ranges from [1, L ], j from
[2, M] and k from [1, N].

The J components are represented as J
w
(i, j, k), J

h
(i, j, k) Similarly, the area of the respective E-surface enclosing the

E-prism is defined as S
w
(i+, j−, k− ). Since the E field componentand J

r
(i, j, k), where, e.g. J

h
(i, j, k) is defined on the H-surface
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normal to the boundary of cells of different conductivity is and
discontinuous across the boundary (due to Ohm’s Law, e.g.
eq. 3), E should be defined separately for the plus- and minus- −

l
h
(i−, j, k+)

2
E
h
(i−1, j+, k)−

l
h
(i−, j−1, k+)

2
E
h
(i−1, j−, k)

sides of the boundary, whereas the J component is continuous.
Thus, the E field components corresponding to J

h
(i, j, k) are

+
l
w
(i−1, j−, k+)

2
E
w
(i−, j−1, k)E

h
(i, j−, k) and E

h
(i, j+, k).

With this mesh division scheme and notation, the integral
form of Ampere’s Law (eq. 1) for a small loop in the tangential

+
l
w
(i, j−, k+)

2
E
w
(i+, j−1, k)

plane can be represented as

l
w
(i, j, k)H

w
(i, j, k)+ l

h
(i+1, j, k)H

h
(i+1, j, k)

+
l
h
(i+, j−1, k+ )

2
E
h
(i, j−, k)+

l
h
(i+, j, k+)

2
E
h
(i, j+, k)

− l
w
(i, j+1, k)H

w
(i, j+1, k)− l

h
(i, j, k)H

h
(i, j, k)

=J
r
(i, j, k)S

r
(i, j, k) . (8) −

l
w
(i, j+, k+ )

2
E
w
(i+, j, k)−

l
w
(i−1, j+, k+)

2
E
w
(i−, j, k)

Similar equations to (8) for the other small loops in the

meridional and latitudinal planes can be written, respectively, =−ivmS
r
(i−, j−, k+)H

r
(i, j, k) . (13)

as
In (11)–(13), the upper halves of the vertical segments are

l
h
(i, j, k)H

h
(i, j, k)+ l

r
(i, j+1, k)H

r
(i, j+1, k) associated with E

r
( , , k−) above the respective tangential

H-surface, and the lower halves with E
r
( , , k+) below that− l

h
(i, j, k+1)H

h
(i, j, k+1)− l

r
(i, j, k)H

r
(i, j, k)

surface. This allows for a discontinuous change of E
r

across
=J

w
(i, j, k)S

w
(i, j, k) (9) the H-prism boundaries. Similarly, E

w
(i− , ,) and E

w
(i+ , ,) are,

respectively, defined in the western- and eastern-side halvesand
of the meridional H-surface, and E

h
( , j− ,) and E

h
( , j+ ,) are,

l
r
(i, j, k)H

r
(i, j, k)+l

w
(i, j, k+1)H

w
(i, j, k+1) respectively, defined in the north- and the south-side halves of

the latitudinal H-surface.− l
r
(i+1, j, k)H

r
(i+1, j, k)− l

w
(i, j, k)H

w
(i, j, k)

In the present spherical geometry case, as is the case with
=J

h
(i, j, k)S

h
(i, j, k) . (10) the staggered grid in Cartesian coordinates (Smith 1996a),

the conservative relationship VΩH=0 is satisfied exactly. DueThe discrete form of Faraday’s Law (eq. 2) for a small loop in
to the divergence theorem, the volume integral of VΩH isthe meridional plane is written
represented by the surface integrals of H in the spherical

staggered grid formulation such as−
l
r
(i+, j−, k)

2
E
r
(i, j−1, k+)−

l
r
(i+, j−, k−1)

2
E
r
(i, j−1, k−)

V (i−, j−, k−)VΩH

+
l
h
(i+, j−1, k−)

2
E
h
(i, j−, k−1) =S

w
(i+, j−, k−)H

w
(i+1, j, k)−S

w
(i−, j−, k− )H

w
(i, j, k)

+S
h
(i−, j+, k−)H

h
(i, j+1, k)−S

h
(i−, j−, k− )H

h
(i, j, k)

+
l
h
(i+, j, k−)

2
E
h
(i, j+, k−1) +S

r
(i−, j−, k+)H

r
(i, j, k+1)−S

r
(i−, j−, k− )H

r
(i, j, k) ,

(14)
+

l
r
(i+, j+, k−1)

2
E
r
(i, j, k−)+

l
r
(i+, j+, k)

2
E
r
(i, j, k+)

where V (i−, j−, k−) denotes a volume of the E-prism whose

centre is located at the ijkth H-node. The terms, representing
−

l
h
(i+, j, k+)

2
E
h
(i, j+, k)−

l
h
(i+, j−1, k+)

2
E
h
(i, j−, k) the surface integrals of H on the right-hand side of eq. (14),

are, respectively, represented by sets of line integrals of E with
=−ivmS

w
(i+, j−, k− )H

w
(i, j, k) . (11) the aid of Faraday’s law such as eqs (11)–(13) in discrete form.

Thus, the right-hand side of eq. (14) is seen to be identically
Equations similar to (11) for the other small loops in the

zero.
latitudinal and the tangential planes are given as

From Ohm’s law (eq. 3), the E field components, e.g.
E
r
(i, j, k−) and E

r
(i, j, + ) in eq. (11), are coupled to J such that

−
l
w
(i, j+, k− )

2
E
w
(i+, j, k−1)−

l
w
(i−1, j+, k−)

2
E
w
(i−, j, k−1)

J
r
(i, j, k)=s(i, j, k−1)E

r
(i, j, k− )

=s(i, j, k)E
r
(i, j, k+) . (15)+

l
r
(i−, j+, k−1)

2
E
r
(i−1, j, k−)

Similarly, E
w
(i−, j, k) and E

w
(i+, j, k) in (12), and E

h
(i, j−, k)

and E
h
(i, j+, k) in (13) are coupled to J such that+

l
r
(i−, j+, k)

2
E
r
(i−1, j, k+)

J
w
(i, j, k)=s(i−1, j, k)E

w
(i−, j, k)

+
l
w
(i−1, j+, k+)

2
E
w
(i−, j, k)+

l
w
(i, j+, k+)

2
E
w
(i+, j, k) =s(i, j, k)E

w
(i+, j, k) (16)

and
−

l
r
(i+, j+, k)

2
E
r
(i, j, k+ )−

l
r
(i+, j+, k−1)

2
E
r
(i, j, k−)

J
h
(i, j, k)=s(i, j−1, k)E

h
(i, j−, k)

=s(i, j, k)E
h
(i, j+, k) . (17)=−ivmS

h
(i−, j+, k−)H

h
(i, j, k) (12)
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3-D geoelectromagnetic induction 641

Combined with eqs (8), (10), (15) and (17), eq. (11) becomes equations that include no boundary value terms, are contained
in the vector lB. A

wh
denotes a sub-block of coefficient matrixa second-order difference equation for the w-component of H

such that A, and it relates contour integrals of w-component values and

h-component boundary values.
It is noteworthy that the coefficient matrix A is symmetric,

1

2 C l
r
(i+, j−, k)

s(i, j−1, k)
+

l
r
(i+, j−, k−1)

s(i, j−1, k−1)D 1

S
r
(i, j−1, k) since A relates contour integrals of H, rather than the H field

values themselves. The same symmetry characteristic in A was×[l
w
(i, j, k)H

w
(i, j, k)− l

h
(i+1, j−1, k)H

h
(i+1, j−1, k)

obtained in the Cartesian staggered-grid formulation by
− l

w
(i, j−1, k)H

w
(i, j−1, k)+ l

h
(i, j−1, k)H

h
(i, j−1, k)] Mackie et al. (1993) and Smith (1996a). Furthermore, it is

obvious that the matrix A is sparse and real everywhere except
+

1

2 C l
h
(i+, j−1, k−)

s(i, j−1, k−1)
+

l
h
(i+, j, k−)

s(i, j, k−1)D 1

S
h
(i, j, k−1)

along the diagonal, as was also the case with the previous
Cartesian formulation.

×[l
w
(i, j, k)H

w
(i, j, k)− l

r
(i+1, j, k−1)H

r
(i+1, j, k−1)

3 CONJUGATE GRADIENT METHOD AND− l
w
(i, j, k−1)H

w
(i, j, k−1)+l

r
(i, j, k−1)H

r
(i, j, k−1)]

V ΩH CORRECTION

+
1

2 C l
r
(i+, j+, k−1)

s(i, j, k−1)
+

l
r
(i+, j+, k)

s(i, j, k) D 1

S
r
(i, j, k) The significant conductivity contrast between the earth and

air leads the coefficient matrix A to be ill-conditioned. The
×[l

w
(i, j, k)H

w
(i, j, k)+ l

h
(i+1, j, k)H

h
(i+1, j, k) typical 1-norm condition number for a model containing a

resistive air layer (sair=10−10 S m−1) is 1013. This is reduced− l
w
(i, j+1, k)H

w
(i, j+1, k)− l

h
(i, j, k)H

h
(i, j, k)]

to 105 for an equivalent model with a conductive air layer
(sair=10−1 S m−1). Effective preconditioning of the matrix

+
1

2 C l
h
(i+, j, k+ )

s(i, j, k)
+

l
h
(i+, j−1, k+ )

s(i, j−1, k) D 1

S
h
(i, j, k) system is therefore essential. We employ incomplete Cholesky

decomposition of diagonal submatrices A
XX

(Mackie & Madden
×[l

w
(i, j, k)H

w
(i, j, k)+ l

r
(i+1, j, k)H

r
(i+1, j, k) 1993) for this purpose. After preconditioning, for the resistive

air layer model, the condition number is reduced to 108.− l
w
(i, j, k+1)H

w
(i, j, k+1)−l

r
(i, j, k)H

r
(i, j, k)]

Since the matrix A is real everywhere except along the
=−ivmS

w
(i+, j−, k− )H

w
(i, j, k) . (18) diagonal, Axelsson’s (1980; 1994) minimum residual conjugate

direction algorithm (MRA) is used to obtain the solution.Difference equations for the h- and r-components of H can be
MRA is an iterative method for finding the solution to real,obtained with a procedure similar to that described above.
symmetric and positive-definite systems of equations. TheSpecial attention should be paid to the poles. Since the
present induction system deviates from the rule requiring reallengths of the w-component H-edges are zero, and also
symmetric systems. For the induction problem in Cartesianthe w-components of the H field are not defined at the poles, the
coordinates, Mackie et al.’s (1994) experience had been thatdifference equations for the w- and h-components that include
this did not appear to be a factor in the relaxation, otherH

w
at the pole can be assumed to take the same form as e.g.

than breaking the monotonic convergence property. In ordereq. (18). However, since H
r
at the pole is determined by all the

to exploit this desirable property of rapid convergence usingadjacent H
w

and H
h

components surrounding the pole, its
MRA, our efforts at deriving a solution to the induction problemdifference equation should be written accordingly, for example,
in spherical coordinates obliged us to find a solution that didfor the north pole as follows:
not change the basic structure of the matrix system. Having
accomplished this, we found that the MRA method appears to∑

L

i=1
1

2 Cl
w
(i, 1+, k+)

s(i, 1, k)
+

l
w
(i−1, 1+, k+)

s(i−1, 1, k) D 1

S
w
(i, 1, k) converge rapidly for a spherical earth. Work currently under-

way (Toh et al. 1999) suggests alternative approaches that may×[l
r
(1, 1, k)H

r
(1, 1, k)+ l

h
(i, 1, k+1)H

h
(i, 1, k+1)

accelerate convergence, particularly in parallel computational
− l

r
(i, 2, k)H

r
(i, 2, k)− l

h
(i, 1, k)H

h
(i, 1, k)] environments.

As mentioned in the previous section, the conservative=−ivm[2pr(k+ )2{1−cos h(1+)}]H
r
(1, 1, k) . (19)

relationship VΩH=0 should be strictly valid for the H fields
The second-order difference equations (eqs 18 and 19) can be on the staggered grid, even for the present spherical case. For
expressed in matrix form as eq. (14) to hold, the terms involving the products of S and H

in that equation should be computed exactly by line integrals
of E, as in eqs (11)–(13), or by using the product of S andCA

ww
A
wh

A
wr

A
hw

A
hh

A
hr

A
rw

A
rh

A
rr
D ClH

w

lH
h

lH
r
D=ClB

w

lB
h

lB
r
D , (20) H as obtained from eq. (18) by dividing both sides of the

equation by −ivm. However, after such a division, the orders
of the left-hand and right-hand sides of (18) are found to
be O(l

g
2H/(vmsl

g
2) ) and O(l

g
2H), respectively, where l

g
is thewhere the vector lH contains contour integrals to be solved

of the H field values along their H-edges. Since we assign representative grid length. Here the product vmsl
g
2 is ~10−10

when l
g
=100 km, s=10−10 S m−1 and T =1 day. Numericalthe boundary H field values at r=10r

e
[H

w,h
(i, j, 1) with P0

1
configuration] and in the core [H

w,h
(i, j, N+1), H

r
(i, j, N)=0], error can therefore accumulate significantly in the terms involving

the products of S and H on the right-hand side of the equation.terms including those values in eq. (18) or (19) are moved to
the right-hand side of the respective equations as constants, This may cause a large non-zero divergence in the solution.

The effect of this is to introduce into the exact solution thewhile terms with the H-values to be found are moved to the

left-hand side. These boundary value terms and zeroes, for the fields of an assortment of spurious magnetic monopoles, and
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642 M. Uyeshima and A. Schultz

this situation worsens the convergence property of the MRA is also strictly valid on the staggered grid. The discrete version
relaxation. In order to alleviate this, the divergence Y=VΩH of eq. (21) is solved using the MRA and an incomplete
is eliminated at a given set of MRA relaxations by solving for Cholesky decomposition as a preconditioner. A few relaxation
the potential W that satisfies steps are required in obtaining Y in order to improve greatly

the convergence of the main MRA relaxation for eq. (20).VΩVW=Y (21)
In Fig. 2 we compare the convergence property of the MRA

following Mackie et al. (1994) and Smith (1996b). Once we have relaxations for the same model (a double-hemisphere model
obtained Y, the H field can be updated via Hnew=Hold−VY that will be described in the next section) with and without
without changing the resulting E fields, since the relationship the VΩH correction. Fig. 2 shows, for each relaxation step, the

normalized residual DlB and the normalized change of theV×(H−VY )=V×H=J (22)

Figure 2. Comparison of the convergence property of the MRA relaxations for the same model (a double-hemisphere model as described in

Section 4) with and without the VΩH correction. (top) The normalized residual DlB (eq. 23) and (bottom) the normalized change of the solution

DlH (eq. 24) at each relaxation step are shown. Open circles denote relaxation without the VΩH correction and closed circles denote that with the

correction. At times with the corrections, closed circles are plotted at the 10° level in the bottom panel.

© 2000 RAS, GJI 140, 636–650

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/140/3/636/670642 by U

.S. D
epartm

ent of Justice user on 17 August 2022



3-D geoelectromagnetic induction 643

solution DlH,

DlB=lB−AlH , (23)

DlB=Hnew−Hold . (24)

In both parts of Fig. 2, open circles denote relaxations without
the VΩH correction, and closed circles denote those with the
correction. The MRA iteration numbers at which divergence

corrections were made are indicated in Fig. 2(b) by closed
circles plotted at the 10° level.

Rapid convergence is seen, with a decrease in error of five

orders of magnitude in the first 20 iterations for DlB and a
decrease of three orders of magnitude for DlH. The convergence
slows gradually for subsequent iterations. Although without

divergence correction, only minor improvements with signi-
ficant fluctuations in DlB are detected after 10 iterations,
DlB converges progressively (but not monotonically) when

divergence corrections are applied. The quantity DlH converges
to <10−9 (which we have taken to be the stopping criterion).
The divergence correction plays a significant role in accelerating

convergence for DlH.

4 COMPARISONS WITH OTHER
NUMERICAL AND QUASI-ANALYTICAL

Figure 3. A sketch of the azimuthally symmetric, double-hemisphereSOLUTIONS
thin shell model.

Before attempting to model electromagnetic induction in an
earth with realistic electrical structure, it is prudent to verify
the present staggered-grid finite difference (SGFD) approach

Since we cannot model infinitesimally thin conducting shellsagainst other solutions to the forward problem. In this paper,
with finite-sized curved prisms, we model the thin sheet aswe check our results against other numerical and quasi-
a 5-km-thick shell, centred at 400 km depth. The northernanalytical solutions that employ entirely different methods of
shell has a conductivity of 8.0 S m−1, and the southern shellsolution. The checks are restricted to the P0

1
source structure.

0.4 S m−1. Consequently, the overall conductance t is the same
in both models. For zonal external source excitation (e.g. P0

1
),

4.1 Azimuthally symmetric cross-comparison
such an azimuthally symmetric conductivity structure produces

azimuthally symmetric secondary fields. Given the longitudinalThe first check is against the azimuthally symmetric, double-
hemisphere thin shell model shown in Fig. 3. The thin shell is invariance of the fields for the present case, the division number

L in the w-direction was set to 2. In the h-direction, theburied at a depth of 400 km (r=5971 km) in a background

radially symmetric earth. The intent of validating the present computational domain was divided evenly into 36 facets, with
a grid spacing of 5°.solution by using such a model is to test the accuracy of this

solver for models containing heterogeneous structure in the mid- In Fig. 4 we show the two non-zero components of H and

the one non-zero component of E as a function of geomagneticmantle. Such depths are associated with the highest resolving
power for external induction data due to the relaxation phase colatitude. The BS results are shown as solid curves and the

results of the SGFD code as filled symbols. In the model,of Dst variations (e.g. Schultz 1990).

The shell is divided at the equator into two hemispherical the external source produces a southward horizontal field of
100 nT at the equator. The in-phase part of the internalsections. The northern hemisphere shell is a good conductor

with conductance t=4×104 S. The southern shell is more induced field increases this to about 140 nT above the more
conductive half-shell, and to only 120 nT above the less con-resistive, with t=2×103 S. The conductivity of the back-

ground 1-D structure is 2.5×10−3 S m−1, down to a depth of ductive half-shell. Similarly, H
r

is reduced by induction from

±100 nT at the N and S poles to +22 nT and −34 nT,800 km, and 2.5 S m−1 beneath this depth. Kuvshinov &
Pankratov (1994) have made available a numerical solution respectively. Radial mesh divisions for the respective com-

putations were 50, 67 and 136 including the air layer. For thefor the global induction problem for the buried shell (BS)

model using an integral equation formulation (Singer & largest computation [i.e. (L , M, N)= (2,36 136)], 11.7 Mbyte
of memory was required, and it took 60 s to obtain the one-Fainberg 1985; Fainberg et al. 1993). The solution exploits the

modified iterative–dissipative method of Singer (1995) to solve period solution on a single 333 MHz Digital AlphaB EV56

processor (0.6 GFLOP peak speed). The percentage deviationan integral equation. The method is based on a Neumann
series expansion, which always converges, even for extremely between the SGFD solution and the BS solution is also shown

for each of the field components. The difference between theselarge conductivity contrasts. The BS model comprises an

inhomogeneous thin spherical sheet embedded at a given depth two sets of solutions is small (generally <1 per cent) except
within ±20° of the geomagnetic equator, which here is thewithin a radially symmetric medium. A. Kuvshinov has kindly

provided us with responses for such a model, to an external boundary between the two hemispherical thin shells. For this

model, the spatial gradients in the fields are greatest at theP0
1

source, for the period T =1 day.
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644 M. Uyeshima and A. Schultz

Figure 4. Results of the comparison between the SGFD solution and the BS solution for the double-hemisphere model shown in Fig. 3. The two

non-zero components of H in nT and the one non-zero component of E in mV km−1 are shown as functions of geomagnetic colatitude (real

components on the left-hand side, imaginary on the right). The BS results appear as solid curves, and the SGFD results as filled symbols. The

bottom right-hand panel illustrates the percentage deviation of the SGFD solution relative to the BS solution. Accuracies of better than 1 per cent

in the fields are seen for regions distant from the equatorial hemispheric boundary separating the two conductivity domains.

equator. The SGFD and BS solutions employed different representing, respectively, radial discretization levels of 0.25,
1 and 4 nodes per skin depth. For the finest radial meshcomputational grids. This makes it difficult to carry out direct

comparisons between the solutions in this region. spacing, the discrepancy between the SGFD- and BS-calculated

responses is exceedingly small. The inflection in the GDSIn Fig. 5 we show the magnetotelluric (MT) impedances
(Z
wh
=E

w
/H

h
) in terms of apparent resistivity and phase. Also response near the equator, as well as the difference between

the northern and southern hemispheres, is well reproducedshown is the complex Geomagnetic Deep Sounding (GDS)

transfer function (Z
rh
=H

r
/H

h
). Three sets of results are shown, by the SGFD method.
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3-D geoelectromagnetic induction 645

for an earth comprising azimuthally asymmetric eccentrically
4.2 Azimuthally asymmetric cross-comparison

nested spheres. The method is an extension of Everett &
Schultz’s (1995) solution for axisymmetric eccentrically nestedMartinec (1998) recently developed a semi-analytic method

to obtain a solution of the electromagnetic induction problem spheres. The axisymmetric solution had been used previously
to partially validate the Everett & Schultz (1996) finite element
forward solver. This validation was restricted in that fully

3-D models that generate axially asymmetric fields could not
be tested. Martinec’s solution eliminates this restriction, and
is used here to validate the SGFD method. Such a model is

sketched in Fig. 6: a small sphere with a radius of 200 km and
electrical conductivity of 10 S m−1 is buried at a depth of
600 km in a uniform 1 S m−1 earth. The centre of the embedded

sphere is located at (r, h, w)= (5771 km, 45°, 0°). This model is
representative of one class of geodynamical targets, a discrete
conductive or resistive body located in the mid-mantle. The

external source field is also set to have P0
1

form for this model.
A significant difference between this class of the model and

those considered previously is that, even with axially symmetric

(zonal) source current excitation, eddy currents are forced
across and around the electrical conductivity interface, pro-

ducing strong galvanic effects. Z. Martinec has kindly provided
us with responses for a T ~24 day period (v=3×10−6 )
estimated by using spherical harmonic expansion of up to

degree 18. The infinitely conducting core used in the SGFD
solution could not be included in this nested sphere model
computation. The effects of the absence of the core beneath

r=3480 km can be neglected in the induced fields near the
model earth’s surface, since the skin depth for this period is
728 km in a homogeneous earth with 1 S m−1 conductivity.

For the nested sphere model, we computed responses for
the SGFD solver with (L , M, N)= (50, 31, 53) mesh division.
In this computation, a curved rectangular prism just enveloping

the conductive small sphere is divided into 8×8×8 prisms
whose grid spacing is 0.5° in the w- and h-directions and 50 km
in the r-direction. Latitudinal and longitudinal mesh divisions

are gradually enlarged up to 20° as their positions grow more
distant from the inclusion. The non-uniform mesh divisions are
illustrated in Fig. 6. A minimum of four radial nodes per skin

depth was maintained throughout the computational domain.
This computation required 99.5 Mbyte memory and 3041 s
computation time on a single 625 MHz Digital AlphaB EV56

processor (1.2 GFLOP peak speed). To ensure convergence,
the MRA relaxation was continued until the normalized change
of the solution (eq. 16) was <10−11.

The radial dependence of the percentage deviation between
the SGFD solution and the nested sphere analytic solution

(NS) is shown in Fig. 7. Here, the three components of H
beneath the earth’s surface at (w, h)=(0°, 50°) are displayed as
solid curves. Since H

w
at w=0° should be identically zero due

to the symmetry of the problem, we show only differences

Figure 5. Results of the comparison between the SGFD solution and

the BS solution for the double-hemisphere model shown in Fig. 3. The

surface values of the magnetotelluric (MT) impedance (Z
wh
=E

w
/H

h
),

scaled into apparent resistivity in V m and phase in degrees, and the

real and imaginary parts of the Geomagnetic Deep Sounding (GDS)

transfer functions (T
rh
=H

r
/H

h
) are shown versus geomagnetic colatitude

(from top to bottom). The solid curves are the BS results. Open circles,

open triangles and closed circles denote the SGFD results, with the

minimum number of radial nodes per skin depth set to 0.25, 1.0 and

4.0, respectively.
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646 M. Uyeshima and A. Schultz

Figure 6. Schematic of an azimuthally asymmetric, eccentrically nested sphere model. The SGFD computational grid is shown as a series of

gridlines of increasing sampling frequency as the embedded conductive spherical anomaly (shown as a small blue sphere) is approached. The

vertically exaggerated geographical reference on the surface of the model earth is provided for scale and has no other significance.

between the SGFD solution and the NS solution (amplified towards the CMB. However, this effect can be neglected in the
shallower parts of the model, as mentioned previously.by a factor of 100) for H

w
. In order to evaluate the results for

H
h

and H
r
, the 1-D analytic solution without the small The real part of the response function H

w
/H

h
on the model

earth’s surface, calculated by the SGFD method, is displayedspherical inclusion, and with a 3480-km-radius infinitely con-
ductive core is also compared with the NS solution. The in the top part of Fig. 8. If the earth had uniform conductivity

under an axially symmetric source current (e.g. P0
1

source),purpose of the 1-D calculations is both to examine the effect

of the 10 S m−1 spherical inclusion and to test the effect of a induced current would flow purely eastwards and no H
w

component would arise. The effect of current channelling inperfectly conducting core at 3480 km upon the semi-analytic

NS solution. This is shown by dashed curves in the figure. the vicinity of the conductive spherical anomaly generates a
quadrupole-like pattern in the surface field. In the first andThe solutions are normalized such that all the H

h
values at

the surface, i.e. (w, h, r)= (0°, 50°, 6371 km), are identical for the third lobes of this pattern the response function takes on a

positive value. This is due to the northward diversion of thedifferent solutions. Therefore, the deviation of H
h
at the surface

is set to be zero, whereas H
h

at any other position, as well as induced currents around the anomaly. The situation is reversed
in the remaining two lobes. These results may be comparedH

w
and H

r
for any given solution, can be different from those

for any other solution. against the quasi-analytical embedded spheres computation in
the bottom part of the figure.The expected value of zero for the H

w
component is approxi-

mated accurately, with computed values between 10−8 and Whilst the quasi-analytical method has the potential of

yielding a result of asymptotically analytical accuracy, it does10−9. Remarkable agreement (within 1 per cent) between the
SGFD and NS solutions is obtained for the H

h
and H

r
rely on numerical approximations. This has the practical effect
of limiting the accuracy of this solution. Z. Martinec computedcomponents in the region shallower than r=5000 km, whereas

the deviation of the 1-D solution remains at the 1 per cent the quasi-analytical responses by using a degree 18 spherical
harmonic expansion. In Fig. 8 we compare the degree 18level for the H

h
component and the 10 per cent level for the

H
r

component. Since the infinitely conductive core is not expansion nested spheres result with a similar result obtained

for an expansion truncated at degree 10. A quadrupoleincluded in the NS solution, the deviation grows significantly
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3-D geoelectromagnetic induction 647

Figure 7. The radial dependence of the percentage deviation between

the SGFD solution and the nested sphere quasi-analytic solution (NS)

for three components of H beneath the earth’s surface at (w, h)=(0°, 50°)
(solid lines). For the H

w
component, we show the difference between Figure 8. The real part of the response function H

w
/H

h
on the model

the SGFD and the NS solutions (multiplied by a factor of 100). This earth’s surface, calculated by the SGFD method (top), the NS quasi-

component should be identically zero. For the components H
h

and analytical solution by using a degree 18 spherical harmonic expansion

H
r
, the 1-D analytic solution without the small spherical inclusion, (middle) and that truncated at degree 10 (bottom). The effect of current

but with a 3480 km infinitely conductive core is compared with the channelling in the vicinity of the conductive spherical anomaly generates

NS solution (dashed curve). Here, the solutions are normalized so that a quadrupole-like pattern in the surface field. The intensity of the

all the H
h

values at the surface, i.e. (w, h, r)= (0°, 50°, 6371 km), are anomaly is somewhat enhanced, and the width of the anomaly’s peak

identical for the different solutions. Remarkable agreement to better is narrower for the SGFD result than for the quasi-analytical solution.

than the 1 per cent level is seen between the SGFD and NS solutions For the Martinec calculation, however, peak intensity grows signifi-

for the H
h

and H
r

components for the model region shallower cantly and its width grows narrower as the maximum degree increases

than 5000 km. from 10 to 18.
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648 M. Uyeshima and A. Schultz

surface field pattern similar to that shown previously for the fields accurately everywhere on the model earth’s surface. As a
result, the SGFD and quasi-analytical staggered-grid solutionsSGFD calculation is seen here. The intensity of the anomaly

is somewhat enhanced, and the width of the anomaly’s peak is cannot yet be compared with accuracy everywhere on the

model surface. The two solutions do show excellent agreementnarrower for the SGFD result than for the quasi-analytical
solution. For the Martinec calculation, however, peak intensity in the spatial distribution of the responses, and the SGFD

results were in the direction of convergence (versus sphericalgrows significantly and its width grows narrower as the

maximum degree increases from 10 to 18. In the degree 18 harmonic degree) of the quasi-analytical solution.
quasi-analytical solution, some fluctuations are still detected
outside the quadrupole lobes. The wavenumber spectrum of
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l
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r−1[ j

l
(z)+z(dj

l
(z)/dz)] and r−1[ y

l
(z)+z(dy

l
(z)/dz)]. Here r, l,

the mid-mantle, 2–delineation of heterogeneity by application of
j
l
, y

l
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as spherical harmonic terms in the air so that the total H field
values agree with those on the earth’s surface. The difference

r−1j
l
(z)=Ajl

0
r−1zl[1+Ajl

1
z2+O(z4 )] in the decay (for the internal terms) or the growth (for the

external terms) versus r in the air layer of the Helmholtz=Ajl
0
klr(l−1)[1+Ajl

1
z2+O(z4 )] , (A1)

and Laplace equation solutions is of O( |z2 | ) when |z2 |%1.
Considering the period range 2 day≤T ≤1 yr, and assumingand

an air conductivity of sair=10−10 S m−1, |z2|≤1.9×10−5 when
r−1y

l
(z)=Ayl

0
r−1z−(l+1)[1+Ayl

1
z2+O(z4 )] r<10r

e
. For the same value of r, when sair=10−14 S m−1,

|z2 |≤1.9×10−9.=Ayl
0
k−(l+1)r−(l+2)[1+Ayl

1
z2+O(z4 )] , (A2)

Thus, forward solutions for H of Laplace’s equation (sair=0)
and of the Helmholtz equation with sair=10−14 S m−1 andwhere the coefficients A are real constants, and |Ajl

1
| and

|Ajl
1
| are <1 regardless of l (Abramowitz & Stegun 1965). sair=10−10 S m−1 should agree within the air layer to within

these very small differences. Moreover, if we consider a problemExactly the same expansion form can be obtained for
r−1[ j

l
(z)+z (dj

l
(z)/dz)] and r−1[ y

l
(z)+z(dy

l
(z)/dz)] with other with an external source field with only a P0

1
term, the magni-

tude of the internally induced field at the Dirichlet boundarysets of real constants. On the other hand, the radial dependence

of the analytic solution for Laplace’s equation (i.e. sair=0 in (r=10r
e
) decays to <10−3 of the external field intensity. This

is true even if we assume the extreme case where the ratioeqs 1–3) is r(l−1) and r−(l+2), which represent the external and
internal fields, respectively. between internal and external field intensities is unity at the

air–earth interface. Thus, we can safely solve the forwardConsider further the hypothetical situation where the spatial
form of the H fields in the earth remains the same, regardless problem with this Dirichlet boundary value assignment, with the

assurance that imposing a small but non-zero air conductivityof the choice of governing equation in the air, or the air con-
ductivity. We choose the complex constants for the respective does not introduce significant inaccuracy.
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