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Foreword

Characterising spatial and temporal variation in environmental properties,
generating maps from sparse samples, and quantifying uncertainties in the maps, are
key concerns across the environmental sciences. The body of tools known as geo-
statistics offers a powerful means of addressing these and related questions. This
volume presents recent research in methodological developments in geostatistics
and in a variety of specific environmental application areas including soil science,
climatology, pollution, health, wildlife mapping, fisheries and remote sensing,
amongst others.

This book contains selected contributions from geoENV VII, the 7th Inter-
national Conference on Geostatistics for Environmental Applications, held in
Southampton, UK, in September 2008. Like previous conferences in the series,
the meeting attracted a diversity of researchers from across Europe and further
afield. A total of 82 abstracts were submitted to the conference and from these the
organisation committee selected 46 papers for oral presentation and 30 for poster
presentation.

The chapters contained in the book represent the state-of-the-art in geostatistics
for the environmental sciences. The book includes 35 chapters arranged according
to their main focus, whether methodological, or in a particular application. All of
the chapters included were accepted after review by members of the scientific com-
mittee and each chapter was also subject to checks by the editors.

The editors wish to acknowledge the reviewers and the authors of the chap-
ters that make up this book; it would not have existed without their efforts. The
editors would also like to thank the sponsors of the conference, who included
Cambridge University Press, Wiley, Taylor and Francis, the Ordnance Survey, the
GeoData Institute, University of Southampton, School of Geography, University of
Southampton and the Remote Sensing and Photogrammetry Society.

Southampton, May 2009 Peter Atkinson
Belfast Christopher Lloyd
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Sidney Rosa Vieira Instituto Agronômico (IAC), Av. BarQao de Itapura, 1481
CP28, CEP 13020-902, Campinas, SP, Brazil, sidney@iac.sp.gov.br

Eva Vidal Vázquez Facultad de Ciencias, Universidade da CoruQna, UDC,
Campus A Zapateira C.P. 15071, A CoruQna, Spain

Matthew Williams Knowledge Engineering Group, School of Engineering
and Applied Science, Aston University, Birmingham B4 7ET, UK,
williamw@aston.ac.uk

Linda J. Young Department of Statistics, 404 McCarty Hall C, P.O. Box 110339,
University of Florida, Gainesville, FL 32611-0339, USA, LJYoung@ufl.edu

marc.vanmeirvenne@ugent.be
andre.vervoort@bwk.kuleuven.be
sidney@iac.sp.gov.br
williamw@aston.ac.uk
LJYoung@ufl.edu


Geostatistical Modelling of Wildlife Populations:
A Non-stationary Hierarchical Model
for Count Data

Edwige Bellier, Pascal Monestiez, and Christophe Guinet

Abstract We propose a hierarchical model coupled to geostatistics to deal with
a non-gaussian data distribution and take explicitly into account complex spatial
structures (i.e. trends, patchiness and random fluctuations). A common characteris-
tic of animal count data is a distribution that is both zero-inflated and heavy tailed.
In such cases, empirical variograms are no more robust and most structural anal-
yses result in poor and noisy estimated spatial variogram structures. Thus kriged
maps feature a broad variance of prediction. Moreover, due to the heterogeneity of
wildlife population habitats, a nonstationary model is often required. To avoid these
difficulties, we propose a hierarchical model that assumes that the count data follow
a Poisson distribution given a theoretical sighting density which is a latent variable
to be estimate. This density is modelled as the product of a positive long range trend
by a positive stationary random field, characterized by a unit mean and a variogram
function. A first estimate of the drift is used to obtain an estimate of the variogram
of residuals including a correction term for variance coming from the Poisson distri-
bution and weights due to the non-constant spatial mean. Then a kriging procedure
similar to a modified universal kriging is implemented to directly map the latent
density from raw count data. An application on fin whale data illustrates the effec-
tiveness of the method in mapping animal density in a context that is presumably
non-stationary.
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1 Introduction

Current wildlife research relies heavily on population monitoring, sometimes
performed over large areas (Pollock et al., 2002). Counts provided by field sur-
veys can be used to estimate population sizes (Kingsley and Reeves, 1998; Grigg
et al., 1999) or to characterize spatial structures in populations (Isaak and Russel,
2006). The latter has received much recent interest because animals respond to
spatial heterogeneity at different spatial scales (Kotliar and Wiens, 1990; Levin,
1992). Therefore, ecological data often include several spatial patterns, which can
be regarded as trends at broad scales, patchiness at intermediate and local scale,
and random fluctuations or noise at fine scales (Fortin and Dale, 2005). Further-
more, an additional common characteristic of ecological count data is that they
are positively skewed and contain much more zeros than would be expected in
classical data distribution (Clarke and Green, 1998; Flechter et al., 2005). The form
of the distribution is usually due to the patchy nature of the environment and/or
the inherent heterogeneity of the species distribution and to sampling coupled to
observations processes (Martin et al., 2005). However, standard spatial statistical
tools cannot easily deal with count data. When the data are non-Gaussian, hierar-
chical modelling may be a useful alternative for modelling the spatial distribution
of count data (Latimer et al., 2006; Thogmartin et al., 2004). Indeed, ecological ap-
proaches and sampling situations should naturally lead to a hierarchical construction
(Royle et al., 2005). Although most recent publications solve hierarchical models
within a Bayesian framework, hierarchical modelling is not necessarily restricted to
Bayesian statistics (Ver Hoef and Frost, 2003; Thogmartin et al., 2004; Cunningham
and Lindenmayer, 2005). In a frequentist context, Monestiez et al. (2006) proposed
a corrected variogram estimator that takes into account the variability added by the
Poisson observation process in order to produce maps of relative abundance.

This paper presents a generalization of Poisson kriging introduced in Monestiez
et al. (2006) based on a spatial hierarchical model. The model we propose has two
levels: the first level deals with the variability resulting from the heterogeneity of
the observation effort and ecological process (i.e. the variability resulting from the
sighting process and ecological process themselves), which can naturally be mod-
eled by a Poisson distribution (Monestiez et al., 2006). In the second level we take
account of the non-stationarity of the species distribution (i.e. in most situations,
populations show a trend in their spatial distribution [Fortin and Agrawal 2005]) by
decomposing the spatially non-constant mean, by multiplication of a spatial trend
by a stationary field.

Our method can be help to characterize spatial distribution and to address
wildlife population spatial distributions through mapping which could be of great
interest for management or conservation purposes. Our approach typically applies
to animal count data and especially to field transect surveys, a popular method to
count animals – including marine mammals (e.g. dugong (Pollock et al., 2006);
small cetaceans (Hammond et al., 2002); manatees (Wright et al., 2002)), seabirds
(Tasker et al., 1984; Briggs et al., 1985) and terrestrial mammals (e.g. kangaroos
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[Caughley and Grigg 1981], impala [Peel and Bothma 1995]) in which individuals
or groups of individuals (i.e. “sightings”) are recorded at discrete locations.

We provide a case study, with an application based on the spatial distribution of
fin whales in a context that is presumably non-stationary.

2 Model

2.1 Hierarchical Model for Animals Sightings

We define a spatial hierarchical model with two levels. The first one models the num-
ber of sightings Z into an 1 km-long strip by a Poisson distribution whose parameter
Y is a non stationary random field. The second level models Y as the product of a
regional drift m and a latent variable X .

For all sites s, we model the number of observed sightings Z knowing Y the
latent variable which represents the theoretical sighting density, by independent
Poisson random variables: �

Zs jYs � P�Ys

�
Ys D msXs

(1)

where Ys is the product of a deterministic drift ms by a positive stationary ran-
dom field X with unit mean, variance �2

X , and covariance function CX .s � s0/ D
CovŒXs ; Xs0 �, noted Css0 to simplify notation.

The covariance function CX .s � s0/ may be replaced by the variogram function
�X .s � s0/ D 1

2
E
��

Xs � Xs0

�2 �
.

There is no distributional hypothesis on X but the inequality X � 0.

2.2 Expectation and Variance of Zs

From Equation (1), it follows directly that:

EŒZs jXs� D Ys D ms Xs

VarŒZs jXs� D Ys D ms Xs

E
�
.Zs/2

ˇ̌
Xs

� D Ys C Y 2
s D ms Xs C m2

s X2
s

(2)

and when deconditioning:

EŒZs � D ms

VarŒZs � D m2
s �2

X C ms

(3)
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For the covariance expression, the conditional independence of observations at
different sites leads to:

E
h
Zs Zs0

ˇ̌
X
i

D Cov
�
Zs ; Zs0 jX�C EŒZs jXs� EŒZs0 jXs0�

D ıss0 msXs C ms ms0 XsXs0

(4)

where ıss0 is the Kronecker delta which is 1 if s D s0 and 0 otherwise.

2.3 Variogram Expressions

In order to characterize the relationship between the variograms of Z and X , we
develop the expressions of the two first moments of .Zs � Zs0/.

E
�
Zs � Zs0

ˇ̌
X
� D EŒZs jXs� � EŒZs0 jXs0 � D ms Xs � ms0 Xs0

E
�
Zs � Zs0

� D E
�
X
� �

ms � ms0

� D ms � ms0

(5)

The second order moment can be derived from Equations (2) and (4).

E
h�

Zs � Zs0

�2 ˇ̌
X
i

D E
h
.Zs/2

ˇ̌
Xs

i
C E

h
.Zs0/2

ˇ̌
Xs0

i
�2 E

h
Zs Zs0

ˇ̌
X
i

D �
Ys C Ys0 � 2ıss0 Ys

�C �
Ys � Ys0

�2
E
h�

Zs � Zs0

�2 i D
�
ms C ms0 � 2 ıss0 ms/

�
C E

h�
ms Xs � ms0 Xs0

�2i

When ms is assumed to be known and different everywhere (i.e. ms D ms0), we
have to develop the two first moments of

�
Zs

ms
� Zs0

ms0

�
:

E
	

Zs

ms

� Zs0

ms0

ˇ̌̌
ˇX



D 1

ms

EŒZs jXs� � 1

ms0

EŒZs0 jXs0 � D Xs � Xs0

E
	

Zs

ms

� Zs0

ms0



D 0

(6)

The expression of the non-conditional order-2 moment is derived from Equations
(2) and (4).

E

"�
Zs

ms

� Zs0

ms0

�2 ˇ̌ˇ̌X
#

D 1

m2
s

E
h
.Zs/

2
ˇ̌
Xs

i
C 1

m2
s0

E
h
.Zs0 /2

ˇ̌
Xs0

i
� 2 E

�
Zs Zs0

ˇ̌
X
�

ms ms0

D Xs

ms

C Xs0

ms0

� 2ıss0

Xs

ms

C �
Xs � Xs0

�2
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1

2
E

"�
Zs

ms

� Zs0

ms0

�2
#

D 1

2

�
ms C ms0

ms ms0

�
� ıss0

1

ms

C �X .s � s0/ (7)

Let �Z=m.s � s0/ denote the non-stationary theoretical variogram corresponding
to the random field

�
Zs=ms

�
, we get for s ¤ s0 the relationship:

�X .s � s0/ D �Z=m.s � s0/ � 1

2

�
ms C ms0

ms ms0

�
(8)

We can check for s D s0 that Equation (7) reduces to �X .0/ D �Z.0/ D 0

For s ¤ s0, we also have:

Var
	

Zs

ms

� Zs0

ms0

ˇ̌̌
ˇX



D E
"�

Zs

ms

� Zs0

ms0

�2 ˇ̌̌
ˇX
#

� E2
"

Zs

ms

� Zs0

ms0

ˇ̌̌
ˇX
#

D Xs

ms

C Xs0

ms0

C �
Xs � Xs0

�2 � �
Xs � Xs0

�2

D Xs

ms

C Xs0

ms0

E
"

Var
	

Zs

ms

� Zs0

ms0

ˇ̌̌
ˇX

#

D E
	

Xs

ms

C Xs0

ms0



D
�

ms C ms0

ms ms0

�
(9)

2.4 Estimation of �X.h/

Let Z˛ , ˛ D 1; : : : ; n be the n measurements of Z.s˛/. Because of the non-constant
mean m.s/, it is not meaningful to directly compute experimental variogram on
Z˛’s, even on the corrected values Z˛=m˛. So we propose a modified experimental
variogram for X :

��
X .h/ D 1

2 N.h/

X
˛;ˇ

 
m˛ mˇ

m˛ C mˇ

�
Z˛

m˛

� Zˇ

mˇ

�2

� 1

!
1Id˛ˇ�h (10)

where 1Id˛ˇ�h is the indicator function of pairs .s˛ ; sˇ / whose distance is close
to h, where N.h/ D P

˛;ˇ
m˛ mˇ

m˛Cmˇ
1Id˛ˇ�h is a normalizing constant. The weight

system directly derives from Equation (9) and the minus-one bias-correction term
from Equation (8).

Such estimates can show great sensitivity to rare positive data that neighbour ar-
eas with extremely low local mean. It may be necessary to increase the robustness of
such estimate by limiting minimum values of ms (positive and not too close to zero).



6 E. Bellier et al.

A simpler estimates of �X can be proposed on subareas where the mean ms can
be assumed constant or when the empirical variogram estimate ��

Z.h/ is restricted
to pairs of sampled sites with the same mean ms:

��
X .h/ D 1

m2

h
��

Z.h/ � m
i

(11)

where m is the locally constant value of ms.

2.5 Mapping Y by Multiplicative Poisson Kriging

The spatial interpolation of Y is implemented through a Poisson Kriging (PK) at
any site so 2 D. This kriging is a linear predictor of Yo combining the observed data
Z˛ weighted by the drift terms m.s˛/ and m.so/ respectively noted m˛ and mo.

Y �
o D

nX
˛D1

�˛

mo Z˛

m˛

(12)

The unbiasedness of Y �
o leads to the usual condition on �˛’s.

nX
˛D1

�˛ D 1 (13)

The expression of the Mean Square Error of Prediction (MSEP) can also be de-
rived from the kriging estimate expression.

E
�
.Y �

o � Yo/2
� D m2

o

0
@�2

X C
nX

˛D1

�2
˛

m˛

C
nX

˛D1

nX
ˇD1

�˛�ˇ C˛ˇ � 2

nX
˛D1

�˛C˛o

1
A
(14)

By minimizing this expression (14) on �i ’s subject to the unbiasedness con-
straint, we obtain the following kriging system of (n C 1) equations where � is
the Lagrange multiplier.

8̂
ˆ̂̂<
ˆ̂̂̂
:

nX
ˇD1

�ˇ C˛ˇ C �˛

m˛

C � D C˛o for ˛ D 1; : : : ; n

nX
˛D1

�˛ D 1

(15)

The kriging system expressed with covariance is preferably used for computation
when both variogram and covariance exist. The kriging system may be expressed
from the variogram using the usual relation Css0 D �2

X � �X .s � s0/.
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The expression of the prediction variance resulting from this kriging system re-
duces after calculation to:

Var.Y �
o � Yo/ D m2

o

�
�2

X �
nX

˛D1

�˛C˛o � �
�

(16)

It can be easily shown that the kriging of Xo defined as X�
o D Pn

˛D1 �˛
Z˛

m˛
gives

the same solutions in �’s and �, so krigings of Y �
o or X�

o becomes equivalent using
the relationship Y �

o D mo X�
o .

3 Fin Whale Abundance in Pelagos Sanctuary

In the Mediterranean Sea, the fin whale (Balenoptera physalus) is the largest marine
predator commonly observed. Several hundred to several thousand individuals were
estimated to be present in the western Mediterranean Sea during summer (Forcada
et al., 1996).

The sighting database used in this study as an illustrative example merges data
from different sources, and is fully described in Monestiez et al. (2006). The fin
whale surveys mainly focused on the northwestern Mediterranean Sea. Count data
were aggregated on cells of 0.1ı of longitude by 0.1ı of latitude (approximately
90 km2) in a regular grid. For each year from 1993 to 2001, July and August data
were assembled and we computed in each cell the total number of fin whale sight-
ings and the corresponding total searching effort defined as the time (in hours) spent
searching inside the cell. So the number of sightings per unit effort or, with some
assumptions, the relative abundance can be computed.

In this study, we focused particulary on the Pelagos sanctuary (International
Cetacean Sanctuary of the Mediterranean), which was established on November
25th, 1999 by the governments of Italy, France and Monaco. The sanctuary limits
are shown in Fig. 1, with the map of searching efforts.

The objective is to map the spatial distribution of fin whales inside the Pelagos
sanctuary during the summer of 2001. Due to limitation of the available data subset,
we have to assume values for some parameters: mean boat speed is fixed to six nau-
tical knots (11.1 km/h), effective distance of detection to 750 m and mean school
size to 1.6 in order to transform hours of searching in surveyed areas and to com-
pute relative abundance estimates from raw sightings of whale schools. For sampled
cells, the searching effort was not always exactly the same, so we had to introduce
this effort as a factor to the multiplicative drift m˛ in order to normalise sighting
counts for unit effort. Except this change on m terms, previous estimate expressions
and the kriging system remains globally the same.
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Fig. 1 Map of searching efforts for year 2001 (left, the largest square symbols are for 3 h of efforts
in a pixel of 0:1ı by 0:1ı) and map of fin whale sightings in 2001 (right, number of schools ranging
for 1 to 3) that will be used in the multiplicative kriging of the relative abundance. Dashed lines
give Pelagos sanctuary limits

4 Results

We mapped the spatial distribution of whales by using multiplicative kriging in order
to take into account the spatial trend of the fin whales distribution in the northwest-
ern Mediterranean sea.

We first estimate the spatial drift by extracting a smooth long-range spatial
component by filter kriging (Wackernagel, 2003) from the 1993–2000 pooled data
(excluding the 2001 ones). The resulting map is displayed on Fig. 2 and seems rep-
resentative of the permanence of the fin whale spatial distribution over years. This
long-range component reveals the non-stationarity in fin-whale spatial distribution
and could be considered as the potential habitat of fin whales in the northwestern
Mediterranean Sea. It is modelled as a deterministic drift. Then the experimental
variogram is fitted by a spherical model (Fig. 2) and multiplicative Poisson kriging
is applied to fin whale count data.

The two maps of kriged expectations of whale sightings obtained from multi-
plicative kriging (i.e. taking account for non-stationarity) and from Poisson kriging
show some difference (Fig. 3), especially in the western area outside of the Pelagos
sanctuary and on the eastern part of the sanctuary which was not surveyed. This
observed difference seems be due to the considerations of the deterministic drift in
the multiplicative model, since this pattern shows some similarities with the map
of the potential habitat. In other respect, the two methods differ in extrapolating
context due to the deterministic drift but gives quite close result where the sighting
effort is dense enough.

Maps of standard error differ a lot more. It is clear for multiplicative kriging that
the drift had a real influence, leading to smaller errors in region of lower whale
density and potentially very large errors when extrapolating on high density areas
(western region outside Pelagos). The standard error map of Poisson ordinary krig-
ing reflects more conventionally the spatial distribution of sighting efforts with poor
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Fig. 2 Map of the drift term (left, number of whale schools per square kilometer) and the modified
experimental variogram calculated from Equation (10)

Fig. 3 Maps of kriged expectation of whale school sighting (left column, mean number of school
per square km) and associated maps of standard error (right column, same unit) obtained from
multiplicative kriging (top row) and from Poisson ordinary kriging (bottom row). Map legends are
specific to the variables (expectation or standard error) but are identical for both methods
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performance on the eastern part of the Golf of Genova. If we focus specifically on
the Pelagos sanctuary, the multiplicative approach seems a lot more efficient due to
drift information.

5 Discussion

In this study we showed that it is possible to use geostatistics in a non-stationary
context of count data and zero inflated distributions since it is specified in a hierar-
chical spatial model.

It seems also essential to take into account the non-stationarity in the proposed
multiplicative kriging because it is a reality for many animal spatial distribution.
This non-stationarity can be generally modeled from previous surveys or from
habitat proxies when available. When nothing is known, stationarity can be first
supposed and a potential drift modeled as the long range variations.

When a good knowledge of potential habitats results from previous sequential
surveys, the sampling scheme can be improved using the drift modelling. In this
study, we show that taking account of the non-stationarity had a real impact on the
map of animal spatial distribution since it reduces substantially the error on low
density areas and larger standard error values in high density area; on the contrary
the standard error map of Poisson kriging reflects more the spatial distribution of
sightings efforts.

Moreover, the advantage of developing a hierarchical model for modelling
species distribution in a frequentist context rather than in a Bayesian one is that it
avoids specifying the Y distribution unlike Diggle et al. (1998) who had to hypothe-
size a log-normal distribution for Y ; indeed, a frequentist approach does not require
any prior distribution. In addition, a diagnostic of the spatial structure of animals
can be inferred from the shape of the experimental variogram (Fig. 2), thus allowing
the choice of a suitable variogram model which is not the case with model-based
geostatistics.
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Incorporating Survey Data to Improve
Space–Time Geostatistical Analysis
of King Prawn Catch Rate

Ainslie Denham and Ute Mueller

Abstract Commercial fishing logbook data from the Shark Bay managed prawn
fishery in Western Australia provide king prawn catch rate data densely informed
and irregularly spaced in both the spatial and temporal domains. Space–time geo-
statistical analysis for the data from the 2001 to 2004 fishing seasons has shown that
short term catch rate prediction is possible with the use of the product-sum covari-
ance model and the subsequent kriging estimation process. However the operation
of closure lines within the fishery makes it difficult to capture the high catch rate be-
haviour in areas as they first open to trawling. One of these regions is the Extended
Nursery Area which usually opens in the first week of May. Analysis of the survey
trawls from seasons 2001 to 2003 in this region in March and April shows there is
a moderate positive correlation between the actual catch rate and the survey catch
rate. By using the survey catch rate data as additional data in space–time geostatisti-
cal estimation of the catch rates for May 2004, the space–time behaviour of the king
prawn catch rate data is more successfully captured.

1 Introduction

We consider king prawn logbook catch rate data from the Shark Bay Prawn
Managed Fishery in Western Australia and incorporate catch rate data from sur-
vey trawls in the preceding months to more accurately reproduce the space–time
behaviour of the prawn catch rate in the fishing region. The king prawn catch rate
data are densely informed in both the spatial and temporal domains and involve
varying locations at successive time instants. Space–time geostatistical analysis for
king prawn catch rate data from the 2001 to 2004 fishing seasons, incorporating
traditional time series modelling of annual king prawn catch rate trends, has shown
that short term catch rate prediction is possible with the use of the product-sum co-
variance model and subsequent kriging. However, time-limited closure lines operate
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Fig. 1 Shark Bay North fishing region (light grey) and permanent and temporary closure lines for
the fishery

in the fishery and the timing of the closures is dependent on the lunar phase and
survey results. It is therefore difficult to capture successfully the high king prawn
catch rate behaviour in areas as they first open to trawling.

Of particular importance is the opening of the extended nursery area (ENA)
(Fig. 1) at the start of the last quarter in May producing high catch rates in the
newly opened region. Using the catch rate logbook and survey data from the 2001
to 2003 seasons along with the logbook and survey catch rate data from the lunar
months of March and April 2004, we investigate to what extent their use improves
the reproduction of the catch rate data for the (lunar) month of May of season 2004.
The ENA is surveyed in March and April of each season and analysis of data from
seasons 2001 to 2004 shows that there is a moderate positive correlation between
the actual catch rate and the survey catch rate from preceding months.

Space–time geostatistical estimation of king prawn catch rate for May 2004 is
performed using the survey catch rate data as additional information. Multiplicative
trend models are employed involving a polynomial trend model and (lunar) weekly
seasonal indices obtained from classical decomposition. Spatio-temporal semivar-
iograms of the combined detrended and deseasonalised data for 2001 to 2003 are
computed and modelled using product-sum covariance models (De Iaco et al., 2001;


