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A novel approach to automata-based modeling for spatial systems is described:

geographic automata and Geographic Automata Systems. We detail a frame-

work that takes advantage of the formalism of automata theory and GI Science

to unite cellular automata and multi-agent systems techniques, and provides a

spatial approach to bottom-up modeling of complex geographic systems that are

comprised of infrastructure and human objects. The suitability of the framework

is also discussed with reference to existing cellular automata and multi-agent

systems models used in urban studies. Practical implementation of the framework

is illustrated with reference to an object-based urban simulation environment and

implementation of a popular socio-spatial segregation model.
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1. Introduction

A new class of simulation models has come to the fore in recent years, supported by

an array of advances and developments both in the geographical sciences and in

fields traditionally understood to be relatively external to geographic inquiry

(Benenson and Torrens 2004a). These models are more commonly based on cellular
automata (CA) or multi-agent system (MAS) formalisms and are often applied to

the simulation of spatial systems in dynamic and high-resolution contexts.

Applied in isolation, CA and MAS approaches have been used to simulate a wide

variety of phenomena, particularly urban phenomena (Benenson and Torrens 2004a,

Benenson and Torrens 2004b). When used in a combined framework, CA and MAS open

numerous avenues for exploratory and applied simulation in geography. Nevertheless,
the amalgamation of CA and MAS tools for spatial simulation necessitates certain

awkward methodological compromises and most combined CA-MAS computer

environments and applications exploit a strict CA view of the geographic systems that

they model. While these frameworks are certainly useful, they are based on pragmatic

rather than theoretical considerations: the combination of CA and MAS in this manner is

a function of the limitations of the available tools rather than being informed by

knowledge or theory regarding how real systems function in space.

In what follows, we offer a genuinely spatial framework for modeling geographic

systems, one formulated on the basis of objects located in space. We specify
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simulated geographic objects as geographic automata that combine CA and MAS

concepts in unique ways, by considering collections of interacting geographic objects

as Geographic Automata Systems (GAS). In this framework, geographic phenomena

as a whole are considered as the outcomes of the collective dynamics of multiple

animate and inanimate geographic automata. We argue that the GAS framework

serves as an intuitive basis for merging CA and MAS (which are popularly confused

in the geographic literature), with geography as the binding force. In the framework,

automata become uniquely geographical, fusing CA and MAS but extending the

concept to incorporate notions from GIS and GI Science. We demonstrate the

operational use of the framework with reference to the development of software

for simulating the space-time dynamics of urban systems and implementation of

Schelling’s classic model of urban segregation.

2. Cellular automata and multi-agent systems as automata systems

2.1 The basic automata framework

Automata have many uses, among them the imitation of living organisms and

lifeless elements of the environment. There are various kinds of automata, each with

its own formal definition. Simply stated, an automaton is a discrete processing

mechanism, characterized by internal states. An automaton changes states over time

according to a set of rules that take information from an automaton’s own state and

various inputs from outside the automaton to determine a new state in a subsequent

time step. In this way, automata have the capacity to process information from their

surroundings and to alter their characteristics accordingly. They are flexible and

efficient abstractions that enable the construction of detailed, complex, dynamic

models; they are also well suited to handling geographic phenomena.

Formally, an automaton, A, can be represented by means of a set of states S and

a set of transition rules T.

A* S, Tð Þ ð1Þ

Transition rules define an automaton’s state, St+1, at time step t+1 depending on its

state, St (St, St+1 g S), and input, It, at time step t:

T: St, Itð Þ? Stz1 ð2Þ

This basic formulation does not define the nature of the states S g S, or possible

inputs I g I. The essence of the automata approach is in temporal discreteness and

the ability of an automaton to change according to predetermined rules based on

internal (S) and external (I) information.

Regarding urban applications, nothing prevents us from considering the entire

city as an automaton with myriad states and transition rules (Torrens 2002).

However, to make sense, an individual automaton should be as simple as possible in

terms of states, transition rules, and input information (Torrens and O’Sullivan

2001). Simple structure is characteristic of the automata systems applicable in urban

geography, Cellular Automata (CA) and Multi-Agent Systems (MAS).

2.2 Cellular Automata

CA are arrangements of individual automata over tessellated space, where an

individual automaton is influenced by automata in neighboring cells. Usually,
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partitioning is regular, with cells defined by a square or hexagonal grid and

‘neighboring’ refers to adjacency. We can refine general definition (1)–(2) to specify

an automaton, A, belonging to a CA lattice as follows:

A* S, T, Nð Þ ð3Þ

where N denotes automata neighboring A and defines the set of cells for drawing

input information I, which is necessary for the application of transition rules T.

In basic CA, neighborhoods have identical form for each automaton, e.g., Moore

or von Neumann; it is also supposed that input information is gleaned only from an

automaton’s neighborhood (figure 1). The assumption of regularity is largely

Figure 1. (a) Grid and network neighborhoods. (b) Voronoi neighborhood (gray), based on
property coverage.
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superficial, however, and CA have been implemented on a variety of non-regular

tessellations: arbitrary networks, irregular partitions given by GIS-based coverage

of land parcels, and Voronoi tessellations (Benenson et al. 2002, O’Sullivan 2001,

Semboloni 2000, Shi and Pang 2000). In this case, the form of the neighborhood and

the number of neighbors varies between automata of the CA. An assortment of

definitions of neighborhoods, based on connectivity, adjacency, or distance can be

applied to these generalized CA.

The weakness of the CA approach is the inability of automata cells to move.

Despite repeated attempts to interpret units’ mobility (Benenson 1998, Schofisch

and Hadeler 1996, Wahle et al. 2001), the genuine inability to allow for automata

movement in the CA framework catalyzed geographers’ recent interest in MAS.

This tendency is especially strong in urban geography, where the CA framework is

regarded as insufficient in dealing with mobile objects such as pedestrians, migrating

households, or relocating firms.

2.3 Multi-agent systems

Agents are also automata and, thus, incorporate all of the features of basic automata

that have just been discussed. However, there are some important distinctions

between CA and MAS, particularly when agents are specified with mobility, which

is the common interpretation in geographic models.

According to (3), CA are capable of diffusing state information to neighboring

automata; however, the individual cells of CA remain fixed in their simulated

spaces; they cannot change location. Mobile agents transmit information by

themselves, moving to another location, which can be at any distance from an

agent’s current position. Agents’ spatial behavior can manifest more complex forms

than simple relocation. For example, landlord agents might perform spatially-

mediated sale and purchasing of real estate; the spatial behavior of agents designed

to represent car drivers could include the choice of links and turning opportunities

at junctions.

Generally, agent automata employed in social science research (Epstein 1999,

Kohler 2000) are used to represent individual decision-makers (or, sometimes,

groups of decision-makers). Consequently, the states S that are attributed to social-

science agents are usually designed to represent socioeconomic characteristics, and

agent transition rules T commonly correspond to human-like behaviors. For the

most part, however, work in agent-based simulation in the social sciences outside

geography is non-spatial in nature, as are the tools that are used. Many of the

decisions and behaviors of geographic agents are spatial in nature, and this

distinguishes agent tools necessary for geographic applications.

3. A rationale for Geographic automata systems

Despite their potential for urban simulation, CA and MAS are limited in their

geographic functionality when considered in isolation. The limitations stem from the

disjunction between the tools and our understanding of the spatial dynamics of the

systems they are used to simulate. In many cases, the simulated entities represented

by CA and MAS models do not behave as we understand they should, largely

because the modeling framework will not permit them to.
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General automata are characterized by states S and transition rules T that govern

the change of states. Intuitively, we might identify several internal characteristics

that are essential to geographic automata:

N A typology or ontology of automata based on the ability to relocate;

N The space in which they are situated;

N The spatial relationships between automata;

N The processes governing the changes of automata location in space.

Simulating geographical systems, then, involves explicit formulation of all these four

components.

Neither CA nor MAS can fully provide these requirements in isolation. The

geography of the CA framework is evidently restricted because CA are incapable of

representing autonomously mobile entities. Individual automata in CA can diffuse

the information encapsulated in their cell states over automata neighborhoods, but

the individual cells themselves are not free to move (Torrens 2004a). At the same

time, MAS methodologies and existing tools are over-general and underestimate, if

not ignore, the importance of space and spatial behavior.

A truly geographic framework for automata models remains sought after. Despite

the widely acknowledged suitability of automata tools for geographic modeling

(Gimblett 2002), there has been relatively little exploration into the development of

patently spatial automata tools for urban simulation. This is partly due to the

history of automata development; automata were pioneered as computing media

(Ifrah 2000, Wiener 1961), originally used for the description of networks of units

influencing each other by means of signals transferred along links. These networks

were used as an abstraction of several phenomena: universal computational devices,

neural networks, the human brain, cellular tissue, ecological webs, etc. Interest in

CA remained obscure for two decades after these initial developments, until revived

by the popularity of John Horton Conway’s Game of Life (Gardner 1970, 1971), as

well as many applications in physics, chemistry, biology, and ecology (Wolfram

2002).

However, the introduction of automata tools in geography is a relatively recent

phenomenon. It took geography, as a discipline, a further twenty years to adopt the

concept. Despite direct analogies between land parcels and cells on the one hand and

land-uses and cell states on the other, geographical applications of CA models were

few and far between (Benenson and Torrens 2004a). A few sound examples

published in the 1970s (Chapin and Weiss 1968, Nakajima 1977, Tobler 1979) were

nonetheless ignored, before interest was revived in the 1980s (Couclelis 1985, Phipps

1989). However, it was not until the 1990s that CA modeling became a widespread

research activity in geography, popularized by applications in urban geography

(Batty et al. 1997).

The study of MAS has taken place much more recently than that of CA. Human-

based interpretations of MAS have their foundation in the work of Schelling and

Sakoda (Sakoda 1971, Schelling 1969, 1971, 1974, 1978). Just as with CA, the tool

began to feature prominently in the geographical literature only in the late-1990s

(Benenson 1999, Dijkstra et al. 2000, Portugali et al. 1997, Sanders et al. 1997),

following its introduction in ecology and economics (De Angelis and Gross 1992,

Tesfatsion 1997). Until recently, the mainstream of MAS research in geography

involved populating regular CA with agents of one or several kinds, which could
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migrate between cells, or simply reinterpreting CA as agent-based models, by

attributing anthropomorphic state variables to cells. Often, it is assumed that

agents’ migration behavior depends on the properties of neighboring cells and

neighbors (Epstein and Axtell 1996, Portugali 2000). Very recent explicit agent-

based models locate agents in relation to real-world geographic features, such as

houses or roads, the latter stored as GIS layers (Benenson et al. 2002) or landscape

units—pathways and view points (Gimblett 2002). These models clearly demon-

strate the potential of MAS for modeling the intricacies of human spatial behavior.
But, we argue, the work can be taken much further.

As a spatial science, geography concerns itself with the behavior and distribution

of objects in space. In dynamic spatial systems, many of these objects change their

properties and/or location; the goal of a geographic model is to mimic these

activities and their consequences, often at multiple scales. In what follows, we

present a framework that aims to infuse spatial properties into automata tools,

based on the assumption that geographic objects—agents and features—are all

individual automata and, as characteristic of automata, their rules of behavior can
be defined a priori, with focus on their spatial properties and behaviors. A

geographic system can be thus modeled as a collection of geographic automata, as a

Geographic Automata System.

4. Geographic Automata Systems

A Geographic Automata System (GAS) consists of geographic automata of various

types or ontology. In general, automata are characterized by states and transition

rules. In the case of geographic automata, we introduce functionality to enable the

explicit consideration of space and spatial behavior. In CA, pre-defined partitions are

often used as a proxy for geography. The approach that we adopt with GAS differs;
instead of pre-defined partitions, we introduce a set of geo-referencing rules for

situating geographic automata in space. Likewise, we define neighborhood rules,

rather than relying on fixed neighborhood patterns that are incapable of being

varied in space or time once delineated. Considering the mobility introduced by the

agent-based paradigm, we define movement rules that allow for the navigation of

geographic automata. Formally, a Geographic Automata System, G, consists of

seven components:

G* K; S, Ts; L, ML; N, RNð Þ ð4Þ

Here, K denotes a set of types of automata featured in the GAS and three pairs of

symbols denote a specific spatial mechanism and the rules that determine its

dynamics.

The first pair denotes general automata features. It represents a set of states S,
associated with G, and a set of state transition rules TS, used to determine how

automata states should change over time. S consists of subsets of states Sk,

characteristic of automata of each type kgK. The second pair represents location

information. L denotes the geo-referencing conventions that dictate the location of

automata in the system and ML denotes the movement rules for automata,

governing changes in their location in time. According to general definition (1)–(2),

state and location transitions depend on automata themselves and on input (I),

given by the states of neighbors. The third pair in (4) specifies this condition. N
represents the neighbors of the automata and RN represents the rules that govern

changes of automata relations to the other automata.

390 P. M. Torrens and I. Benenson



The general automation process (2) can be specified in terms of the framework

laid out above. Let us consider a geographic automaton G at time t with state St; it is

located at Lt, and its external input, It, is defined by its neighbors Nt. To animate, or

spatially enable GAS, state transition, movement, and neighborhood rules—TS, ML,

and RN—should be applied to each G, and this results in a new triplet: St+1, Lt+1, and

Nt+1:

TS: St, Lt, Ntð Þ ? Stz1

ML: St, Lt, Ntð Þ?Ltz1

RN: St, Lt, Ntð Þ?Ntz1

Exploration with GAS then becomes an issue of qualitative and quantitative

investigation of the spatial and temporal behavior of G, given all of the components

defined above. In this way, GAS models offer a framework for representing spatially

enabled interactive behavior of elementary geographic objects in a system. Let us

specify GAS components further.

4.1 Geographic automata types, K

As mentioned, GAS may be composed of automata of different types. At an

abstract level, we can distinguish between fixed and non-fixed geographic automata.

Fixed geographic automata represent objects that do not change their location over

time and thus have close analogies with CA cells. For example, in the context

of urban systems, a variety of infrastructure objects may be specified as fixed

geographic automata: road links, building footprints, parks, households, etc. Fixed

geographic automata may be subject to any of the transition rules outlined already,

except rules of motion ML.

Non-fixed geographic automata symbolize entities that change their location over

time. The full range of rules for GAS can be applied to non-fixed geographic

automata, including movement rules. Typical examples of non-fixed urban

automata include pedestrians, vehicles, householders, landlords, etc.

A geographic system usually contains objects of both fixed and non-fixed types.

For example, in a model of housing dynamics, apartments and houses might be

represented by fixed geographic automata, with state variables describing their

characteristics that are important for residential choice: number of rooms, floor

level, value, architectural style, the year of establishment, presence of elevators, etc.

Non-fixed geographic automata in a housing context might represent householders,

with state variables including economic status of a family, mean age of parents, and

number of children. In the case of cars as non-fixed automata, state variables of

relevance to the movement rules of the GAS may include heading, speed, progress

toward destination, etc. (Torrens 2004a).

4.2 Geographic automata states and state transition rules, S and TS

The characteristics of fixed and non-fixed automata often depend on each other. For

example, the value of an apartment depends on real estate in the property and

property’s neighborhood and on the structure and neighborhood population.

Consequently, a transition rule, Tpropertyvalue_update g TS that describes the change in

value of real estate should depend on the states of the fixed automata representing

real estate and, importantly, on the states of non-fixed automata representing

(5)
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householders that occupy them. In the same manner, a transition rule

Thousehodereconomicstate_update g TS, describing changes in the economic status of

householders, a rule Mhouseholder_relocate g ML, describing the way householders

choose new residence, and a rule Rhouseholderneighbors_update g RN, describing how

householders’ neighbors are determined depend on the states of the real estate and

on attributes of the householders that occupy it.

It is worth mentioning that, in the context of the GAS framework, CA are

artificially closed, simply because cell-state transition rules are generally driven only

by cells. In GAS, infrastructure objects’ transition is governed by other relevant

objects acting upon and within them. This is a crucial concept for simulating

human-driven systems, in which people interact and are affected by their

environments.

4.3 Geo-referencing conventions and migration rules, L and ML

Geo-referencing conventions L govern how geographic automata are registered in

space. Fixed geographic automata can be geo-referenced by recording their position

coordinates, which do not change in time. Non-fixed geographic automata may

move and this demands specific conventions regarding L. It is also worth noting that

there are instances in which geo-referencing is dynamic for the geographic automata

that represent infrastructure objects, for example, when land parcel objects are sub-

divided during simulation.

Formally, we say that automata in a GAS can be geo-referenced to simulated

spaces directly and indirectly.

Direct geo-referencing follows a vector GIS approach, using coordinate lists. Such

a list indicates all spatial details necessary to represent automata as a spatial object:

boundaries, centroids, node’s location, etc. Fixed geographic automata are located

by means of direct geo-referencing. The details of the particular rules depend on the

automata employed in a modeling exercise. For typical urban objects such as street

segments or buildings, polylines, 2D basement polygons, or 3D prisms may be used

to register objects in space. Varying resolutions may be employed, depending on the

model application. For example, when modeling housing dynamics at a ‘micro-

scopic’ scale, building footprints, outer borders, and road segments may be required

(figure 2a). However, in other cases, this amount of detail may not be needed and the

centroid of a building and centerlines of road segments may be enough to register

Figure 2. Direct geo-referencing. (a) Buildings are represented by means of foundation
contours; road segments by means of road boundaries, (b) Buildings are represented by means
of foundation centroids; road segments by means of a road segment centreline, (c) Building
centroids and roads are represented by cells.
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automata in the model (Figure 2b). In abstract models, cell-based approximations

may suffice (Figure 2c).

The second method by which geographic automata might be geo-referenced,

indirectly, is by pointing to other automata. For example, in the instance of a model

of property dynamics we can geo-reference householders by address (Figure 3a).

Landlords provide a more complex example: they can be geo-referenced by their

home addresses, while pointing to the properties that they own might be more

important for modeling urban dynamics (Figure 3b). Indirect referencing is mostly

relevant for non-fixed geographic automata, but can also be used for fixed

geographic automata, e.g., for apartments in a building. It is convenient for dynamic

modeling, with references varying as a simulation evolves.

Different formulations of ML offer great potential for encoding the motion of

traveling objects—vehicles, pedestrians, householders, institutions, etc. They can be

based on repel-attract-synchronize interactions between neighbors, as developed,

for example, in Animat research (Meyer et al. 2000) and in the gaming industry

(Reynolds 1999) or, in traffic models, through the specification of rules for collision

avoidance, obstacle negotiation, lane-changing, flocking, behavior at junctions, etc.

(Torrens 2004a). At the same time, ML can code the changes in relationships to

locations, such as ownership following spatially-mediated sale and purchasing of

real estate.

4.4 Neighbors and neighborhood rules, N and RN

Neighbors N for fixed geographic objects are relatively easy to define, simply

because the objects are static in space. There is a variety of geographical ways to do

that—via adjacency of the units in regular or irregular tessellations, connectivity of

network nodes, proximity, or via human-like measures such as accessibility or

visibility.

Neighborhood rules RN account for variation of spatial relationships between

geographic automata in time. In an urban context, it might be important for fixed

objects, when, for example, the neighborhood relationship between buildings is

based on accessibility, and could be established, for example, if a path opened up

between two buildings, or connected an existing building to a new construction.

However, non-fixed automata pose a real challenge, because their neighborhood

relations are usually dynamic in space and time.

Figure 3. Indirect geo-referencing by pointing. (a) Locating households by pointing to the
houses they occupy, (b) Locating a landowner by pointing to its properties.
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Straightforward definitions, via distance and nearest-neighbor relations, as used

in Boids models (Reynolds 1987), can be evidently employed, but can become very

heavy computationally for GAS containing many automata or when more complex

measures of proximity, such as visibility or accessibility, are involved. In this case,

when geo-referencing rules L are based on indirect location, GAS provide a general

solution—two indirectly located automata can be considered as neighbors, when the

automata they point to are neighbors. For example, in figure 4, two households are

established as neighbors by assessing the neighborhood relationship between the

houses in which they reside.

The idea of GAS is not a panacea, but a conceptual framework aimed at

unified bottom-up description of geographic reality as we see it. We have reviewed

the available urban modeling literature and our review demonstrates that each of

the examined models can be easily reformulated as a GAS, with transition

rules formulated in the form of (4)–(5), and we take this as a promising sign (see

Table 2 at the end of the paper). The predominant absence of non-fixed automata,

and general lack of location rules in the models documented in Table 2 is worth

noting.

5. Geographic Automata Systems as a dynamic extension of Geographic Information

Systems

5.1 Geographic Automata Systems and vector and raster models

Geographic automata models are tightly bound to vector GIS. First, geographic

automata of many types correspond to GIS features, which can be used to derive

automata location, and for fixed geographic automata, it is done directly, by using

Figure 4. Neighbor relationships for indirectly located geographic automata. Two house-
holds are neighbors if they are located in the same property or in neighboring properties.
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the coordinate representation of a corresponding GIS feature. Second, the majority

of relationships between geographic automata can be naturally evaluated within

vector GIS: standard overlay operators such as point-in-polygon, buffering,

intersection, etc., make it possible to determine how automata are situated in

relation to other automata. More specifically, neighborhood rules are readily

available for evaluating adjacency, contiguity, continuity, distance, accessibility,

visibility, and so on.

In many ways, GAS move far beyond vector GIS, just as CA models go far

beyond raster GIS. First, this relates to GAS object types—GIS features do not

cover all the variety of geographic automata types. Landlords, as part of housing

GAS, are a typical example of this kind: their own location might not be important

for the model, while the location of the real estate that they possess really is.

Consequently, the location of landlords in such a housing model should be

implemented by pointing to real estate holdings. Second, GAS are dynamic, while

GIS are not. The essence of GAS is in the rules of state, location, and neighborhood

transitions—TS, ML, RN—which do not have analogies in GIS. GIS would benefit

from the introduction of automata-like functionality.

While GAS have obvious affiliations with vector GIS; they are also functionally

connected to raster GIS. Each pixel of a raster layer can be regarded, at least

morphologically, as an automata cell, geo-referenced by column and row positions

within a GIS scene. Based on these coordinates, one can easily consider a point or

square representing the cell as a feature of vector GIS, and the latter fully enable

vector GIS functionality, including estimation of relations between objects.

Nonetheless, the conceptual difference between features originating from cells of

raster and features of vector GIS layers still remains; the latter are normally chosen

to represent real-world objects, while the former are not. The choice of a raster or

vector view is beyond the GAS scheme and evidently depends on the goal of a

model. Irregular tessellations based on land partition fit naturally into real-world

simulations, while raster representations essentially simplify neighborhood defini-

tions and might be chosen for abstract modeling.

5.2 Interfacing Geographic Automata Systems with GIS and GIS data

Information collection is now much more pervasive than before (Brown and Duguid

2000), and high-resolution spatial databases for land-use, population, real estate,

and transport are now widespread (Torrens 2004b). Automated procedures for data

collection—multi-channel remote sensing, aerial photography, etc.—have provided

new information at fine resolutions, both spatial and temporal with added-value

created by interpreting these data. New databases and the abilities of GIS to register

data spatially, to use spatial analysis to shape data as layers of objects, and to

estimate relationships between them (Benenson and Torrens 2004b), provide an

extraordinary foundation for GAS modeling framework.

Recent advances in GIS technology also guarantee a functional GIS background

for potential GAS computational environments. A number of GIS libraries can be

interfaced with other software through the Component Object Model (COM)

(Microsoft Corporation and Digital Equipment Corporation 1995, Ungerer and

Goodchild 2002) or technologies such as JavaBeans2 (Sun Microsystems 2002).

Indeed there are opportunities to extend regular vector GIS, especially open source

GIS (Baylor University 2002, Centre for Computational Geography 2002) toward

GAS; recent raster GIS extensions toward CA provide a proof-of-concept for such
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development (Clark Labs 2002). Finally, GIS are an excellent tool for visualizing,

and querying, the outcomes of GAS simulations.

6. From GAS to Dynamic Spatial Systems

So far, we have focused on two notions merged within the GAS abbreviation,

namely on ‘Geographic’ and ‘Automata.’ The third one—‘System’—comes into

focus when dynamics of a given GAS model are considered. The GAS approach

provides specification of geographic systems, but does not impose limitations on the

ways the update rules TS, ML, RN are formulated, or how the dynamics of the GAS

as a complex system are represented, investigated, and understood. System theory

provides a basis for studying GAS models, the latter should unambiguously outline

the system concepts it assimilates, just as each CA, MAS, or any other dynamic

model should. Let us point to two aspects of system theory that are especially

important in GAS application, characterized by many interacting decision makers—

management of time and self-organization.

6.1 Management of time in Geographic Automata Systems

According to (5), the triplet of transition rules TS, ML, RN, determines the states S,

locations L, and neighbors N of automata at time t + 1 based on their values at time

t. It is very well known that different interpretations of the ‘hidden’ variable—

time—in a discrete system can critically influence model formulation and resulting

dynamics (Liu and Andersson 2004). On the one hand, one can consider time as

governed by an external clock, which commands simultaneous application of rules

(5) to each automaton and at each tick. On the other, each automaton can have

its own internal clock and, thus, the units of time in (5) can have different meaning

for different automata. Formally, these approaches are expressed as Synchronous

or Asynchronous modes of updating of automata states. System dynamics strongly

depend on the details of the mode employed (Berec 2002), and the ability to set

it up is implemented in the GAS-based modeling environment, as we discuss

shortly.

6.2 Emergence and self-organization in GAS

From the point of view of system theory, to straightforwardly reflect geographic

reality GAS employs many interacting automata. It is very well known that if system

rules are non-linear and the system is open, then emergence and self-maintenance of

entities at above-automata levels become feasible. Ghettos and market areas in

urban contexts are an example.

The interactions of GAS automata are ‘hidden’ within transition rules TS, ML,

and RN, and superficial analysis is sufficient to reveal that non-linearity is

characteristic for GAS models. GAS can self-organize in two ways, thus reflecting

the afore-mentioned dichotomy of fixed and non-fixed objects. First, fixed automata

can change their properties in a way that entails emergence of assembled spatial

units; models of voting are an obvious example (Stauffer 2001). Second, the same

can happen when non-fixed elements change their locations, as in the examples

explored through socio-spatial modeling (Sakoda 1971, Schelling 1969, 1971, 1974,

1978). (We will demonstrate a generalized implementation of Schelling’s model in

section 7.3.)
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The study of emergence and self-organization as well as the possibility of abrupt

bifurcations between different dynamic regimes is very often the very goal of a

geographic model (urban examples are discussed in Portugali 2000). The phenomena

might be especially important for GAS including human individuals, whose

behavior is essentially based on the ability to recognize emergence or disintegration

of ensembles of objects, as, for example, concentration of householders in particular

groups. Any implementation of GAS will be, thus, incomplete, until it incorporates

tools for delineating self-organization.

The GAS-based modeling environment OBEUS (Benenson et al. 2004) we discuss

shortly can be considered as a demonstration of the constructiveness and usefulness

of this approach. In addition to demonstrating proof-of-concept, it sheds light on

the issue of translating the GAS framework into a working tool, and offers simple,

but efficient approaches to the issue, including simple algorithms aimed at capturing

spatial emergence in geographic systems.

7. Implementing GAS framework in an urban context

We will now demonstrate the operational implementation of the GAS framework as

spatial simulation software designed to support modeling of complex urban systems,

and with application to a generalized segregation model. The software—Object-

Based Environment for Urban Systems (OBEUS)—has been developed at the

Environment Simulation Laboratory at Tel Aviv University as a software package

based on a GAS core. OBEUS itself is best considered as a foundation for

developing geographic simulations in the style of other popular social science

computing libraries such as Swarm (Minar et al. 1996), RePast (University of

Chicago 2004), and the Multi-Agent Modeling Language (MAML) (Gulyás et al.

1999), but differentiated by its emphasis on geography and relationships. Users

extend the base OBEUS package to suit their particular modeling requirements. It

thus shields the user from much of the overhead required when building a spatial

simulation, focusing her attention on specifying the automata objects included in the

model and rules of their (spatial) behavior. The software itself is detailed elsewhere

(Benenson et al. 2004). In this section, we demonstrate the implementation of the

GAS framework in OBEUS, generally with reference to the modeling of urban

dynamics, and specifically in the context of Schelling’s segregation model.

7.1 Implementing GAS demands in software

The computational background of GAS should provide functionality for the

representation of all the components defined by (4)–(5): to characterize and locate

geographic automata; to determine neighborhood and other spatial relationships

between them; and to formulate state transition, migration, and neighborhood rules.

All this inherently fits to an Object Oriented Programming (OOP) paradigm and we

describe the software designs in OOP-fashion in the proceeding sections.

7.1.1 Universal and User classes. Currently, there are two class levels in the

OBEUS scheme: Universal and User-defined. The abstract classes of the Universal

category are considered as those that are necessary for simulating any Geographic

Automata System. User classes inherit abstract classes, and implement automata

and transition rules characteristic of specific phenomena. In what follows, an

abstract model of housing dynamics is considered as an example of such a
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phenomenon. User-defined classes reflect specificity in users’ models and might be

constructed anew, or acquired from previously developed applications and reused.

7.1.2 GAS software as Object-Oriented Database Management Systems. Data

storage, updating, querying, and computation within OBEUS environments follows

an Entity-Relationship Model (ERM) (Peckham et al. 1995). There are two

rationales for this. First, as we noted before, the GAS approach is tightly coupled

to vector GIS, which, in turn, is an extension of a relational database. Second, GAS

separates automata types K, states S, locations L, and neighbors N. While type and

state can be encapsulated within automata themselves, the information on relations

between automata and neighbors and, in the case of indirect geo-referencing,

location information is attributed to the pair of automata, that is, to relationships

between them. Implementation of GAS can evidently benefit if relationships are

implemented as separate software objects, as with ERM. To merge an ERM scheme

and automata approach, OBEUS is developed as an Object-Oriented Database

Management System (OODBMS).

7.1.3 Universal abstract classes. The basic components of GAS are defined in

OBEUS with respect to automata types k g K, its states Sk, location L, and

neighborhood relations N to other objects. These are implemented by means of three

abstract root classes (Figure 5): Population, which contains information regarding

the population of objects of given type k as a whole; GeoAutomata acting as a

container for geographic automata of specific type; and GeoRelationship, which

facilitates specification of (spatial, but not necessarily) relationships between

geographic automata. This functionality is available regardless of the degree of

relationships between automata, whether they are one-to-one, one-to-many, or

many-to-many.

The location information for geographic automata essentially depends on whether

the object we consider is fixed or non-fixed. This dichotomy is handled using

abstract classes, Estate and Agent. The Estate class is used to represent fixed

geographic automata (land parcels and properties in a residential context). The

Agent class represents non-fixed geographic automata (householders and landlords

in a residential context). Following from this, three abstract relationship classes can

be specified: EstateEstate, AgentEstate, and AgentAgent. The latter is not

implemented because the only way of locating non-fixed agents modeled in

OBEUS is by pointing to fixed estates; consequently, direct relationships between

non-fixed objects are not allowed (figure 5).

7.1.4 The problem of managing relationships. Relationships in GAS models can

change in time and an application of the RN rules that describe these changes might

cause conflicts, when, in housing applications, for example, a landlord wants to sell

his property, while the tenant does not want to leave the apartment. Who has the

right to destroy the relationship between the tenant and the property, then? This

example represents the general problem of consistency in managing relationships. It

has no one general solution; one can refer to the computer science literature for

complex situations (Peckham et al. 1995). In OBEUS, we follow the development

pattern proposed by Noble (2000). To retain consistency of relationships, an object

on one side, termed the leader, is responsible for managing the relationship. The

other side, the follower, is comprised of passive objects. The leader provides an

interface for managing the relationship, and invokes the followers when necessary.

There is no need to establish leader or follower ‘roles’ in a relationship between fixed
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Figure 5. A UML scheme illustrating the abstract-level classes of OBEUS and the example of model-level classes for the Schelling simulation.
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objects once the relationship is established, while in relationships between a non-

fixed and a fixed object, the non-fixed object is always the leader and is responsible

for creating and updating the relationship. For instance, in a relationship between a

landlord and her property (when ownership cannot be shared), the landlord initiates

the relationship and is able to change it. Accounting for limitations of OBEUS

(direct relationships between agents are not allowed) the way to force the tenant to

leave the property is to raise their payment. The tenant (the leader in tenant-

property relationship) will likely end the relationship by herself in that case. There is

no proof that the majority of real-world situations can be imitated by the leader-

follower pattern, although we are not aware of any natural instance where this

pattern is insufficient.

7.2 Implementing system theory demands within OBEUS

7.2.1 Management of time. We mentioned the importance of the synchronization

mode for dynamic models; the OBEUS architecture utilizes both Synchronous and

Asynchronous modes of updating.

In Synchronous mode, all automata are assumed to change simultaneously and

conflicts can arise when agents compete over limited resources, as in the case of two

householders trying to occupy the same apartment. Resolution of these conflicts

depends on the model’s context, a decision OBEUS leaves to the modeler. It is worth

noting that the logic of synchronous updating often passes conflicts further in time.

If two mutually-avoiding agents occupy adjacent locations and simultaneously leave

this unfriendly neighborhood, at a given time-step, then in synchronous mode

nothing can prevent occupation of these locations by another pair of avoiding

agents.

In Asynchronous mode, automata change in turn, with each observing a

geographic reality left by the previous automata. Conflicts between automata are

thereby resolved, but the order of updating is critical as it may influence results.

OBEUS demands that the modeler sets up an order of automata-updating according

to a template: randomly, sequence in order of some characteristic, and object-driven

approaches are currently being implemented.

7.2.2 Management of self-organizing spatial ensembles. We have also discussed the

importance of tools aimed at recognition of the emerging units in software for

modeling complex dynamic systems. In urban GAS models, typical examples of

self-organizing spatial units are suburbs populated by members of a particular

socioeconomic group or areas exhibiting similar land-use. These emerging spatial

ensembles of geographic automata are supported in OBEUS by means of the

abstract class GeoDomain (figure 5). The simplest approach to emergence,

determined by the set of a priori given predicates defined on geographic automata

is implemented; domains are thus limited to capturing ‘foreseeable’ self-organization

of specific types.

Stated formally, for a given set of predicates C, the set of geographic automata

DC form a domain in OBEUS, if

1. For each GgDC, a sufficient number of G’s neighbors (but not necessarily G

itself) satisfy criteria C;

2. DC contains sufficient number of geographic automata G;

3. DC is ‘practically’ continuous.
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This scheme is detailed elsewhere (Benenson et al. 2004).

Finally, a City class contains parameters (variables) and methods (mechanisms)

relating to a city as a whole (Figure 5).

Inheriting and extending universal classes of OBEUS, we can build an urban

geographic system, i.e., specify software objects representing fixed and non-fixed

automata, and the geographic mechanisms of their location and relations to other

automata. The rules TS, ML, and RN that eventually drive system evolution become
the methods of the classes at the User level.

The next section presents an example of these classes for a Schelling-like

simulation (Schelling 1969) of socio-spatial segregation dynamics in a city

comprising individual householders and households. It is worth noting that an

abstract raster-based version and a version of the model based on a layer of real-
world houses have identical formulation in OBEUS; the only difference between the

versions is in the definition of neighboring relations between fixed house-automata,

encapsulated within the EstateEstate class.

7.3 A generalized Schelling model as an example of implementing a Geographic
Automata Systems approach

In order to demonstrate the usefulness of the GAS concept in modeling urban
dynamics, we have formulated Schelling’s popular segregation model (Schelling

1969, 1971, 1974, 1978), as a GAS, and in this section we present it in terms of the

OBEUS software already discussed.

Schelling’s original model was realized using black (B) and white (W) checkers on

a chess board. If the fraction of agents of different type (say of W-type for a B-
agent) within the neighborhood of a target agent’s location is above the tolerance

threshold of this agent, then the agent will attempt to relocate to a nearest

unoccupied location, where the fraction of different agents is below that threshold.

The Schelling model is asynchronous in its handling of time; each agent observes the

state of the system as left by a previously-considered agent.

In formulating the model as a Geographic Automata System and implementing
it in OBEUS, we assume that agents of two types are located in houses. Houses are

characterized by their capacity. Agents differ in their tolerance to agents of an

opposite type and react to a fraction of opposite agents in the neighborhood of those

houses.

We thus define two types of objects (K52), as denoted in table 1. The
implementation accommodates these objects, their relationships, the location

agreements, one state transition rule and one movement rule (table 1). According

to the scheme (figure 5), abstract classes Agent and Estate are inherited by Tenant
and House. Abstract relationship classes EstateEstateRelationship and

AgentEstateRelationship are inherited by HouseHouse and TenantHouse, respec-

tively. It is worth noting that objects of the HouseHouse class, when initiated, define

neighborhood relationships between houses.

Objects belonging to the class House are endowed with two properties: Capacity
and Vacancies; both are integers. Its methods include getNeighboring-
Houses(house), which returns the list of neighboring houses, and getNeigh-
boringHousesHavingVacancies(house), which returns a list of houses with vacancy.

Another class, Tenant, features with two properties of its own: Color, which is

Boolean and has values B and W, and the Tolerance threshold, which is real.

Its methods include getFractionOfStrangers(tenant, house), which returns a fraction
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of neighbors of color opposite to that of the tenant tenant, if located in a house

house.

To study residential segregation, emerging clusters populated mostly or

exclusively by B- or W-agents should be identified in the simulation. If such

clusters emerge and are recognized, they become objects of the SegregatedArea

class, which inherits an abstract class GeoDomain. It is defined with reference to

house objects and has three properties: Color, which defines the color of the

segregated tenants; ColorFraction, which defines the fraction of segregated tenants of

color Color over the neighborhood of each house belonging to SegregatedArea

houses; and Size, which defines the number of houses in a segregated area.

This facilitates experimentation in simulation. Maps output from the Schelling

simulation, implemented on abstract and real-world spaces, are illustrated in

Figure 6.

8. Conclusions

We have introduced a Geographic Automata Systems framework as a unified

scheme for representing discrete geographic systems. Technically, the framework is

Table 1. Parameterization of the Schelling model implementation.

Object Type Fixed Non-fixed

Object’s name
and notation

House, H Tenant, D

States S Capacity PH; Number of
vacancies VH

Color CD, Tolerance threshold
TD

State transition
rules TS

PH does not change in time;
VH equals PH minus current
number of tenants in H

–

Location
agreements L

Shape of the footprint polygon By pointing to a house H
tenant D is located in: D R H

Location
transition
rules ML

– Calculate fraction fD of
strangers among the
neighbors of D
If (fD,TD) do nothing;
If (fD > TD) relocate to one
of the neighboring houses
satisfying fD,TD. If there are
no vacancies in the
neighboring houses, stay in a
current house

Neighbors N Can vary; for example,
houses, which Voronoi
polygons have common
boundary with H

Tenants in the houses,
neighboring to H

Neighborhood
transition rules RN

– –
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designed to merge two popular tools used in urban simulation—Cellular Automata

and Multi-Agent Systems—and specify them in a patently spatial manner. We

have demonstrated the operational implementation of the GAS framework

with reference to a general-purpose software tool for urban geographic simulation

and its application to an urban segregation model. Conceptually, our assertion is

that GAS forms the kernel of the system, as far as the system is spatially driven.

Figure 6. Visual output of the Schelling model, implemented in (a) abstract and (b) real-
world spaces.
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Let us consider a logical chain between geographic systems and GAS representa-

tions:

Geographic system?Priority of location information and spatial relations between

elements?Collective dynamics of geographic automata in space?GAS

Indeed, with focus on geography, the system elements—geographic automata—are
located and behave in space—urban space—in all the examples we have considered.

The depiction of space necessitates location conventions, which differentiate between

fixed (houses, land parcels, road segments) and moving spatial objects (house-

holders, pedestrians, cars). A minimal realization of GAS borrows location

conventions from vector GIS regarding fixed objects, and utilizes the latter as

anchors for moving, non-fixed, objects. This has close analogies with the ways

in which we understand real spatial entities to move within fixed geographic

infrastructure, such as the case of a pedestrian shopper moving from Calvin Klein
by foot, on toward Diesel by taxicab, and to Versace by limousine. These minimal

location conventions are also sufficient for representing neighborhood and other

spatial relationships. Thinking empirically, a tautological statement such as,

‘‘householders living in nearby houses are my neighbors’’ are those represented in

a GAS context, involving little more than the expression of neighborhood relations

between non-fixed householders via fixed real estate units. Formally, we use the

notions of direct and indirect location to encapsulate these sorts of expressions in a

simulation framework; informally, we claim that, for the majority of situations, this
is just the way humans describe space and spatial behavior. It is not surprising,

therefore, that a minimal GAS environment is sufficient for interpreting most urban

CA and MAS simulations we know, as we present in table 2.

The priority of geography in the framework reinforces the strengths of the

simulation environment and the basis on geographic relationships makes possible

some simple, but important, steps toward including the ideas of self-organization

and time-management in complex systems. Once we think of the main elements of a

system in non-spatial terms, e.g., broker agents in a stock exchange model (Luna
and Stefansson 2000), or Internet users on an Information Autobahn (Leonard

1997), the problem of selecting the relationships that are important for the model

arises immediately. The common-sense geographic background for studying

complex urban phenomena fades away in non-spatial systems.

The minimal GAS skeleton allows for a degree of standardization between

automata models and other systems, not least of which are GIS. It also provides a

mechanism for transferability. Until now, the majority of—if not all—spatial

simulations could be investigated only by their developers. The development of GAS

software breaches this barrier, offering opportunities to turn urban modeling from
art into engineering.

Two additional steps are necessary for full implementation of the GAS

framework; none, we think, demand decades of development. The first requirement

is that the GAS framework should be transformed into a software environment. In

an urban context, OBEUS is the first experiment in this direction; similar

approaches, also based on object-based views of environmental processes, have

recently been developed in ecology (Ginot et al. 2002). The second requirement is

that a high-level, preferably geography-specific, simulation language based on the
GAS approach should be developed. The goal is to enable the formulation of

simulation rules in terms of objects’ spatial behavior. We believe that the continued
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Table 2. Existing urban cellular automata and multi-agent systems models expressed as Geographic Automata Systems.

Source
Form of

geographic automata
Characterization

of states

Location of objects

Neighborhood rule(s)Fixed
Non-
fixed

(Chapin and Weiss
1962, 1965, 1968,
Donnelly et al. 1964)

Identical square
land cells

Discrete ordinal variable
denoting fraction of urban
land-use

Rectangular grid – 363 Moore neighborhood

(Engelen et al. 1995;
White and Engelen
1993, 1994, 1997,
White et al. 1997)

Identical square
land cells

Nominal variable representing
four land-uses: vacant, housing,
industry, commerce.

Rectangular grid – Cells at a distance less than
7 cell-units

(Allen and Sanglier
1979, Bura et al.
1996, Sanders
et al. 1997)

Identical hexagonal
land cells

Non-urban and urban
cells, the latter characterized
by continuous variables
representing population,
production, services, etc.

Hexagonal grid – Potentially each cell influences
the other, but the influence
decays with distance and when
there is a physical barrier
(always associated with cell
boundary) between cells

(Batty 1998, Batty
and Xie 1994, 1997,
Xie 1996)

Identical square
land cells

Nominal variable, representing
land-use. Often, only two
uses—urban and non-urban—are
considered

Rectangular grid – Three neighborhoods of
increasing radius with the cell in
vicinity: the local one is
included into the neighborhood
of ‘interactions’, the latter
included into the neighborhood
of ‘constraints’

(Wu 1996) Identical square
land cells

Nominal variable representing
four land-uses: cultivated, wood,
urban, transport, water

Rectangular grid – 565 Moore neighborhood
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Table 2. (Continued).

Source
Form of

geographic automata
Characterization

of states

Location of objects

Neighborhood rule(s)Fixed
Non-
fixed

(Wu 1998, Wu and
Webster 1998)

Identical square
land cells

Cell potential represented by
a vector of continuous
economic characteristics and a
binary variable denoting urban/
non-urban usage

Rectangular grid – Decay of cell influence with
distance, 363 Moore
neighborhood

(Batty 1998, Wu
1998)

Identical square
land cells

Continuous variable
representing cell potential
and a binary variable
denoting urban/non-urban usage

Rectangular grid – 363 Moore neighborhood

(Besussi et al. 1998) Identical square
land cells

Nominal variable, which denotes
18 population/land use states

Rectangular grid – 363 Moore neighborhood

(Li and Yeh 2000,
Yeh and Li 2000,
2001, 2002)

Identical square
land cells

Nominal variable representing
four land-uses: vacant, housing,
industry, commerce. Continuous
variable representing cell potential

GIS-based raster
coverage

– Two kinds of neighborhoods:
neighbors within a circular
radius of two cells; and a larger
neighborhood with radius
defined by the distance between
urban centers (the latter
established in advance)

(Erickson and
Lloyd-Jones 1997)

Street segments
and buildings,
both represented
by sets of cell

Ordinal variable representing
street type (five grades). Ordinal
variable representing building
type (five grades)

Expanding irregular
network of cells with
constraints imposed
on the distance
between cells and
their relative orienta-
tion

– Adjacent units are neighbors
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Table 2. (Continued).

Source
Form of

geographic automata
Characterization

of states

Location of objects

Neighborhood rule(s)Fixed
Non-
fixed

(Semboloni 2000) Road links, land
parcels

None for roads, states for land
units include: unbuilt, housing,
unoccupied, services for land unit

Voronoi tessellation
of land units

– Road links are neighbors if
connected. Land units are
neighbors if they share a
common boundary

(Candau et al. 2000,
Clarke and Gaydos
1998, Clarke et al.
1997)

Street cells and
urban cells

Urban/non-urban Rectangular grid – 363 Moore neighborhood

(Semboloni 1997) Identical square
land cells

Nominal variable, which denotes
population and land-use:
characteristics include white-collar
population, blue-collar
population, services, base
activities, empty sites

Rectangular grid – Two kinds of neighborhood:
363 Moore, and bigger
neighborhoods, with a
variable radius defined
by the travel distance
from the vicinity

(Benati 1997) Identical square
land cells,
migrating firms

Cell: binary variable representing
presence/absence of customers;
firm: no parameter (can serve
unlimited number of customers)

Rectangular grid By pointing
to grid

cells

565 Moore neighborhood

(Benenson
1998, 1999)

Houses, migrating
householders

Houses are represented by a
continuous variable ‘value’,
householder agents by two
continuous variables, ‘status’
and ‘ethnicity’

Rectangular grid By
pointing
to grid

cells

565 Moore neighborhood

(Benenson
et al. 2002)

Houses, migrating
householders

Ordinal variable representing
house architectural style, nominal
variable representing ethnic
identity of householder agents

Voronoi
coverage
built on the base of
house centroids

By
pointing

to
houses

Houses are neighbors if
their Voronoi polygons
share a common boundary
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development of simulation languages (Schumacher 2001) that has gathered steam in

the last decade, coupled with advances in GI Science and spatial ontology, could

answer this requirement in the near future.
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