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Geographic Gossip: Efficient Averaging for
Sensor Networks

Alexandros D. G. Dimakis, Student Member, IEEE, Anand D. Sarwate, Student Member, IEEE, and
Martin J. Wainwright, Member, IEEE

Abstract—Gossip algorithms for distributed computation are
attractive due to their simplicity, distributed nature, and ro-
bustness in noisy and uncertain environments. However, using
standard gossip algorithms can lead to a significant waste of
energy by repeatedly recirculating redundant information. For
realistic sensor network model topologies like grids and random
geometric graphs, the inefficiency of gossip schemes is related to
the slow mixing times of random walks on the communication
graph. We propose and analyze an alternative gossiping scheme
that exploits geographic information. By utilizing geographic
routing combined with a simple resampling method, we demon-
strate substantial gains over previously proposed gossip protocols.
For regular graphs such as the ring or grid, our algorithm im-
proves standard gossip by factors of and , respectively.
For the more challenging case of random geometric graphs,
our algorithm computes the true average to accuracy using
(( 1 5 log ) log 1) radio transmissions, which yields a

log factor improvement over standard gossip algorithms.
We illustrate these theoretical results with experimental compar-
isons between our algorithm and standard methods as applied to
various classes of random fields.

Index Terms—Aggregation problems, consensus problems, dis-
tributed signal processing, gossip algorithms, message-passing al-
gorithms, random geometric graphs, sensor networks.

I. INTRODUCTION

C
ONSIDER a network of sensors, in which each node

collects a measurement in some modality of interest (e.g.,

temperature, light, humidity). In such a setting, it is frequently

of interest to solve the distributed averaging problem, namely, to

develop a distributed algorithm by which all nodes can compute

the average of the sensor measurements. This problem and its
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connection to Markov chain mixing rates has been studied for

over 30 years [10], [11]. It has been the focus of renewed in-

terest over the past several years, motivated by various applica-

tions in sensor networks and distributed control systems. Early

work [10] studied deterministic protocols, known as consensus

algorithms, in which each node communicates with each of its

neighbors in every round. More recent work (e.g., [12] and [13])

has focused on so-called gossip algorithms, a class of random-

ized algorithms that solve the averaging problem by computing

a sequence of pairwise averages. In each round, one node is

chosen randomly, and it chooses one of its neighbors randomly.

Both nodes compute the average of their values and replace their

own value with this average. By iterating this pairwise averaging

process, the estimates of all nodes converge to the global average

under suitable conditions on the graph topology.

The averaging problem is an archetypal instance of dis-

tributed signal processing, in which the goal is to achieve a

global objective (e.g., computing the global average of all

observations) based on purely local computations (in this case,

message-passing between pairs of adjacent nodes). Although

distributed averaging itself is a very specialized problem,

effective averaging problems provide a useful building block

for solving more complex problems in distributed signal

processing. Indeed, any averaging algorithm can be easily

converted into a general algorithm that computes any linear

projection of the sensor measurements, assuming that each

sensor knows the corresponding coefficient of the projection

vector. Recently, such algorithms have been proposed for var-

ious problems of distributed computation in sensor networks,

including distributed filtering, detection, optimization, and

compression [2], [3], [14], [15].

A fundamental issue—and the primary focus of this

paper—is how many iterations it takes for any gossip al-

gorithm to converge to a sufficiently accurate estimate. These

convergence rates have received significant attention in recent

work [6], [8], [12], [13], [16]–[19]. The convergence speed

of a nearest-neighbor gossip algorithm, known as the aver-

aging time, turns out to be closely linked to the spectral gap

(and hence the mixing time) of a Markov matrix defined by a

weighted random walk on the graph. Boyd et al. [16] showed

how to optimize the neighbor selection probabilities for each

node so as to find the fastest-mixing Markov chain on the

graph. For certain types of graphs, including complete graphs,

expander graphs and peer-to-peer networks, such Markov

chains are rapidly mixing, so that gossip algorithms converge

very quickly.

1053-587X/$25.00 © 2008 IEEE
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Unfortunately, for the graphs corresponding to typical wire-

less sensor networks, even an optimized gossip algorithm

can result in very high energy consumption. For example, a

common model for a wireless sensor network is a random geo-

metric graph [20], in which all nodes are placed uniformly at

random in an area and can communicate with neighbors within

some fixed radius . With the transmission radius scaling

in the standard way [20] as , even an

optimized gossip algorithm requires transmissions (see

Section II-D), which is of the same order as the energy required

for every node to flood its value to all other nodes. This problem

is noted by Boyd et al. [16]: “In a wireless sensor network,

Theorem 6 suggests that for a small radius of transmission,

even the fastest averaging algorithm converges slowly,” and this

limitation is intrinsic to standard gossip algorithms applied to

such graphs. Intuitively, the nodes in a standard gossip protocol

are essentially “blind,” and they repeatedly compute pairwise

averages with their one-hop neighbors. Information diffuses

slowly throughout the network—roughly moving distance

in iterations—as in a random walk.

Accordingly, the goal of this paper is to develop and ana-

lyze alternative—and ultimately more efficient—methods for

solving distributed averaging problems in wireless networks.

We leverage the fact that sensor nodes typically know their lo-

cations, and can exploit this knowledge to perform geographic

routing. Localization is itself a well-studied problem (e.g., [5]

and [9]), since geographic knowledge is required in numerous

applications. With this perspective in mind, we propose an al-

gorithm that, like a standard gossiping protocol, is randomized

and distributed, but requires substantially less communication

by exploiting geographic information. The idea is that instead

of exchanging information with one-hop neighbors, geographic

routing can be used to gossip with random nodes who are far

away in the network. The bulk of our technical analysis is de-

voted to showing that the resulting rapid diffusion of informa-

tion more than compensates for the extra cost of this multihop

routing procedure.

In effect, routing to far-away neighbors creates an overlay

communication network that is the complete graph, where an

edge is assigned a cost equal to the number of hops on the route

between the two nodes. For graphs with regular topology, it is

relatively straightforward to see how this additional cost is offset

by the benefit of faster convergence time. Indeed, two such ex-

amples, the cycle and the grid, are analyzed in Section II, where

we show gains of the order and respectively. The more

surprising result of this paper is that, by using a simple resam-

pling technique, this type of benefit extends to random geo-

metric graphs—a class of networks with irregular topology that

are commonly used as a model of sensor networks formed by

random deployments.

The remainder of this paper is organized as follows. In

Section II, we provide a precise statement of the distributed av-

eraging problem, describe our algorithm, state our main results

on its performance, and compare them to previous results in

the literature. In Section III, we analyze the performance of our

algorithms on two simple regular network topologies, the cycle

and the grid. Section IV provides the proofs of our result for

the random geometric graph model. In Section V, we provide a

number of experimental results that illustrate and complement

our theoretical analysis.

II. PROBLEM FORMULATION AND MAIN RESULTS

In this section, we first formulate the distributed averaging

problem in sensor networks and then describe our algorithm and

main analytical results. We conclude with an overview and com-

parison to related work.

A. Problem Statement

We begin by formulating the problem of distributed averaging

and specifying the technical details of our time and communi-

cation models.

1) Distributed Averaging: Consider a graph with vertex

set and edge set . Suppose that at

time , each node is given a real-valued number

, representing an observation of some type. The

goal of distributed averaging is to compute the average

at all nodes of the graph. Consensus and

gossip algorithms achieve this goal as follows: at each time

slot , each node maintains an es-

timate of the global average. We use to denote the

-vector of these estimates; note that the estimate at different

nodes need not agree (i.e., is in general different from

for ). The ultimate goal is to drive the estimate

to the vector of averages , where is an -vector of ones.

For the algorithms of interest to us, the quantity for

is a random vector, since the algorithms are randomized

in their behavior. Accordingly, we measure the convergence of

to in the following sense [12], [16].

Definition 1: Given , the -averaging time is the earliest

time at which the vector is close to the normalized true

average with probability greater than :

(1)

where denotes the norm. Note that this is essentially

measuring a rate of convergence in probability.

2) Asynchronous Time Model: We use the asynchronous

time model [16], which is well-matched to the distributed nature

of sensor networks. In particular, we assume that each sensor

has an independent clock whose “ticks” are distributed as a

rate Poisson process. The inter-tick times are exponentially

distributed, independent across nodes, and independent across

time. We note that this model can be equivalently formulated

in terms of a single global clock ticking according to a rate

Poisson process. By letting denote the arrival times for

this global clock, then the individual clocks can be generated

from the global clock by randomly assigning each to the

sensors according to a uniform distribution. On average, there

are approximately global clock ticks per unit of absolute time

(an exact analysis can be found in [16]). However, our analysis

is based on measuring time in terms of the number of ticks of

this (virtual) global clock. Time is discretized, and the interval

corresponds to the th timeslot. We can adjust time
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units relative to the communication time so that only one packet

exists in the network in each time slot with high probability.

Note that this assumption is made only for analytical conve-

nience; in a practical implementation, several packets might

co-exist in the network, but the associated congestion control

issues are beyond the scope of this work.

3) Communication Cost: We compare algorithms in terms of

the amount of communication required. We will assume a fixed

communication radius and hence the number of one-hop radio

transmissions is proportional to the total energy spent for com-

munication. More specifically, let represent the number

of one-hop radio transmissions required for a given node to

communicate with some other node in the interval .

In a standard gossip protocol, the quantity is simply

a constant, whereas for our protocol, will be a random

variable (with identical distribution for each time slot). The

total communication cost, measured in one-hop transmissions,

is given by the random variable

(2)

In this paper, we analyze mainly the expected communication

cost, denoted by , which is given by

(3)

Our analysis also yields probabilistic upper bounds on the com-

munication cost of the form

(4)

4) Graph Topologies: This paper treats both standard graphs

with regular topology, including the single cycle graph and reg-

ular grid as illustrated in Fig. 1(a) and (b), respectively , and

an important subclass of random graphs with irregular topolo-

gies, namely those formed by random geometric graphs [20].

The random graph model has been used in previous work on

wireless sensor networks [16], [21]. More precisely, the random

geometric graph is formed by choosing sensor loca-

tions uniformly and independently in the unit square, with any

pair of nodes and is connected if and only if their Euclidean

distance is smaller than some transmission radius . A sample

from this random graph model is illustrated in Fig. 1(c). It is

well known [20]–[22] that in order to maintain connectivity

and minimize interference, the transmission radius should

scale like . For the purposes of analysis, we as-

sume that communication within this transmission radius al-

ways succeeds.1

B. Proposed Algorithm

The proposed algorithm combines gossip with geographic

routing. The key assumption is that each node knows its own

geographic location within some compact subset , spec-

ified as a Euclidean pair . For the regular grid

and random geometric graphs, we take to be the unit square

, whereas for the single cycle graph we take to

1However, we note that our proposed algorithm remains robust to communi-
cation and node failures.

be the unit circle . In addition, each node can learn the geo-

graphic locations of its one-hop neighbors (i.e., vertices

such that using a single transmission per node.

Geographic Gossip Algorithm:

Suppose the th clock tick is assigned to node at location

. The following events then happen.

1) Node activates and chooses a point

uniformly in the region , referred to as the target

location. Node forms the tuple .

2) Node sends to its one-hop neighbor

closest to location . This operation continues in a

recursive manner: when a successive node receives

a packet , it relays the packet to its one-hop

neighbor closest to location . Greedy geographic

routing terminates when a node receives the packet and

has no one-hop neighbors with distance smaller to the

random target that its own. Let be the node closest

to location .

3) Node makes an independent randomized decision to

accept . If the packet is accepted, computes its new

value and generates

a message , which is sent back

to via greedy geographic routing. Node can then

compute its new value ,

and the round ends. If the packet is rejected, then

sends a rejection message to .

4) If rejects the packet from , then chooses a new

point uniformly in the plane and repeats steps 2)–4)

with message .

At a high level, the motivation of the geographic gossip al-

gorithm is to exploit geographic information [via the greedy

routing protocol described in step (2)] to create a new commu-

nication graph as an overlay of the original graph

. Note that the new communication graph has

the same vertex set, but an expanded edge set (i.e., ).

In fact, for all of the versions of geographic gossip analyzed in

this paper, the extended communication graph is the com-

plete graph, meaning that for all . In the stan-

dard gossip protocol, each gossip round takes two radio trans-

missions. In the new communication graph , certain edges

are more costly in terms of one-hop radio transmissions because

of the routing required to carry out the communication. On the

other hand, the benefit is that the new communication graph

is dense, so that gossiping converges more quickly. Our main

result shows that this tradeoff—between the cost of each gossip

round and the total number of rounds—can lead to favorable re-

ductions in the total number of one-hop radio transmissions.

C. Overview of Main Results

The geographic gossip algorithm is a random process that in-

duces a probability distribution over the sensor chosen at each

round. By construction, the probability of choosing sensor in

step 2) of the geographic gossip algorithm is equal to , the

area of its associated Voronoi region. For certain types of reg-

ular graphs, such as the single cycle and regular grid shown in
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Fig. 1. Illustration of a various graphs (nodes as circles and edges as solid lines)
and the associated Voronoi regions associated with each node (dotted lines).
(a) Cycle graph. (b) Regular grid. (c) Random geometric graph.

Fig. 1(a) and (b), this distribution over Voronoi regions is uni-

form. In this particularly favorable setting, the “randomized”

decision of node in step 3) is simple: it accepts the packet

with probability one. With this choice, the distribution over

chosen nodes is guaranteed to be uniform for these regular

graphs. Consequently, it can be shown using known results for

mixing on the complete graph that the averaging time of geo-

graphic gossip is . The communication

cost given by , where

is the number of single-hop communications required in round

of the protocol. By computing the expected value , it can

be shown that the overall communication costs for these regular

topologies scale as for the single cycle,

and for the regular grid. Thus, as

derived in Section III, geographic gossip yields improvements

by factors of and over standard gossip for these regular

graphs.

For random geographic graphs, in contrast, the distribution of

Voronoi regions is quite nonuniform. Consequently, in order to

bound the averaging time , we use in step 3) a rejec-

tion sampling scheme previously proposed by Bash et al. [23] in

order to “temper” the distribution. Given the -vector of areas

of the sensors’ Voronoi regions, we set a threshold . Sensors

with cell area smaller than always accept a query, and sensors

with cell areas larger than may reject the query with a cer-

tain probability. The rejection sampling method simultaneously

protects against oversampling and limits the number of under-

sampled sensors, which allows us to prove that

even for this perturbed distribution.

Of course, nothing comes for free: the rejection sampling

scheme requires a random number of queries before a sensor

accepts. Since the queries are independent, is a geometric

random variable with parameter equal to the probability of a

query being accepted. In terms of the number of queries, the

total number of radio transmissions for the th gossip round is

. Therefore, if gossip rounds take place

overall, the expected of radio transmissions will be

. Accordingly, a third key component of our

analysis in Section IV is to show that the probability of accep-

tance remains larger than a constant, which allows us to upper

bound the expectation of the geometric random variable by

a constant. We also establish an upper bound on the maximum

value of over rounds that holds with probability greater

than .

Putting together the pieces yields our main result for random

geometric graphs: the expected cost for computing the average

with the proposed geographic gossip algorithm is

(5)

In comparison to previous results on standard gossip for random

graphs [16], geographic gossip yields a reduction by a factor of

in the number of one-hop communication rounds.

We note for some classes of graphs, the rejection sampling

may not be necessary, even when the induced distribution is not

uniform, as long as it is reasonably close to uniform. In partic-

ular, if we have a lower bound on the area of a Voronoi

cell for all sensors, then sampling by area is approximately uni-

form. If we can obtain a slightly looser bound on the deviations

of the Voronoi areas, alternative techniques may be able to show

that our algorithm will not suffer a performance loss without re-

jection sampling. However, for geometric random graphs, it is

difficult to obtain a good lower bound on the Voronoi cell size,

which is our motivation for applying and analyzing the rejection

sampling scheme.

D. Related Work and Comparisons

Boyd et al. [13], [16] have analyzed the performance of

standard gossip algorithms. Their fastest standard gossip algo-

rithm for the ensemble of random geometric graphs

has a -averaging time [16] .

(This quantity is computed in Section IV-A of Boyd et al. [16]

but the result is expressed in terms of absolute time units which

needs to be multiplied by to become clock ticks.) Conse-

quently, for the standard choice of radius

ensuring network connectivity, this averaging time scales as

. In standard gossip, each gossip round

corresponds to communication with only one-hop neighbor

and hence costs only one radio transmission which means that

the fastest standard gossip algorithm will have a total cost

radio transmissions. Therefore,

our proposed algorithm saves a factor of in commu-

nication energy by exploiting geographic information.



DIMAKIS et al.: GEOGRAPHIC GOSSIP: EFFICIENT AVERAGING FOR SENSOR NETWORKS 1209

A number of recent papers [6], [18], [19] have also consid-

ered the problem of computing averages in networks. The con-

sensus propagation algorithm of Moallemi and van Roy [18] is

a modified form of belief propagation that attempts to mitigate

the inefficiencies introduced by the “random walk” in gossip al-

gorithms. For the single cycle graph, they show improvement

by a factor of over standard gossip. Our results for

geographic gossip on the single cycle (see Section III) show im-

provement by a factor of over standard gossip, and hence a

factor over consensus propagation. It is not yet known

how consensus propagation would behave for the random geo-

metric graphs also considered in this paper. Mosk-Aoyama and

Shah [6] use an algorithm based on Flajolet and Martin [24]

to compute averages, and bound the averaging time in terms of

a “spreading time” associated with the communication graph.

However, they only show the optimality of their algorithm for a

graph consisting of a single cycle, so it is currently difficult to

speculate how it would perform on other regular graphs or geo-

metric random graphs. Alanyali et al. [19] consider the related

problem of computing the average of a network at a single node

(in contrast to computing the average in parallel at every node).

They propose a distributed algorithm to solve this problem and

show how it can be related to cover times of random walks on

graphs.

III. ANALYSIS FOR REGULAR NETWORKS

In this section, we illustrate the benefits of our geographic

gossip algorithm for two simple networks, the ring and the

grid, both of which are regular graphs. Due to this regularity,

the implementation and analysis of geographic gossip turns out

to be especially simple. More specifically, when these graphs

are viewed as contained with the unit disk (ring graph) or

the unit square (grid graph), then the Voronoi region of each

node is equal in area (see Fig. 1). Consequently, sampling

a location uniformly in the space is equivalent to sampling

a sensor uniformly, and thus the overlay graph created by

geographic routing [step 2) of the geographic gossip algorithm]

is a complete graph with uniform edge weights. In this case,

the randomized decision rule in step 3) is not needed—the

target always accepts the message. For the ring, we show that

standard gossip has a communication cost for -accu-

racy that scales as , and that geographic gossip

can improve this to . For the grid, we show that

standard gossip has communication cost , and

geographic gossip can improve this to .

A. Analysis of Single-Cycle Graph

The ring network consists of a single cycle of nodes equis-

paced on the unit circle [see Fig. 1(a)]. For this simple network,

we have the following result characterizing the improvement of

geographic gossip over standard gossip.

Proposition 1: In terms of the communication cost

for -accuracy, geographic gossip yields a improvement

over standard gossip on the single cycle graph.

Proof: We first compute the communication cost

for standard gossip. In standard nearest-neighbor gossip, the

probability that nodes chooses to average with node is

0 unless , otherwise it is 1/2. Therefore, the ma-

trix is a symmetric circulant matrix, generated by

the -vector (0, 1/2, 0, 0, , 1/2). Using previous results on

standard gossip [16], in order to evaluate the performance of

standard gossip, we must find the second eigenvalue of the

matrix defined by

Note that is also a circulant matrix, generated by the -vector

. Circulant matrices are di-

agonalized by the discrete Fourier transform (DFT) matrix, so

that the eigenvalues can be computed explicitly as

Consequently, the second largest eigenvalue is given by

Therefore, by a Taylor series expansion, we have

. Applying previous results [16] on standard gossip, we

conclude that the -averaging time of standard gossip is

Since each gossip communication costs us one hop, the average

number of one-hop transmissions for standard gossip on the ring

is

(6)

We now show how geographic gossip reduces the number of

one-hop transmissions. In geographic gossip for the ring net-

work, a source node chooses a random location within the unit

circle uniformly at random, which induces a uniform distribu-

tion over the nodes in the network [see Fig. 1(a)]. It then sends

a packet to its target around the ring and they exchange values.

We think of geographic gossip as running a gossip algorithm

on the complete graph with for all and . For this

graph, we have

Calculating the second largest eigenvalue yields

, so ,

and hence . By summing over the

pairwise distances in the graph, we see that the expected number

of one-hop transmissions at any round is bounded by
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Thus, the expected number of transmissions for geographic

gossip is given by

(7)

Comparing (6) and (7) yields the claim.

As demonstrated by this result, for the ring network, using ge-

ographic knowledge and routing improves the energy consump-

tion as measure in hops by a factor of . In standard gossip, in-

formation from one node diffuses slowly in a ring, taking almost

steps to become uniformly distributed. Geographic gossip

allows the information from one node in the network to travel

larger distances at the expense of the routing cost.

B. Analysis of Regular Grid

We now turn to geographic gossip on the two dimensional

grid defined by a collection of vertices located at positions

within the unit square , as illustrated

in Fig. 1(c).

Proposition 2: In terms of the communication cost re-

quired to achieve -accuracy, geographic gossip yields a

improvement over standard gossip on the regular 2-D grid.

Proof: The performance of standard gossip on the

grid can be calculated using Corollary 1 from Boyd et al.

[25], which says that the averaging time is given by

. For standard gossip

on the grid, the matrix is simply the transition matrix of a

random walk on the 2-dimensional grid, for which it is known

[26] that . Consequently, we have

, so that the average number of

one-hop transmissions is

(8)

Now let us turn to geographic gossip. For a regular topology

like the grid, the Voronoi cells are all of equal area, so in step

(II-B) of the geographic gossip algorithm, the chosen target

simply accepts with probability one. Consequently, the number

of one-hop communications per round is simply the route

length. For a regular 2-dimensional grid, routing the message

at round costs one-hop transmissions.

As we derived for the ring network, the geographic gossip

algorithm is communicating on an overlay network that is fully

connected, so that the number of rounds required scales as

. Putting the pieces together, we

conclude that the total communication cost for -accuracy using

geographic gossip scales as

(9)

Comparing (8) and (9) yields the claim.

Thus, for the regular grid in 2 dimensions, geographic gossip

yields a factor of savings in the convergence time. The ease

of our analysis in both of the preceding examples—ring and grid

networks—arises from the regularity of the topology, which al-

lowed us to either write the transition matrix explicitly or use

standard results. The following section is devoted to analysis of

geographic gossip for random geometric graphs, where we will

derive a similar performance improvement. For random geo-

metric graphs, in contrast to the regular topologies considered

thus far, we will use a nontrivial randomized decision rule in step

(II-B) of the gossip algorithm in order to compensate for irreg-

ularities of the graph topology and areas of Voronoi regions.

IV. ANALYSIS FOR RANDOM GEOMETRIC GRAPHS

We now turn to an analysis of the number of one-hop com-

munications needed for our algorithm in the case of the random

geometric graph model. At a high level, our analysis consists of

three main steps:

1) First, we address the number of one-hop transmissions

required to route a packet from node to the randomly

chosen target [see step 2) of the geographic gossip al-

gorithm]. We first prove that when the connectivity ra-

dius of the random graphs scales in the standard way as

, greedy routing always reaches the

closest node to the random target with

(10)

one-hop radio transmissions. Note that in practice more

sophisticated geographic routing algorithms (e.g., [27])

can be used to ensure that the packet approaches the

random target when there are “holes” in the node cov-

erage. However, greedy geographic routing is adequate for

the problem considered here.

2) As discussed above, when geographic gossip is applied to

a graph with an irregular topology (such as a random geo-

metric graph), it is necessary to compensate for the irreg-

ularity with a nontrivial accept/reject protocol in step 3)

of the algorithm. Accordingly, our next step is to bound

the expected number of rejections experienced by a given

sensor .

3) The final step is to analyze the number of such gossip

rounds needed for the average to converge to within the

target error.

We take up each of these factors in turn in the subsections to

follow.

A. Routing in

We first address how to choose the transmission radius of the

sensors in order to guarantee the network’s connectivity and the

success of greedy geographic routing.

Lemma 1 (Network Connectivity): Let a graph be drawn

randomly from the geometric ensemble defined in

Section II-A, and a partition be made of the unit area into

squares of side length . Then the fol-

lowing statements all hold with high probability:

(a) each square contains at least one node;

(b) if , then each node can communi-

cate to a node in the four adjacent squares;

(c) all the nodes in each square are connected with each other.

Proof: The total number of squares of side length

is . We view these as “bins” into which the

sensors are assigned uniformly. Standard results on this random

process [22], [28] show that with high probability

sensors are sufficient to cover all of the bins, proving (a).
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Fig. 2. Ensuring network connectivity. Any node in the dark-shaded center
square can communicate with its neighbors in the four adjacent lighter-shaded

squares if r(n) =
p
5�(n).

Fig. 2 shows a simple geometric argument for (b) and (c).

For , a sensor at any position in its square can

communicate with all sensor in the four squares adjacent to it.

Lemma 2 (Greedy Geographic Routing): Suppose that a

node target location is chosen in the unit square. Then greedy

geographic routing routes to the node closest to the target in

steps.

Proof: By Lemma 1(a), every square of side length

is occupied by at least a node. Therefore, we can

perform greedy geographic routing by first matching the row

and then the column of the square which contains the target,

which requires at most hops. After

reaching the square where the target is contained, Lemma 1(c)

guarantees that the subgraph contained in the square is com-

pletely connected. Therefore, one more hop suffices to reach the

node closest to the target.

These routing results allow us to bound the cost in hops for

an arbitrary pair of nodes in the network to exchange values. In

the next section, we analyze a rejection sampling method used

to reduce the nonuniformity of the distribution.

B. Rejection Sampling

As mentioned in the previous section, sampling geographic

locations uniformly induces a nonuniform sampling distribution

on the sensors. Assigning locations to the nearest sensors in-

duces a Voronoi tessellation of the plane, and sensor is queried

with probability proportional to the area of its Voronoi cell.

By judiciously rejecting queries, the sensors with larger Voronoi

areas can ensure that they are not oversampled. We adopt the

rejection sampling scheme proposed by Bash et al. [23]: when

queried, sensor accepts the request with probability

(11)

where is a predefined threshold. Thus, sensors with small

Voronoi regions always accept, and sensors with large Voronoi

regions sometimes reject.

Fig. 3. Graphical illustration of the rejection sampling procedure. The total
shaded area is the probability of a query being rejected. The new sampling dis-
tribution is given by the white histogram, appropriately renormalized.

Given , the probability that sensor is sampled can be

written as

(12)

Here the denominator in expression (12) is the total chance that

a query is accepted:

(13)

Let denote the total number of requests made by a sensor

before one is accepted.

Fig. 3 provides a graphical illustration of rejection sampling

on the histogram of Voronoi cell sizes. Rejection sampling

“slices” the histogram at , and renormalizes the distribution

accordingly. The total area that is sliced off is equal to ,

the probability that a query is rejected. Thus, we see that if

is chosen to be too small, then the probability of rejection

becomes very large. Lemma 3 addresses this concern—in

particular, by establishing that the choice suffices

to keep the rejection probability suitably bounded away from

1, so that the expected number of queries remains finite.

More specifically, we choose such that

(14)

where the constants and control the undersampling and over-

sampling respectively. With this choice of , the results of Bash

et al. [23] ensure that no sensor is sampled with probability

greater than and no more than sensors are sampled

with probability less than . The following result establishes

that the acceptance probability remains sufficiently large.

Lemma 3: Ler . For , we have

.

Proof: We use a simple geometric argument to lower

bound . Consider a node such that a circle of area

it lies entirely within its Voronoi region, as shown in Fig. 4.

Clearly, such nodes are a subset of those with area larger than

. The radius of this circle is . Note that is no

more than half the distance to the nearest node. Thus, in order

to inscribe a circle of radius in the Voronoi region, all other



1212 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 3, MARCH 2008

Fig. 4. Inscribing circles in Voronoi cells. Construction used in the proof of
Lemma 3.

nodes must lie outside a circle of radius around the node.

This larger circle has area , so

(15)

Thus, by appropriate choice of , we can make the acceptance

probability arbitrarily close to 1.

Our next step is to bound the distance between the new sam-

pling distribution (i.e., after tempering by the rejection sam-

pling procedure), and the uniform distribution over accep-

tance regions. These bounds are used in next section to bound

an eigenvalue of a matrix associated with the gossip algorithm.

Lemma 4: For any , there exists constants and

such that rejection sampling with parameters en-

sures that

(16a)

and

(16b)

Proof: Given , choose and such that

and . We then expand and bound the error function

as

Now we use the properties of rejection sampling from [23]:

(17)

(18)

On the set we use the first bound and on the set

we use the second bound

which is less than by our choice of and .

Turning now to the bound (16b), we write

Finally, we need to bound the expected number of rejections

and the maximum number of rejections in order to bound the

expected number of transmissions and total transmission time.

Recall that is the number of queries that a sensor has to make

before one is accepted, and has a geometric distribution

(19)

Lemma 5: For a fixed , rejection sampling leads to a

constant number of expected rejections.

Proof: The random variable is just a geometric random

variable with parameter , so we can write its mean as

where the final step follows since by

construction.

Lemma 6: Let be a set of i.i.d. geo-

metric random variables with parameter . For any fixed pair

, rejection sampling gives

(20)

with probability greater than .

Proof: For any integer , a straightforward computa-

tion yields that

By the i.i.d. assumption, we have

We want to choose such that this prob-

ability is greater than or equal to . First set

, where is to be determined.

Then we have
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We now need to choose such that

or equivalently, such that

Without loss of generality, let be even. Then by convexity,

we have . Applying this with ,

we obtain

Hence, we need to choose for the

bound to hold. Thus, if we set

then with probability greater than , all rounds of the

protocol use less than rounds of rejection.

C. Averaging With Gossip

As with averaging algorithms based on pairwise updates [16],

the convergence rate of our method is controlled by the second

largest eigenvalue, denoted , of the matrix

where is diagonal with entries .

The th entry of the matrix is the probability that node

exchanges values with node . Without rejection sampling,

, and with rejection sampling, . With this

notation, we are now equipped to state and prove the main result

of the paper.

Theorem 1: The geographic gossip protocol with rejection

threshold has an averaging time

(21)

Proof: To establish this bound, we exploit Theorem 3 of

[16], which states that the -averaging time is given by

(22)

Thus, it suffices to prove that in order to

establish the claim.

The probability of any sensor choosing sensor is just , so

that we can write as the outer product . Note that

the diagonal matrix has entries

Overall, we can write in terms of outer products as

(23)

Note that the matrix is symmetric and positive semidefinite.

We claim that the second largest eigenvalue

, for some constant . By a Taylor series expansion, this

implies that as desired. To simplify mat-

ters, we transform the problem to finding the maximum eigen-

value of an alternative matrix. Since is doubly stochastic,

Perron-Frobenius theory [29] guarantees that its largest eigen-

value is one, and has associated eigenvector . Con-

sider the matrix ; using (23), it can be

decomposed as

where is diagonal and

is symmetric.

Note that by construction, the eigenvalues of are simply

On one hand, suppose that ; in this case, then

and we are done. Otherwise, we have

Note that is the sum of two Hermitian matrices—a diagonal

matrix and a symmetric matrix with small entries. We can there-

fore apply Weyl’s theorem [29, p.181] to obtain that

It is therefore sufficient to bound . We do so using the

Rayleigh–Ritz theorem [29, p. 176], the Cauchy–Schwartz in-

equality, and Lemma 4 as follows:

Overall, we have proved the bound

(24)

We can choose using Lemma 4 to get the desired

bound.

The preceding theorem shows that by using rejection

sampling we can bound the convergence time of the gossip
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Fig. 5. Estimation accuracy versus total spent energy for a linearly varying
field.

algorithm. We can therefore bound the number of radio trans-

missions required to estimate the average.

Corollary 1: The expected number of radio transmissions re-

quired for our gossip protocol on the geometric random graph

is upper bounded by

(25)

Moreover, with probability greater than , the maximum

number of radio transmissions is upper bounded

(26)

Remark: Note that for for any , our bounds

are of the form and

.

Proof: We just have to put the pieces together. If we as-

sume an asynchronous protocol, the cost per transmission pair is

given by the product of from routing, from

rejection sampling, and the averaging time . From Lemma

5, . Using (22) and Theorem 1, we can bound

by . Thus, the expected

number of communications is

(27)

Fig. 6. Estimation accuracy versus total spent energy for a smooth field mod-
eling temperature.

To upper bound the maximum number of transmissions with

high probability, we note that Lemma 6 guarantees that

(28)

with high probability. Using Theorem 1, we can see that

. Consequently,

with probability greater than

(29)

V. SIMULATIONS

Note that the averaging time is defined in (1) is a conservative

measure, obtained by selecting the worst case initial field

for each algorithm. Due to this conservative choice, an algo-

rithm is guaranteed to give (with high probability) an estimated

average that is close to the true average for all choices of

the underlying sensor observations. As we have theoretically

demonstrated, our algorithm is provably superior to standard

gossiping schemes in terms of this metric. In this section, we

evaluate our geographic gossip algorithm experimentally on

specific fields that are of practical interest. We construct three

different fields and compare geographic gossip to the standard

gossip algorithm with uniform neighbor selection probability.

Note that for random geometric graphs, standard gossiping

with uniform neighbor selection has the same scaling behavior
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Fig. 7. Estimation accuracy versus total spent energy for a field that is zero
everywhere except in a sharp spike.

as with optimal neighbor selection probabilities [16], which

ensures that the comparison is fair.

Figs. 5–7 illustrate how the cost of each algorithm behaves

for various fields and network sizes. The error in the average

estimation is measured by the normalized norm

. On the other axis, we plot the total number of

radio transmissions required to achieve the given accuracy. Fig.

5 demonstrates how the estimation error behaves for a field that

varies linearly. In Fig. 6, we use a field that is created by placing

temperature sources in the unit square and smooth the field by

a simple process that models temperature diffusion. Finally, in

Fig. 7, we use a field that is zero everywhere except in a sharp

spike in the center of the field. For this case, geographic gossip

significantly outperforms standard gossip as the network size

and time increase, except for large estimation tolerances

and small number of rounds.

As would be expected, simple gossip is capable of computing

local averages quite fast. Therefore, when the field is sufficiently

smooth, or when the averages in local node neighborhoods are

close to the global average, simple gossip can generate approxi-

mate estimates that are closer to the true average with a smaller

number of transmissions. For these cases, however, it is arguable

that finding the global average is not of substantial interest in the

first place. In all our simulations, the energy gains obtained by

using geographic gossip were significant and asymptotically in-

creasing for larger network sizes, corroborating our theoretical

results.

VI. CONCLUSION

In this paper, we proposed and analyzed a novel message-

passing algorithm for computing averages in networks in a dis-

tributed manner. By exploiting geographic knowledge of the

network, our geographic gossip algorithm computes the aver-

ages faster than standard nearest-neighbor gossip. Even if the

specific type of geographic routing considered here cannot be

performed, similar gossip algorithms could be developed for any

network structure that supports some form of routing to random

nodes. Thus, our nearest-neighbor gossip can be understood as a

particular case of a more general family of algorithms in which

message-passing occurs on the overlay network supported by

random routing. Other routing protocols may produce different

overlay networks that could be analyzed in a similar manner.

In this paper, we analyzed in detail the case of certain reg-

ular graphs, including the ring and grid networks, as well as the

random geometric graph model, which is commonly used as a

model of sensor networks under random deployments. Our al-

gorithm can also be applied to other topologies that realistically

model wireless sensor networks and should provide gains when

a) the mixing time of a random walk on the graph is slow, b) ef-

ficient routing is possible, and c) uniform sampling over space

can yield approximately uniform sampling over sensors.

Although the current work has focused on the averaging

problem, it is worth noting that many more complicated

functions of interest can be computed using gossip; see the

papers [2], [14], [30], and [31] for various examples involving

localization, Kalman filtering and sensor fusion. However,

linear operations (such as filtering) can be computed using our

algorithm by allowing the sensors to prescale their observations

by their coefficients in the objective function. Our results sug-

gest that geographic gossip may be useful instead of standard

nearest-neighbor gossip to improve energy consumption in

these and other distributed signal processing applications.
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