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Abstract Regionality, comprehensiveness, and complexity are regarded as the basic characteristics of geography. The
exploration of their core connotations is an essential way to achieve breakthroughs in geography in the new era. This paper
focuses on the important method in geographic research: Geographic modeling and simulation. First, we clarify the research
requirements of the said three characteristics of geography and its potential to address geo-problems in the new era. Then, the
supporting capabilities of the existing geographic modeling and simulation systems for geographic research are summarized
from three perspectives: Model resources, modeling processes, and operational architecture. Finally, we discern avenues for
future research of geographic modeling and simulation systems for the study of regional, comprehensive and complex char-
acteristics of geography. Based on these analyses, we propose implementation architecture of geographic modeling and simu-
lation systems and discuss the module composition and functional realization, which could provide theoretical and technical
support for geographic modeling and simulation systems to better serve the development of geography in the new era.
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1. Geographic characteristics and new re-
quirements for problem solving

Regionality and comprehensiveness are generally viewed as
two basic characteristics of geography and have guided the

advancement and development of geographic research for a
long time. Recently, with the deepening of geographic
characteristic mining and geo-problem cognition, complex-
ity has received more attention in geographic research and is
now considered as the third characteristic of geography
(Song et al., 2018, 2020b). However, regardless of whether
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the regionality, comprehensiveness or complexity is con-
sidered, the requirements that each characteristic poses in
geographic research are not immutable. With the develop-
ment of geographic research, the characteristics of geo-
graphy have been analyzed on a deeper level beyond
traditional geo-problem cognition, which puts forward sev-
eral new requirements for related studies and problem-sol-
ving methods.

1.1 The regional characteristic of geography and its
research requirements

As put by Prof. Bingwei Huang, geography aims to study the
regional differences among complex bodies composed of
different things in the world. Regionality has been viewed as
the basic characteristic and the research core of geography
(Zheng, 1998; Paasi, 2009; Fu, 2017). Regions are usually
taken as geographic research units to analyze the interactions
among natural and human elements, which can effectively
reveal the genesis of geographic phenomena in regions,
thereby promoting the coordinated development of man-land
relationships (Zheng and Fu, 1999).

Regional geographic research is carried out from the re-
gional perspective and chooses “differences” and “similar-
ity” as the basic research points. Both concepts usually focus
attention on differentiation and combination, or division and
merging among regions, as well as the interconnection and
evolution of geographic elements within regions (Li, 1982;
Anselin, 1989; Zheng, 1998; Zheng et al., 2005; Lu, 2011).
On the one hand, geographers employ data from observa-
tions or surveys and apply various methods, including clas-
sification and zoning, to explore the regularity of regional
differentiation and describe geographic patterns (Tobler,
2004; Goodchild, 2004; Wu et al., 2016; Song et al., 2018;
Zhu et al., 2018). On the other hand, in regional research, an
array of methods, such as model construction and quantita-
tive analysis, is used to explain the mechanisms of the in-
teractions and dynamic processes of regional elements to
understand various regional geographic processes (Gironás
et al., 2010; Li et al., 2011; Li et al., 2018; Fan, 2018).

Recently, regional research has increasingly reflected the
diversity of research problems and the relevance of research
objects. Due to the differences in ranges, scales, and spa-
tiotemporal locations of regional units, as well as the dif-
ferences in the types, distribution patterns, interactions and
evolutionary processes of geographic elements within re-
gional units (Brown et al., 1996; Fu et al., 2001; Song et al.,
2018), the geo-problems that need to be addressed through
regional research are becoming increasingly diverse. They
usually involve aspects that span an understanding of natural
regions to the cognition of human society, and they also
address different issues in various domains, such as hydrol-
ogy, soil, climate, and biology, which require different types

of work (Lin et al., 2006; Fu, 2018). In addition, traditional
regional research usually focuses on the analysis of in-
dividual objects, which gives rise to an inadequate under-
standing of geo-problems in the new era. By contrast,
regional geo-problem solving in the new era has increasingly
focused on the associations and relationships among differ-
ent research objects (Wu et al., 2016; Song et al., 2018). To
deeply understand regional geo-problems, problems must be
analyzed from not only multiple and wide perspectives but
also from the entirety of perspectives. In addition, the me-
chanisms behind various phenomena and processes need to
be fully considered, and the causal relationship of the gen-
eration and evolution of different regional geographic ob-
jects needs to be well understood. Moreover, geographers
must pay attention to the integrated effects (e.g., soil-
hydrological processes and ecological-economic processes)
to explain the regional geographic phenomena and their
evolutions (Seneviratne et al., 2010; Green et al., 2011;
Cheng et al., 2014; Cheng and Li, 2015; Trinh et al., 2017).

1.2 The comprehensive characteristic of geography
and its research requirements

As one of the traditional basic characteristics of geography,
comprehensiveness is the overall property formed by the
interactions of multiple natural and human elements in the
geographic environment (Zonneveld, 1983; Waugh, 2000;
Ni, 2003; Song et al., 2018, 2020b). Geographic phenomena
and processes are generally the results of interactions among
multiple geographic elements on the surface of the earth.
These different geographic elements must be regarded as the
research objects, and their relationships and driving pro-
cesses should be analyzed to reveal the spatiotemporal pat-
terns, interaction mechanisms and evolutionary laws of
geographic environments (Chorley and Haggett, 2013; Wu et
al., 2016; Lü et al., 2018; Fu, 2018).

Therefore, comprehensive geographic research usually
takes geographic synthesis as the research object and focuses
on various geographic elements to explore the relationships
and interactions of elements behind geographic phenomena
and processes (Fan, 2004; Fu, 2014). Regarding the im-
plementation method, the development of comprehensive
research can be divided into four stages: (1) Simple listing of
natural and human elements, (2) spatial overlay of geo-
graphic elements based on geographic information systems
(GIS), (3) comprehensive geographic analysis of different
geographic elements, and (4) comprehensive understanding
of geographic systems based on complexity theories (Song et
al., 2018). The development of comprehensive research has
promoted geographic research evolve from the single-
element- and single-process-based spatial differentiation law
and individual behavior research to multi-element- and
multiprocess-based interrelationship and driving mechanism
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research, even extending to all-element and all-process sys-
tematic behavior and internal mechanism research on ter-
restrial surface systems (comprehensive research on man-
land relationships) (Clarke, 2002; Ni, 2003; Xu et al., 2009;
Chen F H et al., 2019; Song et al., 2020b).

Facing geographic environments with different structures
and various changes, traditional comprehensive research
struggles to holistically explain the reasons behind geo-
graphic phenomena. Thus, some new theories and methods
need to be explored. Specifically, traditional comprehensive
research influenced by “reductionism” theory generally
analyzes and represents geographic phenomena and pro-
cesses by disassembling and dissecting the geographic sys-
tem and by listing and stacking geographic elements (Wen et
al., 2006; Granell et al., 2013; Laniak et al., 2013; Song et al.,
2018; Liu et al., 2019). However, whether from the per-
spective of data aggregation or model integration, the ex-
cessive division of research granularity might subjectively
break the internal interactions among geographic elements,
leading to the failure of the constructed digital geographic
system to show the essence of the real geographic systems
(Song et al., 2020b). Therefore, a higher-level abstract con-
cept carrier than geographic elements must be discovered in
the comprehensive research. The concept carrier needs not
only to express the characteristics of geographic systems
(e.g., their spatial structures, evolution processes, and inter-
actions) but also to support the mining of geographic me-
chanisms and element relationships. Thus, an overall and
comprehensive understanding of the geographic system can
be represented in a “clear-context” and “clear-mechanism”
manner (Lü et al., 2021). Furthermore, in terms of thinking
modes, researchers need to consider both “holism” and “re-
ductionism” and to regard the various geographic elements
in the geographic synthesis as a coordinated whole at the
conceptual level. Subsequently, the interactions among
geographic elements could be fully understood (Fu, 2017),
and the conceptual carriers of geographic phenomena and
laws could be refined, constructed, and expressed. In terms
of the research methods, data fusion, model integration and
other methods must be used under the guidance of con-
ceptual carriers. Thus, comprehensive geographic research
with equal emphasis on “physical resources” and “con-
ceptual knowledge” can be realized.

1.3 The complexity characteristic of geography and its
research requirements

After the concepts of complexity science and complexity
giant systems were proposed, discussions on the complexity
of geography began worldwide (Qian et al., 1990; Cheng,
1999). With these concepts, geographers believe that the
geographic system is also a complex system. Therefore, it is
necessary to go beyond the traditional geographic metho-

dology based on “reductionism” and explore more sys-
tematic research methods (Gan and Yang, 2004; O’Sullivan,
2004; Portugali, 2006; Li et al., 2010). Based on complexity
theories, several geographic studies and applications have
been carried out (Xu, 2013; Liu H M, 2014; Chen, 2015). In
summarizing the geographic characteristics and challenges
in the new era, Song et al. (2018) believe that complexity has
become the third characteristic of geography.

According to the theory of geographic complexity, a
geographic system is an open, complex and giant system
with multi-element mixing, multiscale coupling, and multi-
process interweaving (Shi et al., 2019; Song et al., 2020b).
Compared with the comprehensive geographic research that
takes geographic synthesis as the research object, complexity
research focuses on geographic systems. This research was
conducted on the characteristics of the geographic system,
including its nonlinearity, burst (emergence), self-organiza-
tion, self-similarity, and chaos (Song et al., 2018; Cheng et
al., 2018), to fully understand the interactions among the
internal and external geographic systems and reveal the
spatiotemporal evolution mechanisms (Song et al., 2020a).

To address the complexity of the time, locations, interac-
tions, and driving mechanisms of geographic systems, new
requirements for the geographic research mode have been
proposed. Specifically, due to the lack of personal knowledge
and resources of geographers, it is often difficult to study the
complexity of geography (Fan, 2004; Cutts et al., 2011; Lin
et al., 2013a, 2013b; Lin and Chen, 2015; Chen and Lin,
2018). In order to solve complex geographic problems, the
study of geographic complexity should be open to other re-
searchers with different scientific backgrounds (Ni, 2003;
Lü, 2011). Normally, active collaborations can better pro-
mote the integration of knowledge, resources, and skills
(Voinov et al., 2016; Basco-Carrera et al., 2017). In addition,
due to the complexity and uncertainty of geographic systems,
the understanding of geographic systems usually changes
and gradually becomes clear during the cycle of geographic
research, which might result in tortuous research processes
(Simão et al., 2009; Zare et al., 2020). Therefore, to address
complex geo-problems, a fault-tolerant and explorable pro-
blem-solving process need to be considered and supported
during complexity research.

2. Capability analysis of geographic modeling
and simulation systems for geographic research

The geographic model is an important form to express geo-
graphic objects and geographic phenomena. Geographic
modeling, as an important method of geographic research, is
the process of abstracting and expressing geographic entities,
geographic events, geographic processes, and geographic
mechanisms. Geographic simulation is used for past inver-
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sions, future predictions, current simulations, and law dis-
coveries , which is an important way to improve GIS geo-
graphic analysis ability. Traditionally, geographic models
include data models (e.g., vector models, raster models,
object-oriented models, and spatiotemporal data models) and
analysis models (e.g., spatial analysis models, spatio-
temporal statistical models, mechanism process models, and
agent-based models) (Chen et al., 2018a). To bridge data
models and analysis models, various computational grid
models (e.g., structured grids, unstructured grids, hybrid
grids, and nested grids) have been introduced (Chen et al.,
2018b). Currently, various types of geographic models have
been used in geographic research. For example, HASM (high
accuracy surface modelling) has been proposed to serve re-
gional geographic research. It can be employed for the sur-
face modeling of geo-elements in different-scale regions and
the expression of ecological environmental elements. By
integrating the macro global information and the micro de-
tailed information, HASM can be used to promote the
comprehensive simulation and analysis of the earth’s surface
system. Moreover, the HASM method can be employed to
explore related complexity problems (e.g., scale and error
problems) in the simulation of the earth’s surface system and
its ecological environment elements based on the systematic
theory and the fundamental theorem for eco-environmental
surface modelling (Yue, 2011; Yue T X et al., 2016, 2020).

Focusing on the discovery of geographic mechanisms and
laws, the analysis model is the main geographic model de-
scribed in this paper, and the geographic modeling and si-
mulation systems mainly refer to the system tools used for
the construction and application of geographic analysis
models in geographic research. With the development of

geographic research, geographers have developed many
geographic modeling and simulation systems, which differ in
terms of model resources, modeling processes, and opera-
tional architectures. By summarizing the similarities and
differences among geographic modeling and simulation
systems from multiple perspectives, this paper analyzes the
capabilities and deficiencies of these systems in coping with
the geographic research, as shown in Figure 1.

2.1 Model resource analysis of geographic modeling
and simulation systems

To address the diversity of geographic problems and the
relevance of research objects, the model resources of geo-
graphic modeling and simulation systems are particularly
important. In regional geographic research, model resources
can directly affect the analysis capability of modeling and
simulation systems for various geographic phenomena and
processes in different regions. From the perspective of model
resources, geographic models can be divided into individual
models and integrated models (Oxley et al., 2004; Song and
Leng, 2005; Lü, 2011). The individual model is an abstrac-
tion of geographic phenomena and processes expressed by
formulas or rules. It can be used to summarize and describe
the internal regularities and mechanisms of geographic sys-
tems (Badham et al., 2019). The integrated model is an in-
tegration of several geographic models (e.g., model
components and model services). It can be used to express
regional systems with multiple elements and processes (El-
sawah et al., 2017; Chen M et al., 2019). Furthermore, the
existing geographic modeling and simulation systems can be
roughly divided into individual model systems for single-

Figure 1 Capability analysis of the existing geographic modeling and simulation systems in coping with geographic research.
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domain geographic processes and integrated model systems
for complex geographic processes (Chen et al., 2020).

To address various geographic problems from different
regions, many single-domain process-oriented model sys-
tems have been developed, e.g., there are soil erosion pre-
diction model systems (e.g., CSLE (Chinese Soil Loss
Equation), WEPP (Water Erosion Prediction Project),
EUROSEM (European Soil Erosion Model)) (Laflen et al.,
1991; Morgan et al., 1998; Liu and Zhang, 2003), air quality
prediction model systems (e.g., CMAx (Comprehensive Air
Quality Model with Extensions), NAQPMS (Nested Air
Quality Prediction Modeling System), CMAQ (Community
Multiscale Air Quality Model)) (Wang et al., 2010; Huang et
al., 2012; Su et al., 2012; Zhang et al., 2014a, 2015), hy-
drological process model systems for runoff analysis and
numerical simulation (e.g., SWAT (Soil and Water Assess-
ment Tool), MIKE SHE (MIKE System Hydrological Eur-
opean), FVCOM (Finite-Volume Coastal Ocean Model))
(Chen et al., 2003; Xu, 2010; Neitsch et al., 2011; Li X et al.,
2018; Ramteke et al., 2020; Nixdorf et al., 2020), land use
change simulation model systems (e.g., GeoSoS (Geo-
graphical Simulation and Optimization Systems), FLUS
(Future Land Use Simulation Model)) (Li et al., 2011, 2017;
Liu et al., 2017), and other single-domain process model
systems (e.g., ADMS (Atmospheric Dispersion Management
System), MASD (Multiple Adaptive Scenarios System Dy-
namic Model) and ANSWERS (Areal Nonpoint Source
Watershed Environment Response Simulation)) (Singh et al.,
2006; Liu D, 2014; Liu et al., 2018).

As an important tool for solving cross-domain and multi-
process geographic problems, integrated model systems have
attracted increasing attention. Thus, geographers and experts
have focused on integrated geographic processes, such as the
ecological-hydrological process in the Heihe River Basin
(Cheng et al., 2014; Cheng and Li, 2015; Guo et al., 2018), the
economic-social-environmental process in the Yangtze River
Economic Belt (Li et al., 2019), and climate-hydrological
processes in the region of the Shasta Dam (Trinh et al., 2017),
to conduct various integrated model studies that consider
multiple elements and processes in a region. Therefore, a series
of integrated model systems have been developed for different
geographic process simulations, such as the integrated simu-
lation of global changes and terrestrial ecosystems (Tian et al.,
2010), terrestrial water cycle process simulation (Tang et al.,
2019), and simulation and evaluation of global carbon emis-
sion reduction programs (Wang et al., 2015).

Clearly, a large number of geographic modeling and si-
mulation systems have emerged. Relying on model re-
sources, these systems can support feature exploration and
mechanism analysis for different geographic phenomena and
processes. However, these geographic model resources
supported by model systems are mainly oriented to a certain
domain problem. Because of the multi-source and spatial

distribution characteristics of these geographic model re-
sources, and the differences in development language, op-
eration environment, model structure and model data, it is
often difficult to share and reuse these geographic model
resources when solving various problems within the scope of
the region (Lü, 2011; Lin et al., 2013a). Moreover, to address
regional problems considering the relevance of research
objects, the existing integrated model systems focus mainly
on the interaction analysis of different elements in a certain
region. When performing the relevance analysis of multi-
scale and cross-domain geographic problems, the analysis
and simulation capabilities of current model systems are still
insufficient (Chen et al., 2020).

2.2 Modeling process analysis of geographic modeling
and simulation systems

The geographic model is an abstract expression of geo-
graphic cognition, the interpretability and scientific rigor of
which are determined by the geographic modeling process.
On the one hand, abstract geographic cognition and its the-
ories influence geographic model construction and guide the
modeling process; on the other hand, the geographic mod-
eling process supports the comprehensive geo-analysis pro-
cess and cognition. From the perspective of the modeling
process, geographers and experts first need to establish a
conceptual understanding of the geographic system and then
need to analyze the functional structure of the geographic
model and the interaction among different functional mod-
ules to build a computable and executable geographic model
system.

During the conceptual cognition and expression of geo-
graphic systems, the internal relationships and evolution
laws of geographic phenomena and processes must be ana-
lyzed. In the early stages, geographers often made sketches
to clarify geographic concepts. However, expressing geo-
graphic problems under a standardized format in this way
was difficult (Renolen, 2000). Subsequently, to clarify and
describe geographic problems, geographers began to use
conceptual diagrams, for example, the conceptual framework
used to represent spatiotemporal phenomena (Langran and
Chrisman, 1988; Peuquet, 1994), the conceptual map model
based on graphical representation (Wan et al., 2003), and the
geographic conceptual modeling method for collaboration
and sharing (Chen et al., 2009, 2011).

Based on the cognition and expression of geographic
concepts, to analyze and describe the functional structure of
geographic models, structure diagrams are applied to depict
the logical structure of geographic modeling and simulation
systems. For example, the Modular Modeling System and
Spatial Modeling Environment use graphs to represent
model variables and functions and connect different vari-
ables and functions in the diagram interface (Leavesley et al.,
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1996; Costanza and Voinov, 2004); OpenFLUID represents
various geographic entities as nodes by different shapes and
colors and connects geographic entities through tree dia-
grams (Fabre et al., 2010); HIME (Heihe River Basin In-
tegrated Modeling Environment) uses graphs to represent
different functional modules in the model system, applies
lines to describe the relationship between modules, and
employs model structure diagrams to realize the construction
of integrated models (Feng et al., 2008; Nan et al., 2011); and
ArcGIS ModelBuilder uses different graphs and structural
diagrams to describe the model data, behavior, and connec-
tions to support the construction of geographic models (Al-
len, 2011).

In summary, existing geographic modeling and simula-
tion systems use mainly graphs and structure diagrams to
describe and represent the different geographic elements
and processes in the geographic modeling process. On this
basis, the model variables, model data, functional compo-
nents, and algorithm modules are linked to support the
construction of geographic models. However, in terms of
the thinking mode, the computer-designed node-link style is
not in line with the cognitive habits of geographers.
Moreover, model integration in the form of diagrams and
connections is usually realized by disassembling the geo-
graphic elements and processes of geographic systems,
which makes it difficult to accurately demonstrate a geo-
graphic phenomenon and its internal mechanism. Thus, the
integrity of the geographic system may be neglected. In
terms of the research method, the construction of an in-
tegrated model cannot be achieved by simply creating di-
rected links among model components and data. To sort out
the relationships among systems/subsystems, elements, and
functions, especially to support integrated modeling for
comprehensive scenarios, the entire modeling problem
should be analyzed starting from the conceptual level. A set
of geographic modeling and simulation solutions is needed
to implement the process from visualized conceptual
modeling to structured logical modeling and then to nu-
merical computational modeling.

2.3 Operational architecture analysis of geographic
modeling and simulation systems

Collaboration and exploration are important development
trends of the research mode for complex geographic pro-
blems, and the development of the research mode imposes
higher requirements on the operational architecture of
geographic modeling and simulation systems. With the
integration of information technologies and geographic
theories, new changes have taken place in the storage,
management and application of geographic simulation
resources (Lin and Chen, 2015), and the operational ar-
chitecture of the geographic modeling and simulation

system has been continuously updated. Regarding the
operational architecture, existing geographic modeling
and simulation systems can be mainly divided into lumped
systems, distributed systems, and service-based systems.
These three architectures complement each other and
support diversified geographic modeling and simulation
research.

In geographic modeling and simulation systems with the
lumped architecture, all simulation resources are centralized.
Stand-alone calculation methods are typically used in these
systems, such as the SIAT (Sustainability Impact Assessment
Tool) (Verweij et al., 2010), the JGrass-NewAge system for
hydrological forecasting and simulation (Formetta et al.,
2014), and the SEAMLESS (System for Environmental and
Agricultural Modeling; Linking European Science and So-
ciety) (van Ittersum et al., 2008; Janssen et al., 2011).

With the upgrading of operational architectures, dis-
tributed-architecture-based geographic modeling and simu-
lation systems have emerged (Jing, 2014; You, 2017), such
as FRAMES (Framework for Risk Analysis in Multimedia
Environmental Systems) for ecosystem simulation (Whelan
et al., 2014) and the Consortium of Universities for the
Advancement of Hydrologic Sciences, Inc. (CUAHSI) Hy-
drologic Information System (HIS) hydrology project
(Maidment, 2008). The simulation resources and running
processes of these systems are distributed on multiple ser-
vers, which can support geographic modeling and simulation
research in the distributed web environment (Tanenbaum and
Steen, 2007). Moreover, some interfaces, frameworks and
platforms used to promote distributed geographic modeling
and simulation have received more attention, including
OpenMI (Open Modeling Interface) (Moore and Tindall,
2005), ESMF (Earth System Modeling Framework) (Hill et
al., 2004), DMIF (Distributed Model Integration Frame-
work) (Belete et al., 2017), CSDMS (Community Surface
Dynamics Modeling System) (Peckham et al., 2013), and
OMS (Object Modeling System) (David et al., 2013).

With the development of Web services technology and
SOA (Service Oriented Architecture), simulation resources
are increasingly deployed and published as Web services in
geographic modeling and simulation systems to support
sharing and reuse (Wen et al., 2017; Chen et al., 2020; Ni-
knejad et al., 2020), such as eHabitat, a web processing
service for ecosystem simulation (Dubois et al., 2013), and
AWARE, a water resource monitoring and prediction fra-
mework (Granell et al., 2010; Gan et al., 2020). In addition,
based on the SOA, for the development of open science
(Woelfle et al., 2011; Nosek et al., 2015), different geo-
graphers and experts have conducted preliminary explora-
tions on open geographic modeling and simulation research
modes, such as SWATShare (Rajib et al., 2016), HydroShare
(Bandaragoda et al., 2019; Gan et al., 2020), and OpenGMS
(Open Geographic Modeling and Simulation Systems) (Wen
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et al., 2013; Yue et al., 2015, 2018; Yue S S et al., 2016;
Wang et al., 2018, 2020; Zhang et al., 2019, 2020; Chen M et
al., 2019; Chen et al., 2020).

In general, the existing geographic modeling and simu-
lation systems are based mainly on lumped and distributed
operational architectures, which have been upgraded clo-
sely following the development of computer technologies.
Moreover, these systems are developed mostly for specific
domains. In terms of the research modes, most systems can
support only the closed research conducted by specific in-
stitutions or groups. To meet the requirement of complex
geographic problem solving, the closed modeling and si-
mulation environment obviously cannot make full use of
the existing simulation resources, which results in resource
waste. More importantly, closed modeling and simulation
systems struggle to support collaborative geographic re-
search among multidomain geographers and experts. In
addition, to address the complexity of geography, further
exploration of the application scenarios and research modes
of existing geographic modeling and simulation systems is
necessary. With the development of open science, geo-
graphic research in the new era presents greater challenges
to geographic simulation. Therefore, it is necessary to
support collaborative exploratory geographic simulation
and analysis with multiple experts, multiple hosts and
multiple roles, and maintain the iterative process of solving
complex problems. In this aspect, OpenGMS tries to form a
virtual community for model resource reuse and integration
in an open and cooperative way and thus provide an open
geographic problem-solving platform that can be used
transparently, efficiently and collaboratively (Chen et al.,
2020).

3. Development directions of geographic mod-
eling and simulation systems

Although the geographic modeling and simulation system is
a typical software system, its main purpose is to serve the
exploration and solution of geographic problems, and its
essence is the construction and application of geographic
analysis models. Therefore, the development of geographic
modeling and simulation systems should not only comply
with the development trend of information and software
technologies but also focus on the basic characteristics of
geography. For geographic modeling and simulation sys-
tems, the requirements of the existing systems should be
analyzed, and the development direction to promote their
continuous progress should be summarized, as shown in
Figure 2.

3.1 Geographic model sharing to cope with the di-
versity of regional problems

To address various regional problems, geographic models
must be fully utilized to analyze the distribution patterns and
interactions of different geo-elements and the driving me-
chanisms of geo-processes. The emergence of new data and
new technologies provides opportunities for accurately de-
scribing geographic environments at different spatio-
temporal scales. Thus, the construction of new geographic
models can occur continuously (Li and Li, 2014; Wang et al.,
2014; Lu and Zhang, 2014; Dong et al., 2017). However, the
isolated development of new models is costly. Existing
geographic model resources must be fully and effectively
used. Thus, apart from constructing new models, the sharing

Figure 2 Development directions of geographic modeling and simulation systems.
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of geographic models should also be promoted. Because
geographic model resources from different sources are
usually heterogeneous, they are difficult to access and use to
solve various geographic problems (Lü, 2011). To make full
use of the existing models to solve regional problems, the
heterogeneity and spatial dispersibility of geographic models
must be overcome. Therefore, an important requirement for
geographic modeling and simulation systems is to standar-
dize multisource geographic models to shield against their
heterogeneity (Hu, 2012; Müller et al., 2013; Harpham and
Danovaro, 2015). These systems also need to have the ability
to widely share models (Yue S S et al., 2016; Barton et al.,
2020). On this basis, modelers could easily discover and
access geographic models distributed in cyberspace to sup-
port the reuse of geographic models (Wen et al., 2013; Tan,
2018; Lü et al., 2019).

3.2 Model integration for the relevance of regional
problems

Geographic model integration can be performed to integrate
natural and human geographic elements at a certain scale,
and it is an effective means to address the relevance of re-
gional research objects (Laniak et al., 2013; Granell et al.,
2013; Song et al., 2020a). Therefore, geographic modeling
and simulation systems that analyze the relevance of regional
issues need to support integrated modeling to discover the
interaction between different research objects and explore
the internal mechanism of the generation and evolution of
each research object. Because of the work on single-domain
process-oriented geographic modeling and the model sharing
capability, a large number of model resources exist for sol-
ving geographic problems and sufficient model resources
distributed in cyberspace are easy to reuse for integrated
modeling. Hence, the integrated modeler also needs to select
appropriate models to perform scale adaptation, computing
grid conversion, data matching, and logical connecting of
different models in accordance with the inherent geographic
mechanism (Wen et al., 2006; Zhang et al., 2014a, 2014b; Li,
2016; Ma et al., 2019; Iwanaga et al., 2021). During the
integration simulation process, the various submodels (or
components and modules) participating in the integration
must be controlled (Zhang et al., 2016; Zhang et al., 2018;
Chen et al., 2020), and the error and uncertainty must be
tracked and quantified to optimize the integrated modeling
results (Yue T X et al., 2020). Therefore, geographic mod-
eling and model systems need to vigorously develop an in-
tegrated modeling environment that can provide the
corresponding strategies and tools to facilitate model selec-
tion, integration, and process control during the integrated
modeling process to achieve not only multi-element and
multiprocess perspectives but also full-element and full-
process perspectives of integrated geographic modeling.

3.3 Geographic modeling with geographic synthesis
considerations

In order to meet the overall research goal of integrated
geographic problems, geographers must find an abstract
carrier that can coordinate the cognition and expression of
geography in the process of geographic modeling, so as to
realize the interaction of spatial pattern, evolutionary process
and geographic system. Geographic synthesis is an important
way for geographers to explore comprehensive geographic
cognition, such as comprehensive physical geographic re-
gionalization and comprehensive division of regional en-
vironments (Fan, 2004; Liu et al., 2005). With the
development of geographic research paradigms (e.g., em-
pirical science, theoretical science, and system science),
traditional methods, such as empirical cognition, element
enumeration, and index weighting, often face the “easy to
divide but difficult to synthesize” dilemma, and the modeling
methods have attracted more attention for carrying out
geographic synthesis (Song, 2016). Recently, in model stu-
dies, e.g., the Earth System Model, the Land Surface Process
Model, the Global Ecosystem Model, and the Atmospheric/
Ocean Model, on the one hand, geographers applied the re-
sults of geographic synthesis (e.g., climate zoning, geomor-
phological zoning, vegetation zoning, and land use zoning)
and, on the other hand, promoted more comprehensive and
refined geographic synthesis studies by using geographic
modeling (Kawamura, 1994; Xia et al., 2009; Zhang et al.,
2014). Notably, the methods combining statistical data ana-
lysis and mechanism process modeling (Dai and Han, 2014;
Fan et al., 2017; Zhang, 2019) and the method of assimilating
model results with observational data (Li et al., 2020) have
gradually become important approaches advancing the re-
search on geographic synthesis. Therefore, geographic
modeling and simulation systems need to support a com-
prehensive understanding and expression of the inherent
laws of geographic systems and break through the limitations
of traditional geographic comprehensive research ex-
emplified by “dividing first and synthesizing last” to achieve
geographic modeling that considers geographic synthesis.

3.4 Geographic modeling with emphasis on both the
conceptual design and execution process

In support of comprehensive geographic problem solving,
geographic modeling needs to consider the conceptual de-
sign and implementation process, which is similar to the
habit of thinking of geographers. Specifically, the entire
modeling process needs to start from geographic concepts
with which geographers are familiar, progress to the abstract
analysis of internal logical relationships of the model, and
culminate with the construction of computable geographic
models. Thus, the whole modeling process, which contains
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visualized conceptual modeling, structured logical modeling,
and numerical computational modeling, can be supported
(Chen M et al., 2019; Chen et al., 2020). Conceptual mod-
eling extracts various geographic elements from geo-entities
and geo-
systems, sorts out the interactions among elements, and
constructs the conceptual expression of geo-systems (Chen
et al., 2009, 2011). Logical modeling is usually based on the
results of conceptual modeling and assumes responsibility
for describing the internal structure and behavior of geo-
graphic models and establishing connections between geo-
graphic elements, geographic processes, model data, model
parameters, and model components (Feng et al., 2008).
Computational modeling builds the mapping from logical
models to computational models by configuring related
model resources, data resources, and computing resources
and constructing the computable geographic model accord-
ing to the prepared logical model. Therefore, geographic
modeling and simulation systems need to support the whole
process of geographic “conceptual-logical-computable”
modeling, which can not only facilitate the conceptual ana-
lysis of interactions among geo-elements but also enable the
use of data and models to conduct a practical exploration of
geo-problem solutions.

3.5 Collaborative geographic modeling and simulation

To serve research on complex geographic systems, geo-
graphic modeling and simulation systems need to support
collaborative work with different types of role engagement.
In collaborative geographic modeling and simulation, parti-
cipants with different roles can conduct different forms of
geographic collaboration, including resource-based colla-
boration, knowledge-based collaboration, and interactive
collaboration (Voinov et al., 2018; Bandaragoda et al., 2019;
Elsawah et al., 2020). (1) In resource-based collaboration,
different participants engage in geographic modeling and
simulation by contributing their resources. By collecting
resources from different participants (e.g., data resources,
model resources, and computing resources), sufficient re-
sources will be available to solve complex geographic pro-
blems (Basco-Carrera et al., 2017; Chen et al., 2020). (2) In
knowledge-based collaboration, different participants con-
duct open geographic modeling and simulation by sharing
related knowledge, including geographic knowledge and
modeling methods. Knowledge sharing and negotiation
among different participants can promote geographic mod-
eling and simulation (Kelly et al., 2012; Almoradie et al.,
2015). (3) In interactive collaboration, geographic modelers
pay more attention to the core activities of geographic
modeling and simulation, such as data processing (He et al.,
2020) and model construction (Chen M et al., 2019).
Through interactive collaboration, geographically dis-

tributed participants can directly perform modeling and si-
mulation activities (Lü, 2011; Sun and Li, 2016). In addition,
geographic modeling and simulation systems need to prepare
strategies to support collaborative work. Thus, they can help
to coordinate the specific work of geographically distributed
geographers and experts and assist different participants in
concentrating on their own tasks. All participants can bring
their talents to bear in solving complex geographic problems
(Ma et al., 2021).

3.6 Exploratory geographic modeling and simulation

It is often difficult to solve complex geographic problems
through simple processes because knowledge and under-
standing of complex geographic systems is often inadequate.
Therefore, geographic modeling and simulation systems
should support not only open collaboration but also the so-
lution exploration of geographic problems. First, to meet the
needs of solving complex geo-problems, geographic mod-
eling and simulation systems should be able to describe and
archive the iterative exploration process that consists of
different activities, including sensitivity analysis and un-
certainty analysis (Jakeman et al., 2006; Badham et al., 2019;
Hamilton et al., 2019; Koo et al., 2020a, 2020b; Razavi et al.,
2021). In the modeling scenarios for different geographic
problems, modeling and simulation systems should support
participants in sharing their knowledge and experience and
help to establish different modeling and simulation solutions
that can lead different participants to high-level collaboration
(Simão et al., 2009; Zare et al., 2020). Then, geographic
modeling and simulation systems should have a unified
evaluation system to support the evaluation of exploratory
solutions. The engaged modelers can adjust and optimize the
modeling and simulation solutions to improve their quality
based on the evaluation results. Moreover, different model-
ing and simulation solutions are available for different pro-
blem exploration scenarios. Therefore, the different solutions
must be compared and evaluated in order to choose a better
one (Guo et al., 2012; Bennett et al., 2013; Yue et al., 2018;
Yue S S et al., 2020). Finally, the geographic modeling and
simulation systems need to support repeatable and re-
producible work. This enables participants to effectively
share and reuse existing modeling and simulation solutions
(Munafò et al., 2017; Stark, 2018).

4. Design of implementation architecture for
geographic modeling and simulation systems in
the new era

Under the guidance of the development directions, geo-
graphic modeling and simulation systems need to design the
system implementation architecture from three aspects:
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sharing and reuse of the geographic simulation resources,
collaborative geographic modeling, and open geographic
simulation. Figure 3 shows the implementation architecture
of the geographic modeling and simulation system for geo-
graphic research in the new era.

4.1 Service-based method studies on sharing and re-
using geographic simulation resources

The development direction of geographic modeling and si-
mulation systems for various regional geo-problems requires
a system architecture design focused on service-oriented
sharing and reuse of simulation resources. Geographic si-
mulation resources (e.g., model resources, data resources,
and computing resources) are the foundation of modeling
and simulation. The service-oriented sharing and reuse
methods mainly contain three parts: classification and de-
scription of geographic simulation resources, standardized
encapsulation of geographic simulation resources, and ser-
vice-based invocation of geographic simulation resources.

(1) To facilitate the management, sharing and reuse of
heterogeneous geographic simulation resources, the char-
acteristics of the simulation resources are selected as the

starting point. On the basis of summarizing these char-
acteristics, the classification, logical representation and at-
tribute description of simulation resources can be developed
to classify and describe the simulation resources structurally.
The classification of simulation resources summarizes the
resource categories according to different standards, such as
the purpose of use (e.g., model, data, and calculation) and the
domain of application (e.g., hydrology, soil, atmosphere, and
ecology). Logical expression aims to describe geographic
simulation resources in different ways (e.g., concept graphs,
arithmetic logic, and invokable resources). Attribute de-
scription contains the description of attribute information (e.
g., categories, introductions, and authors), operating beha-
viors (e.g., execution processes, inputs and outputs, and
parameter configuration), environment dependencies (e.g.,
software environments and hardware environments) and
other information.

(2) The standardized encapsulation of geographic simula-
tion resources aims to encapsulate the simulation resources
into web services to support the sharing and reuse of geo-
graphic simulations in an open web environment. First, si-
mulation resource access is given to obtain multisource
geographic simulation resources, such as componentized or

Figure 3 Implementation architecture of a geographic modeling and simulation system.
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service-based model resources, and data resources from cy-
berspace or local files. Then, based on the established stan-
dardized interfaces and the mapping rules between resource
metadata and standardized interfaces, the mapping and re-
construction of heterogeneous simulation resources can be
completed to support the service sharing of resources. Fi-
nally, based on the encapsulated resources, corresponding
services of the simulation resources can be generated in the
web environment for sharing and reuse.

(3) The service-based invocation of simulation resources is
based on the geographic simulation service shared in the web
environment. Geographic modeling and simulation systems
prepare geographic model invocation interfaces to achieve
geographic model reuse. Thus, several points need to be
considered, including the resource invocation interface de-
sign, usage permission setting and resource allocation opti-
mization. The geographic modeling and simulation system
can realize different functions (e.g., model invocation and
data refactoring) by designing geographic simulation re-
source invocation interfaces, thereby supporting the multi-
dimensional reuse of simulation resources in the web
environment. Moreover, different invocation interfaces are
given corresponding usage permissions to ensure security
and protect the copyright of simulation resources in the web
environment. In addition, according to the usage status of
simulation resources, the model and data can be migrated,
and the computing nodes can be dynamically allocated.
Therefore, the resources used for geographic simulation and
calculations in the web environment can be scheduled,
configured and optimized to improve reuse efficiency.

4.2 Collaborative method studies on geographic mod-
eling

To solve comprehensive and complex geographic problems,
collaborative comprehensive geographic modeling is re-
quired. The collaborative geographic modeling method can
utilize various shared simulation resources and help provide
model tools for geographic simulation. Specifically, it in-
cludes the deconstruction and description of the modeling
process, the whole process support for geographic modeling,
and the mode design of collaborative modeling.

(1) Geographic modeling for comprehensive geo-problems
focuses mainly on two types of modeling: multimodule in-
tegrated modeling for addressing the relevance of regional
problems and single-module model construction for geo-
graphic synthesis. First, the modeling process must be ana-
lyzed and deconstructed in accordance with the different
geographic integrated modeling scenarios. Then, the core
modeling tasks are extracted and the organization logics
among different tasks are summarized, such as the algorithm
selection and parameter calculation in the single-module
model construction process, and the module selection and

optimization in the model integration process. Finally, based
on the abstract cognition of the types, goals, and contents of
the core modeling tasks and their organization logics, the
modeling process of different geographic models is ex-
pressed in a structured way. Thus, modelers from different
backgrounds are guided into appropriate geographic mod-
eling activities.

(2) To facilitate the geographic model construction that
considers both the conceptual design and execution process,
the collaborative geographic modeling method can provide
environments for supporting the whole modeling process,
including the conceptual modeling environment, the logical
modeling environment, and the computable modeling en-
vironment. The premise of geographic synthesis is cognition
of the geographic environment, and conceptual modeling is
the basis for multiple experts to achieve common cognition.
In the conceptual modeling environment, a series of tools
and methods are provided to represent geographic objects
and their interactions and constraints. Based on these tools
and methods, construction from geographic phenomena and
processes to geographic conceptual scenarios and to geo-
graphic conceptual models can be realized. In the logical
modeling environment, modelers can use tools such as
flowcharts, Unified Modeling Language (UML) diagrams,
and workflows to clarify and describe the model logic, such
as mathematical and rule expressions of a single-module
model or the composition structure and data flow of a mul-
timodule integrated model. In the computable modeling en-
vironment, single-module models can be quantified, for
example, by model algorithm implementation and model
parameter calculation, and scale-adapted, data-matched, and
logically consistent geographic integration modeling can be
achieved by selecting and matching the appropriate com-
puting resources.

(3) Due to the complexity of geographic problems,
geographers must support collaborative modeling among
different participants during the entire geographic model-
ing process. Specifically, it is necessary to assign roles to
different modelers according to their experience and
background, including modeling experts, geographers,
software engineers, and stakeholders. The permissions of
different roles are managed and controlled during the
modeling process. Then, to meet the different modeling
goals and needs, participants with different roles are as-
signed and guided to engage in certain modeling tasks with
which they are familiar. While performing modeling tasks,
participants can negotiate with each other and conduct
collaborative modeling activities. By designing a colla-
borative control mechanism, modeling managers can
monitor the modeling process. By controlling multi-task
conflicts and spatio-temporal inconsistencies, the quality
of collaborative modeling in modeling activities can be
maintained.
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4.3 Method studies on open geographic simulation

To meet the requirement for solving complex geographic
problems, geographic modeling and simulation systems
should support open geographic simulation. Based on the
architecture of open web environments, different geo-
graphers can conduct different activities, including collect-
ing various simulation resources, exploring geographic
simulation solutions, employing geographic models for
geographic simulations, and evaluating, optimizing and ap-
plying simulation results. The key points of the open geo-
graphic simulation method include the aggregation and
optimization of simulation resources, the distributed execu-
tion of simulation processes, and the mode design of open
simulation.

(1) To carry out complex and changeable simulation tasks,
various open simulation resources in the web environment
must be converged and optimized. First, through model re-
source adaptation, shared model resources distributed in
cyberspace can be effectively aggregated and applied for the
simulation of geographic phenomena and processes. More-
over, data resources are the driving force behind the model
execution and the bridge connecting different model mod-
ules. The data resource access strategy can enable various
shared data resources to be acquired and used in geographic
simulations; thus, it is the key to ensuring correctly con-
ducted geographic simulations. In addition, computing re-
sources, as the carrier of performing a simulation, play a
fundamental supporting role in the entire simulation process.
Therefore, by relying on the scheduling of computing re-
sources, any idle shared computing resource in the web en-
vironment can be fully used to improve the efficiency of
geographic simulation.

(2) In complex web and model execution environments,
the status of the simulation resources that are scattered in the
web environment is not always controllable. When the si-
mulation scheme is running, the running status of the geo-
graphic models needs to be monitored and obtained in real
time. Through simulation process monitoring, simulation
modelers can optimize the model at runtime. Moreover,
runtime exceptions must be captured in time and addressed
accordingly so that the entire simulation process is always at
the optimal status relative to the expected simulation target.

(3) The conducting of geographic simulation activities
needs to be promoted in an open mode. First, the solving of
complex geographic problems usually requires repeated ex-
plorations and attempts. After continuous optimizations and
error corrections, more reasonable results can be obtained.
Therefore, open exploration and optimization of geographic
simulation solutions are required, and standardized ex-
ploration methods and optimization strategies for geographic
simulations are needed. In an open simulation environment,
to address unsatisfactory simulation results, different geo-

graphers and experts can discuss and analyze the causes and
principles of the simulation results. If necessary, they can
redesign the methods and evaluate and calibrate the models
until the simulation purposes are achieved. Finally, in the
open geographic simulation mode, the application of the
geographic simulation results can also support open discus-
sion and analysis, thereby providing assistance and support
for geographic decision-making.

5. Conclusions

The development of system tools is driven by research needs,
and it promotes the improvement of research capabilities.
The requirement for geographic research has led to the in-
novation of scientific research methods and tools in geo-
graphy and has brought new challenges to related software
systems. As one of the main tools of geographic research,
geographic modeling and simulation systems have received
wide attention. However, how to evaluate the adaptability
and effectiveness of geographic modeling and simulation
systems has not yet been confirmed. Starting from the geo-
graphic characteristics—regionality, comprehensiveness and
complexity—this paper analyzes the fundamental needs of
geographic research in the new era to promote the design of
the geographic modeling and simulation system architecture.
The designed geographic modeling and simulation system
architecture will also promote related geographic research
and provide important technical support for the development
of geography in the new era, thereby laying a basic foun-
dation for the construction of a new generation of geographic
simulators.
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