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Abstract 

Invasive species are considered to be the second greatest threat to native biodiversity and several 

factors have been identified as contributing to the success of introduced species, including their 

initial genetic variation and the ability of populations to adapt to a new environment. 

Temperature has a significant impact on reptilian ecology and distribution since they ordinarily 

rely on external heat sources for the maintenance of body temperatures suitable for normal 

activity. Body temperature affects performance in these organisms given its importance for all 

aspects of behavior, locomotion, courtship and rates of feeding and growth. Critical thermal 

tolerances can, therefore, give an indication of the range of climatic conditions that can be 

tolerated and which may be the causal range limit in some cases. We studied the cold tolerance 

(Critical Thermal Minima) of female and male invasive Anolis sagrei and native Anolis 

carolinensis (Sauria: Polychrotidae) in four populations along a latitudinal gradient from south 

Florida to northern Georgia. Cold tolerance (CTMin) was measured under field conditions and 

after a period of acclimation to identify whether there is variation in this characteristic as latitude 

increases reflecting differential selection for lower temperature adaptation or phenotypic 

plasticity and whether there is a difference in cold tolerance between the native and invasive 

species. We found a geographic cline in field CTMin for both species; the lowest CTMins were 

exhibited by those anoles from the northern-most population (Savannah, GA). In all four 

populations A. carolinensis has a lower field cold CTMin than A. sagrei, and for both species, 

male CTMin is lower than female CTMin. However, after a period of acclimation, there were no 

significant differences in CTMin among populations or between sexes of either species, 

suggesting a notable capacity of both species to acclimate to local conditions. 
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Introduction 

Invasive species are considered to be the second greatest threat to native biodiversity following 

habitat destruction (Wilson 1992, Vitousek et al. 1997). Introduced species are those that have 

moved beyond their native range aided by human activities, have established in a new area, 

proliferate, spread and persist in their new range to the detriment of the environment. Several 

factors have been identified as contributing to the success of introduced species in general, 

including those which come to be considered invasive. In the area into which they have been 

introduced, they may find better physical conditions, more abundant resources, and empty niches 

relative to their native ranges. In addition, they may be released from predators or competitors, 

parasites or pathogens. These differences may allow newcomers to escape the biotic constraints 

that regulate their populations in their native land (Mack et al. 2000).  

The brown anole, Anolis sagrei Duméril & Bribon (Polychrotidae), is remarkable for its 

colonizing ability, which is reflected in its wide geographical distribution. The species is thought 

to have evolved in Cuba from which it colonized the Bahamas, Little Cayman, Cayman Brac, 

Swan Island, and the Atlantic versant of Central America (Williams 1969). There is controversy 

as to whether the population on Jamaica is native or was facilitated by early human inhabitants of 

the Caribbean region. The origin of the population in lower Florida keys, first reported by 

Garman (1887) in Lee (1987), is likewise uncertain. 

 Anolis sagrei appears to have arrived on the mainland of South Florida by 1940 (Lee 

1985), as the result of introductions from both Cuba and the Bahamas, which subsequently 

interbred (Kolbe et al. 2004). It has exhibited an exponential range expansion since its 

introduction and now occurs throughout Florida and into Georgia, Louisiana and Texas 
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(Campbell 1996). Recently, apparently established populations have been documented in South 

Carolina (Turnbough 2006) and North Carolina (Beane & Corey 2010),  Anolis sagrei is 

considered highly invasive, reaching densities of 1.2 individuals per m2 and negatively impacts 

populations of the native green anole, Anolis carolinensis (Campbell & Echternacht 2003). 

Until the introduction of A. sagrei, A. carolinensis was the only representative of the 

genus inhabiting North America. The geographic range of A. carolinensis includes the 

southeastern United States from the east coast to Oklahoma, Arkansas and Texas and as far north 

as Tennessee and North Carolina (Conant & Collins 1998). This distribution represents the 

northern limit of the range of the entire genus. Williams (1969) suggested that its range is limited 

in the north by temperature and in the west by moisture. There have been suggestions that the 

Anolis sagrei might negatively affect the A. carolinensis in Florida via interference competition 

(Collete 1961) and the exclusion of A. carolinensis by A. sagrei in coastal areas of south Florida, 

Mexico and Belize has been attributed mainly to the lack of preferred habitats of A. carolinensis 

and competitive exclusion by A. sagrei (Williams 1969, Crews 1980). This could be a rapid 

process since Christman (1980) and Campbell (2000) noticed that green anoles became rare or 

were absent at sites in Florida within a few years of the arrival of A. sagrei.  

Trying to understand the factors that affect the distribution of species on earth has been 

one of the most studied topics in ecology, and although we know that biotic interactions and 

climate play a major role determining distributions of organisms, the exact way in which climate, 

particularly temperature, constrains geographical distributions is still not well understood.  This 

topic is especially of interest when considering invasive species, since the extent of the range 

expansion greatly depends on the conditions that can or will be tolerated (Root 1988, Crozier 

2003). Temperature has a significant impact on reptilian ecology and distribution (Cowles & 
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Bogert, 1944), since they are ectotherms and ordinarily rely on external heat sources for the 

maintenance of body temperatures suitable for normal activity. Body temperature is considered 

the most important ecophysiological variable affecting performance in these organisms, given its 

importance for all aspects of behavior, locomotion, immune functions, sensory input, foraging 

ability, courtship and rates of feeding and growth (Angilleta et al. 2002). Thus, physiology and 

more specifically, critical thermal tolerances can give an indication of the range of climatic 

conditions that can be tolerated and may be the causal range limit in some cases (McConnachie 

et al. 2007). Critical thermal minimum is known to be the minimum temperature at which 

individuals performance/locomotion is possible, and also corresponds to the “ecologically lethal” 

temperature, since individuals will not be able to escape further deceases in temperature that will 

lead eventually to their death (Cowles & Bogert, 1944, Doughty 1994).  So, as latitude increases 

and individuals experience an increase in the intensity and duration of the winter, lower mean 

annual temperatures and lower extreme temperatures, they have to be able to confront them 

directly through immediate or evolved modifications in the physiological response that allow 

them to have higher resistance to cold temperatures. 

Anoles do not hibernate. During the winter in East Tennessee, A. carolinensis seeks 

shelter in retreats in exposed rock crevices or holes in the ground. They emerge and are active on 

any day that the substrate is exposed to the sun and becomes sufficiently warm (Bishop & 

Echternacht 2004).  When they are active during the winter, the body temperatures of anoles 

approximates those recorded during the summer but they must not venture so far from their 

retreats that they are exposed to temperature reductions that prevent their return to the retreats 

before they become immobile and risk death.  Therefore, tolerance to relatively low temperatures 

may be adaptive for populations of A. carolinensis at the northern extreme of its range where it is 
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exposed to a highly seasonal environment where winter temperatures often approach or exceed 

freezing. Wilson and Echternacht (1987) demonstrated that the critical thermal minimum 

temperature (CTMin) of a population of A. carolinensis in East Tennessee, at the northern 

extreme of the range of the species, was significantly lower than of populations in Central 

Florida and southern Georgia. The difference is suspected to have a genetic basis. Denesha 

(2006) explored the thermal tolerance of three populations of A. sagrei, two from the southern 

(Miami and Naples) and one from the northern (Lake City) part of Florida. He found some 

evidence that northern populations of A. sagrei had greater tolerance to cold temperatures than 

southern populations and that the temperature of acclimation could influence the CTMin of the 

populations. However, the methods used by Denesha to determine CTMin did not allow him to 

find the greatest degree of cold acclimatability, so his results only suggests that the thermal 

sensitivity has changed in northern populations. 

Fossil A. carolinensis are known from cave deposits in northwestern Georgia and 

northeastern Alabama that date from ca. 10,000 and 26,500 years before present, respectively 

(Holman 1995). Neither the colonization history of A. carolinensis nor its rate of northward 

movement following colonization is known and, therefore, neither is the rate at which adaptation 

to low temperatures occurred.  Anolis sagrei, on the other hand, began its northward range 

expansion about 70 years ago and its rate of progress is well-documented (T. C. Campbell, pers. 

comm.). Therefore, it is of interest to identify the lower thermal tolerance in A. sagrei as it 

follows the path of A. carolinensis northward and whether there is geographic variation in this 

trait as a result of phenotypic plasticity.  

In this study I examine if there is geographic variation in the lower thermal tolerance in 

A. sagrei and whether the pattern is similar to that of A. carolinensis along the same latitudinal 
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gradient. It is expected that at higher latitudes individuals of both species will have higher cold 

tolerance (lower CTMin, reflecting differential selection for lower temperature adaptation or 

phenotypic plasticity) and since A. sagrei has only recently begun its range expansion, it is 

expected to have a lower tolerance to cold temperatures than the native green anole in all four 

populations.  I also compare cold tolerance between sexes of both A.sagrei and A. carolinensis 

(only males were studied by Wilson and Echternacht 1987); since it is known that genders of 

lizards can differ conspicuously in ecology and behavior (Schoener 1967, Spoecker 1967, 

Stamps et al. 1997, Butler et al. 2000), possibly encountering different operative thermal 

environments (Huey & Pianka 2007) that could affect differently their response to cold 

temperatures.  
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Materials and Methods 

Field Study- 

Between June 22nd and July 31st, 2011 anoles were sampled at five localities along a latitudinal 

transect from the vicinity of Savannah, Georgia to Naples, Florida (Fig. 1).  At each site, 

between 0900 and 1800, a minimum of nine adult males and nine adult females of each species 

(except as noted) were captured by noose.  Only Anolis sagrei were collected at the Naples site 

because few A. carolinensis were found there, possibly because of the abundance of A. sagrei 

and another introduced saurophagic anole, A. equestris.  Only A. carolinensis were collected at 

the Puntra Gorda site. Anoles from Naples and Punta Gorda sites were treated as the 

southernmost population for both species in the analyses, and treated as belonging to “South, 

FL” hereafter. Climatic data were five year averages (2007-2011) for the month of January, the 

coldest month of the year for all the populations under study, and other climatic data were 

obtained from the National Climate Data Center (Table 1). 

Field variables were measured immediately after capture of each individual to evaluate 

the relationship of their microhabitat, size and mass with cold tolerance. Body temperature and 

air temperature 1cm and 1m above the perch were measured to 0.2 °C using a Miller & Weber 

cloacal thermometer. Perch height and perch diameter were measured to the nearest mm using a 

2m foldable ruler, and vegetation cover was measured using a Forestry Suppliers spherical 

densitometer. Snout-vent length (SVL) was measured to the nearest mm using a clear plastic 

ruler, and weight was determined to the nearest 0.1g using a 10g Pesola© spring scale. 

 Field Critical Thermal Minimum (FCTMin) was determined for each lizard following 

the methods of Spellerberg (1973) to identify the cold tolerance of the individuals acclimatized 
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to their particular environments and to determine an appropriate acclimation temperature for 

subsequent assessment of CTMin in the laboratory (LCTMin).  For determination of FCTMin, 

the acclimatized lizards were placed on a ca. 3 mm thick piece of acrylic plastic placed on top of 

the ice in an ice-filled plastic cooler.  They were cooled until they reached their CTMin, the 

temperature at which they were unable, after 30 seconds, to walk after being stimulated in the 

hind legs and dorsal region with a fine brush and would, therefore, be unable to escape further 

reductions in temperature. I used the temperature at which the lizards stop walking instead of the 

righting response as the endpoint because individuals of A. sagrei would become immobile when 

put on their back before the cooling would begin, at ambient temperature of approximate 25°C. 

Lizard body temperature was monitored using an OMEGA© HH508 thermoelectric 

potentiometer with a resolution of 0.1oC, and a 30 gauge copper-constantan thermocouple 

inserted 0.5 cm into the cloaca and taped with surgical tape to the base of the tail. All field tests 

were conducted in the evening of capture between 1800 and 1200 in order to account for 

potential circadian rhythm effects (Spellerberg & Hoffman 1972).  

Laboratory Study- 

Physiological acclimatization over periods of time, ranging from minutes to seasons, can shift 

the FCTMin of an ectothermic animal.  Thus, at temperate latitudes, for example, seasonal 

differences in FCTMin may be observed.  There are, however, limits in the extent to 

which CTMin can be shifted through acclimatization.  The FCTMin may not represent the 

absolute limit of tolerance to low temperature (i.e., the “incipient” or “ultimate” limits 

of Spellerberg 1973) which has resulted from adaptation that has occurred over multiple 

generations.  In this study, mean FCTMin for male and female lizards from each population were 

compared in common garden fashion to mean LCTMin values obtained following acclimation to 
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the same ambient temperature.  Lizards captured in the field where brought to the University of 

Tennessee, and housed individually in 3.78 l screen-topped clear glass jars provided with a 

wooden perch and water dish. They were fed crickets dusted with a vitamin D supplement on 

alternate days and water was provided ad libitum over a 69 day period at 25oC +/- 2oC with a 

photoperiod of 12L:12D. Immediately prior to testing, each lizard was subjected to a 48 hr 

period of acclimation at a temperature of 10°C, 1°C below mean FCTMin values, the 

acclimation protocol which has been found to provide the greatest degree of acclimatability 

(Spellerberg 1973). Lizards were subjected to fasting 48 hours prior to and during the period of 

acclimation to account for possible effects of feeding status on cold tolerance; water was always 

provided.  LCTMin was determined following methods identical to those in the field.  After the 

test, each lizard was returned to an environment at 25oC and food and water was offered. 

Statistical analyses- 

All data were tested for normality (Kolmogorov-Smirnov test) and homogeneity of 

variances (Levene’s test).  T tests and one way ANOVAs were used to determine statistical 

differences in mass between sexes and between populations of A. carolinensis and A. sagrei, 

ANOVAs were followed by a Tukey’s Honest Significant Difference test.  Pearson correlation 

tests were used to determine the relationship between FCTMin and field variables: mass, body 

temperature at capture, SVL, perch height, perch diameter and vegetation cover of female and 

male A. carolinensis and A. sagrei. Because mass was found to be significantly related to 

FCTMin, an analysis of covariance (ANCOVA) was used to test for geographic variation in 

FCTMin, with FCTMin as the dependent variable, population, species and sex as effects, and 

mass as the covariate.  The interaction effects between species, sex and population in the 

FCTMin were analyzed using a Full Factorial ANOVA.  
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Daily Minimum and Maximum temperature for each month of the year between 2007-

2011 were compared between field sites using a one-way ANOVA followed by Tukey’s Honest 

Significant Difference test (P<0.05). Pearsons’ correlations were used to identify relations 

between Monthly Mean Minimum Temperature (MMNT), Extreme Minimum Temperature for 

the month (EMNT), number of days with minimum temperature equal or below 0°C (DT0°) with 

FCTMin and Body Condition Index (BCI); calculated as the residual score from Ordinary Least 

Squares (OLS) general linear regression of natural log transformed mass against natural log 

transformed SVL (Schulte-Hostedde, et al. 2005). The BCI of each individual, measured as the 

weight (mass) relative to the length (SVL) was compared between sex of each species using an 

ANCOVA with mass as the dependent variable, sex as effect and SVL as covariate (García-

Berthou 2001). Lizards that weigh more than predicted by SVL are regarded as being in 

relatively good condition (Weatherhead & Brown, 1996).   

Because laboratory sample sizes from the two southernmost populations (Naples and 

Punta Gorda, FL) were small, these sites were excluded from the analyses of LCTMin. Pearson 

correlations were used to identify relations between field variables, including FCTMin, and 

LCTMin. A repeated measures ANOVA with within subjects test was used to test for the effect 

of acclimation on the individuals.  LCTMin was compared between sexes, species and 

populations with a Full Factorial ANOVA. Differences were considered to be statistically 

significant when P < 0.05. 
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Results 

Field Study- 

Male A. carolinensis ranged in SVL from 44mm to 66mm (n=52); females ranged from 41mm to 

53mm (n=57) (Table 2). Male A. sagrei ranged in SVL from 42mm to 62mm (n=46); females 

ranged from 38mm to 48mm (n=48) (Table 2). There was a latitudinal gradient in the SVL of the 

largest male collected at each site for A. carolinensis, ranging from 57mm in south Florida to 

66mm at Savannah, GA. No latitudinal trend was noted for females of either species or males of 

A. sagrei. There was no significant correlation between SVL and FCTMin for either sex of either 

species (Male A. carolinensis: r=-0.19, p=0.17, n=52; Female A. carolinensis: r=-0.18, p=0.17, 

n=57; Male A. sagrei: r=-0.13, p=0.37, n=46; Female A. sagrei: r=-0.26, p=0.06, n=48).   

Male A. carolinensis ranged in mass from 1.6 to 7.2g (n=52). Female A. carolinensis 

ranged in mass from 1.3 to 3.8g (n=57) (Table 2). Male A. sagrei ranged in mass from 1.7 to 

7.8g (n=46). Female A. sagrei ranged from 1.3 to 3.3g (n=48) (Table 2). There was a significant 

difference in mass between sexes for both species, males of A. carolinensis and A. sagrei are 

heavier than females (Student’s T Test:  A. carolinensis: t= 7.5, df=64.1, p<0.0001; A. sagrei: 

t=12.7, df=51.2, p<0.0001). There was a significant difference in mass among populations of A. 

carolinensis (One way ANOVA, Males: F(3,48)=20.3, p<0.0001; Females: F(3,53)=26, p<0.0001). 

Individuals from Savannah, GA (females and males) were significantly heavier than those of 

other populations (Tukey’s HSD, p<0.05). There was also a significant difference in mass 

between populations of A. sagrei (One way ANOVA, Males: F(3,42)=4.3, p=0.009; Females: 

F(3,44)=16.9, p<0.0001) with males from the combined southernmost population significantly 

lighter than the males from Plant City and females from the southernmost population 
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significantly lighter than those from the other three populations (Tukey’s HSD, p<0.05).  Both 

male and female of A. carolinensis and A. sagrei exhibit a latitudinal gradient in mass as 

evidenced by the largest individuals from each of the four sites, ranging from 3.7g and 2.2g for 

males and females of A. carolinensis, respectively, from South Florida to 7.2g and 3.8g for males 

and females from Savannah, GA, respectively. Male and female A. sagrei ranged from 6.2g and 

2.3g from South Florida, to 7.6g and 3.3g from Savannah, GA respectively. Summary statistics 

for all field variables can be found in Table 2. 

Mean values of FCTMin for all four populations of A. carolinensis and A. sagrei can be 

found in Table 3. There was a significant correlation between FCTMin and mass for females of 

both species, with heavier individuals having lower FCTMin (A. carolinensis: r=-0.29, p=0.02, 

n=57; A. sagrei: r=-0.26, p=0.04, n=48), but not for males of either species (A. carolinensis: r=-

0.21, p=0.12, n=52; A. sagrei:  r=-0.13, p=0.37, n=46). There was a significant interaction 

between the effect of size and sex on weight of males and females of both species (Full Factorial 

ANOVA, sex*svl: A. carolinensis F (1,105) =16.3, p<0.0001; A. sagrei F (1,90) =23.3, p<0.0001; 

Figure 2).  The weight relative to the length of the individual (BCI), a measure of the energetic 

state of the individual (Schulte-Hostedde et al. 2005), was found to be lower in males  of A. 

carolinensis than in females (ANCOVA, Sex:  F (1,106) =21.7, p<0.0001), but was not different 

between sexes in A.sagrei (ANCOVA, Sex:  F (1,91) =3.04, p<0.08). BCI was significantly related 

to FCTMin only in female A. carolinensis (r=-0.28, p=0.03, n=57); individuals in better 

condition exhibited lower FCTMin. The other field variables were not significantly related to 

FCTMin. Because body mass affects cold tolerance, and because the two species vary in mass in 

these interspecific comparisons, analyses of covariance with body mass as the covariate were 

performed to look for differences between species, sex and population. A test of homogeneity of 
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regression could not detect interactions between the mass (the covariate) and species, sex or 

population (Species: F=0.05, df=1, p=0.81; Sex: F=1.46, df=1, p=0.22; Population: F=1.64, 

df=3, p=0.18). Anolis sagrei had a significantly higher FCTMin than A. carolinensis (ANCOVA, 

F (1,200) = 91.17, p<0.0001). Females of both species had significantly higher FCTMin than males 

(ANCOVA, F (1,200) =4.27, p=0.04). FCTMin differed among populations (ANCOVA, F (3,198) 

=16.05, p<0.0001). A Full Factorial ANOVA could not detect interactions between sex 

(sex*species: F(1,187)=2.6, p=0.1; sex*population: F(3,187)=3.39, p=0.93) in the FCTMin but 

detected an interaction between species and population, (Species*Population: F(3,187)=4.13, p 

=0.007). A follow up post hoc for the interaction effect revealed that for A. carolinensis the 

FCTMin of the southernmost population was significantly higher than that of the population 

from Savannah, GA, but doesn’t differ from that of Plant City, FL; the FCTMin of individuals 

from Plant City, FL did not differ from that of St. Augustine, FL, but was significantly higher 

than that of Savannah, GA (Tukey HSD<0.05). For A. sagrei the combined southernmost 

populations had significantly higher FCTMin than the other populations; the FCTMin of the 

populations from Plant City, FL and St. Augustine, FL were not significantly different; and the 

population from Savannah had significantly lower FCTMin compared to the other populations 

(Tukey’s HSD p<0.05).  Thus, the cold tolerances of both species differed in a fashion unrelated 

to their mass and a geographic cline in FCTMin is evident (Figure 3).  

January was the coldest month of the year in all five localities sampled, followed by 

February and December, respectively (One way ANOVAS all p’s <0.0001, Tukey HSD <0.05). 

As latitude increases, average minimum and maximum temperature decreases throughout the 

year (Table 4) and during the coldest months of the year (December-February), maximum 

number of consecutive days, maximum number of runs of 2 or more consecutive days and total 
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number of days with minimum daily temperature ≤0° C increases (Table 5).  January Mean 

(2007-2011) Minimum Temperature (MMNT), Extreme Minimum Temperature (EMNT) and 

Number of days with minimum temperature equal or below 0°C (DT0°) were found to be 

significantly related to FCTMin in both sexes of both species. Samples from localities with lower 

MMNT and EMNT and larger DT0°C exhibited significantly lower mean FCTMin. These 

climatic variables are also correlated with BCI for female and male A. carolinensis and female A. 

sagrei. Only EMNT was significantly related to BCI in male A. sagrei. Total Precipitation for 

January through July of 2011 (TPCP) was found to be significantly related to FCTMin only in 

male and female A. carolinensis; populations from localities exhibiting higher TPCP exhibited 

higher mean FCTMin. TPCP was found to be significantly related to BCI for male A. sagrei 

only. Results of the Pearson correlations are shown in Table 6 and descriptive statistics for 

Climatic variables in Table 7. 

Laboratory study- 

The LCTMin was found to be unrelated to mass or other field variables in the case of A. 

carolinensis (Pearson correlations: p>0.67, n=30). For A. sagrei, however, FCTMin was found to 

be related to LCTMin; populations that exhibited higher cold tolerance in the field also exhibited 

higher cold tolerance in the laboratory (r=0.43, p=0.005, n=38).  A repeated measures ANOVA 

testing for the effect of acclimation on the cold tolerance with species, sex and populations as the 

effects and FCTMin and LCTMin as the dependent variables revealed that acclimation had a 

significant effect on cold tolerance: lower CTMin were noted  in both species, sex and 

population after acclimation (acclimation: F(1, 63)=138.2, p<0.0001). The effect of acclimation 

did not depend upon species or sex (acclimation*species: F(1,63)=1.75, p=0.19; acclimation*sex: 

F(1,63)=0.18, p=0.66), but populations did differ in their responses to acclimation 
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(acclimation*population: F(1, 63)=1.75, p=0.0018). All three populations of both species tended to 

converge to a similar LCTMin of an average of 6.2°C after acclimation despite their different 

FCTMin and there was significantly less variation in mean LCTMin values than in mean 

FCTMin values (Brown-Forsythe: F(1,4)=9.48, p= 0.03).  

There was a significant difference between species in the LCTMin after acclimation; A. 

carolinensis exhibited lower LCTMin than A. sagrei (Factorial ANOVA: F(1, 56)=56.6, p<0.0001) 

and the effect of sex on LCTMin did not depend upon population (Factorial ANOVA 

species*population: F(2,56)=4.17, p =0.4). Neither species differed in LCTMin with respect to sex 

(Factorial ANOVA F(1,56)=2.29, p=0.31) or population (Factorial ANOVA F(2,56)=127.9,p=0.76), 

(Table 3, Figure 4). 
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Discussion 

Michaud & Echternacht (1995) noted a south-to-north increase in size of female A. carolinensis 

sampled at localities from East Tennessee to South Florida, and Goodman (2010) confirmed that 

finding among four populations along a similar transect. The current study revealed a latitudinal 

trend in SVL for male A. carolinensis and in mass for males and females of both species. There 

was, however, no latitudinal pattern for female A. carolinensis as reported by Michaud & 

Echternacht (1995).  Goodman et al. (in review) subsequently sampled A. carolinensis across the 

entire range of the species and found a south-to-north size increase only among the easternmost 

populations sampled, those which approximated the transects of Michaud and Echternacht 

(1995) and Goodman (2010).  In addition, Goodman et al. (in review) found the largest 

population means occurring in the southwestern part of the range, in Louisiana and coastal 

Texas.  This pattern disappeared, however, if populations from peninsular Florida were removed 

from the analysis.  In fact, Goodman (2009) and Goodman et al. (in review), found an east-to-

west longitudinal increase in mean size.  It may be that at least a part of the disparity between the 

results of this study and those of Michaud & Echternacht (1995), Goodman (2009, 2010) and 

Goodman et al. (in review) are due to the extreme drought that the southeastern United States 

was experiencing in 2010 and 2011 as well as other factors discussed by Goodman et al. (in 

review).  In the southeast, Florida and Georgia have been especially hard hit by the drought and 

the reduction in the prey base exploited by the lizards may have been reduced, affecting the size 

of A. carolinensis in the region.  In addition, at the time that the earlier studies were conducted, 

A. sagrei had only recently arrived in northern Florida and Georgia and had yet to have a 

significant competitive affect on A. carolinensis. It is clear that determinates of body size in A. 
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carolinensis deserves considerably more study.  It is unfortunate that equivalent size information 

on populations of A. sagrei in northern Florida and Georgia are not available. 

The lack of  a  relationship between SVL and FCTMin, is consistent with the findings of 

other investigators (McConnachie et al.2007, Wilson & Echternacht, 1987, Yang et al. 2008, but 

see Labra et al. 2009), but the finding that mass affected FCTMin, though only in female A. 

carolinensis and A. sagrei, has not been previously reported (e.g., Spellerberg & Spellerberg 

1972, Wilson & Echternacht 1987), although in these studies a small range of adult body sizes 

were used and in the latter case only male lizards were studied. McConnachie et al. (2007) 

reported a lack of relationship between mass and CTMin after acclimation of male and female 

Pseudocordylus melanotus (Sauria:Cordylidae), but the frequent failure to investigate this  

relationship or even to report the sex of the study organisms makes difficult to see how 

widespread this relationship is. Furthermore, when interspecific or interpopulation comparisons 

of thermal tolerance are made, it is very important to account for the potential influences of mass 

and body size on thermal tolerances.  

FCTMin varied among species, sex and location for the two species of anoles in this 

study, and exhibited a latitudinal cline (Figure 3). This variation appears to be strongly related to 

the environmental variables to which the lizards have been exposed during their lives (thermal 

acclimation), such as the extreme minimum temperature and the average minimum temperature 

of the coldest month of the year that they have experienced. Anolis carolinensis and A. sagrei 

produce a new cohort a year, during the breeding season (March-August; Lee et al. 1989, 

Gordon 1956) of the year following that in which they themselves were produced and, since the 

estimated longevity of these lizards in the wild is approximately a year (Oliver 1955, Gordon 

1956, Cox & Calsbeek 2009) we can assume that most of the individuals in our study were first 
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year adults that experienced their lowest environmental temperatures during the winter of 2010.  

The difference in cold tolerance is greater between individuals from Savannah, GA and the 

southern population (Naples and east of Punta Gorda, FL) which is consistent with a greater 

difference between those sites in the minimum temperatures experienced during the winter. In 

addition, the least difference in cold tolerance found between individuals from Plant City and St. 

Augustine, FL, reflects the lack of significant difference in the environmental temperatures 

between those sites during the winter (Figure 5, Table 7).  

The difference in FCTMin between females and males of both species could be attributed 

to different thermal environments experienced by the individuals; both species studied have a 

marked sexual dimorphism (Preest 1994, Fitch 1976, Lee 1987) that has been associated with 

differential use of microhabitats by males and females (Butler et al. 2000).  Anolis sagrei males 

have been found to use significantly higher perches than females (Shoener 1968) and although 

no significant differences in habitat use for female and male A. carolinensis have been detected 

(Jenssen & Nunez 1998), the structural niche profile could vary greatly depending on the variety 

of habitats in which the species is found. These different microhabitats could expose the lizards 

to different minimum temperatures during the winter that could affect their response to 

exceptionally cold temperatures.  

The BCI can be used to estimate of the energetic state of an individual.  Thus, it has been 

suggested that an animal in good condition (e.g., higher BCI) might have more energy reserves 

than an animal in poor condition (Schulte-Hostedde et al. 2005).  In fish (walleye pollock, 

Theragra chalcogramma), an increase in cold tolerance and in survival has been noted in 

individuals with a higher BCI (Sogard & Olla 2000).  In the present study, the mean BCI of 

female A. sagrei did not significantly differ from that of males whereas in A. carolinensis, the 
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female were in significantly better condition than males.  Prior to the present study, the field 

study area in Florida had experienced an extended period of drought and two unusually cold 

winters, which may have resulted in a reduced prey resource base. If so, the results of this study 

may suggest that, while the impact of a reduction in prey may have been to reduce BCI of both 

A. sagrei and A. carolinensis, its greatest impact has been on female A. carolinensis.  The lower 

cold tolerance (higher CTMin) observed in female A. carolinensis as compared to males might 

be attributed to an elevated cost of reproduction by females resulting from reduce energy 

acquisition and allocation for maintenance (Cox & Calsbeek 2009).  Currently, no long term data 

have been published on population trends for either A. sagrei or A. carolinensis, nor their prey 

base, which would allow an assessment of the impact of climate change on BCI and possible 

secondary effects on population density. 

Acclimation has been found to significantly affect thermal tolerances of lizards (Lowe & 

Vance 1955, Kour & Hutchison 1970), and the greatest degree of acclimation has been found to 

be achieved at a temperature of 1°C below the mean FCTmin (Spellerberg 1972). Since 

acclimation affects cold tolerance and it can be attained very quickly, within 48 hours for most 

species (Spellerberg & Spellerberg 1972), acclimation to a common temperature is needed to be 

able to detect differences in thermal tolerances not caused by the thermal histories that the 

individuals have experienced in the field.  After accounting for the thermal histories of the 

individuals, we found no differences in the critical thermal minimum between populations of 

either species which suggests that for both species critical thermal minimum shows thermal 

acclimation. This response has also been documented for two subspecies of the lizard Mabouya 

striata (Scincidae), Stellio stellio (Agamidae), ten species of the genus Liolaemus (Iguanidae) 

that live at different altitudes (Patterson 1991, Hertz & Nevo 1981, Carothers et al.1997) and a 
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number of species of Australian reptiles (Spellerberg 1972). Anolis carolinensis had a mean 

CTMin of 4.8°C+0.2, a value considerably lower than what was previously reported for this 

species at the northern limit of the distribution (7.41°C from individuals from Tallassee, TN; 

Wilson & Echternacht 1987) and A. sagrei had a mean CTMin of 7.6°C+0.2, a value higher than 

what was previously found for A. sagrei in northern Florida (Lake City; approximately 5.2°C in 

individuals acclimated at 15°C; Denesha 2006).  However, caution must be exercised in 

comparing our measures to those collected in other studies since experimental protocols differ 

slightly. We used the temperature at which the lizards stopped walking as the endpoint of CTMin 

rather than the loss of righting response (LRR) endpoint, which may reflect more directly the 

limits of locomotor performance due to difficulties with A. sagrei explained in the methods, but 

our measures of the cold tolerance should be consider as conservative. We also acclimated our 

animals following the methods of Spelleberg (1973) which requires the acclimation of the 

individuals at 1°C below the field CTMin and provides the greatest degree of acclimatability and 

repeatability for the CTMin (Spellerberg & Spellerberg 1972). Many studies of cold tolerance in 

reptiles conducted since Spellerberg’s 1972 publication fail to measure the FCTMin of 

individuals and acclimate the lizards to a temperature chosen arbitrarily. Since acclimation 

temperature is known to affect CTMin values obtained following acclimation (Patterson 1991, 

Tsuji 1988, Yang et al. 2008) and since values measured in lizards acclimated to similar 

temperatures will be necessary for accurate comparisons, the basis for the choice of an 

acclimation temperature must be justifiable and reported. 

Wilson and Echternacht (1987) reported significant differences in LCTMin in A. 

carolinensis following acclimation between populations from Florida and Tennessee and 

between populations from south Georgia and Tennessee, but they failed to find significant 
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differences between populations from Florida and south Georgia. We also didn’t see differences 

between our populations, and our latitudinal gradient only included individuals from Florida and 

Georgia, this lack of differentiation between populations could be due to lack of genetic isolation 

between the populations or that the extreme minimum temperatures experienced during the 

winter are not comparables to the ones experienced in Tallassee, TN. This locality is considered 

to be in a different climate zone than south Georgia and Florida based on the average annual 

extreme minimum temperature over a 30-year period, the average for Tallassee is 12.5°C lower 

than the average of the values from Florida and south Georgia (USDA 2012). However, the 

persistence of an interspecific difference in all the populations in cold tolerance after the long 

period of laboratory acclimation suggests the presence of a genetic component in this 

characteristic.  

Lower critical thermal minimum has been suggested to influence distribution and range 

size in ectothermic organisms (Prieto & Whitford 1971, Spellerberg 1972, 1973, Spellerberg & 

Spellerberg 1972, Greer 1980) since lizards can behaviorally avoid dangerously high 

temperatures but not as readily avoid those that are dangerously low (Heatwole et al. 1969, 

Spellerberg & Spellerberg 1972, Carothers et al. 1997). In some cases, however, it has been 

suggested that it is the ability to make rapid adjustments to the local environments which can set 

the distributional limits of a species (Brattstrom 1965). This proposed relationship between 

thermal acclimatization ability and geographic range size in ectotherms is termed the Brattstrom 

hypothesis (Gaston et al. 2009). Anolis carolinensis has a greater cold tolerance than A. sagrei. 

Considering that both species have a Caribbean origin (Williams 1969), this difference in cold 

tolerance could be due to the greater time that A. carolinensis has had to adapt to the lower 

temperatures experienced during the winter months at higher latitudes.  
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Is apparent that both A. sagrei and A. carolinensis exhibit thermal acclimatization to a 

wide range of thermal conditions which has the potential of enhancing their ability to colonize 

the temperate zone. However, adaptive shifts in the thermal limits occur over longer time scales 

(Anguilleta 2002) and this could explain why A. carolinensis exhibits a greater cold tolerance 

after acclimation than A. sagrei in all of the populations studied. Anolis carolinensis has been 

reported in numerous cave deposits dating from the late Pleistocene (Holman 1995), whereas A. 

sagrei was first reported on the mainland of peninsular Florida about 70 years ago (Lee 1985). 

The tendency for species from cooler environments to have lower CTMin has already been 

described for several species of lizards (Bennet & John-Alder 1986; Brown 1996; Spellerberg, 

1972, 1973, 1975; Spellerberg & Spellerberg 1972; Prieto & Whitford 1971; Tsuji 1988), 

reflecting the latitude or altitude and thus the climates in which the species naturally occur. 

Several species in the genus Anolis also show climate-related among-population differentiation 

of critical thermal limits (Denesha 2006, Hertz 1981, Hertz & Huey 1981, Hertz et al. 1979, 

Wilson & Echternacht 1987). 

Whether the differentiation in critical thermal limits between populations has a genetic 

component or is the result of thermal acclimatization (phenotypic plasticity), as it seems the case 

in the among population differentiation for A. carolinensis and A. sagrei reported here, any 

change in the critical thermal limit will directly affect the range of body temperatures under 

which locomotion remains possible, and thus may lead to a reduction in the frequency with 

which the animal is left immobile (depending on the direction of the change and the range of 

body temperatures experienced). This could have considerable implications for survival and 

could increase the ability of an invasive species to spread from a subtropical zone towards a 

temperate zone. Anolis sagrei is reported to have spread to South Carolina and North Carolina by 
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2006 and 2008, respectively, but in June of 2011 and May and June of 2012, in the course of this 

study,  they were found to be absent at sites in South Carolina where they had been previously 

reported. These populations may have been extirpated during the unusually cold winter of 2010 

(Turnbough 2012) when mean minimum temperatures of -2.2°C and -1.7°C where recorded in 

Orangeburg and Colleton counties, respectively. This could mean that although A. sagrei has a 

remarkable capacity to acclimate to local conditions, it is close to its northern distributional limit. 

There may, however, be some behavioral traits that allow these lizards to escape lethally cold 

temperatures in places that reach freezing temperatures during the winter.  Most of the A. sagrei 

found in northeast Georgia were found in close association with human constructions and were 

observed using the heating/AC systems as refuges during the summer. If this behavior is present 

during the winter months is likely that they are not experiencing extreme cold temperatures, 

reducing the need for an adjustment in CTMin. This might allow the establishment and survival 

of populations in suitable artificial habitat to the north. 

To further explore how the ability to adjust lower critical thermal limits influences 

geographic distribution in Anolis sagrei, we need to determine if this ability is heritable, if it 

increases survivorship under natural conditions, and if phenotypic plasticity in tolerance to low 

temperatures increases fitness in nature. These studies may be particularly valuable in 

understanding the role of environmental variation in the evolution of plasticity and its influence 

in distribution of ectotherms. 
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Figure 1. Sampling localities, Naples, FL (NA), Punta Gorda, FL (PG), Plant City, FL (PC), St. 
Augustine, FL (ST) and Savannah, GA (SA), for Anolis sagrei and Anolis carolinensis and 
location of the nearest NOAA weather station from which five year temperature and 
precipitation data were obtained. See Table 1 for further details. 
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Figure 2. Interaction plot for the effect of SVL on mass between females and male Anolis sagrei 
and Anolis carolinensis. 
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Figure 3. Field CTMin (°C) for females and males of A. sagrei and A. carolinensis. The FCTMin 
decreases as the latitude of the population increases.  
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Figure 4. Laboratory Critical Thermal Minima (LCTMin) for females and males of Anolis sagrei and 
Anolis carolinensis.  There is not a significant difference in LCTMin between populations of both species, 
but LCTMin is significantly lower in A. carolinensis in all three populations studied. 
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Figure 5. Five year average monthly minimum, mean and maximum temperature for the five 
localities sampled. 
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Table 1. Sampling localities for Anolis sagrei (AS) and Anolis carolinensis (AC), which species were sampled at each, and location of the nearest 
NOAA weather station from which five year temperature and preciptation data were obtained. See Figure 1 for a visual representation. 

Sampling  
Locality Latitude Longitude Elevation 

(m)  

Species 
Sampled 

Nearest 
NOAA 

Weather 
Station 

Latitude Longitude Elevation 
(m) 

AS AC 

Georgia: Vicinity of 
Savannah 
 

32o00’19’’ N 81o16’49.3” W 2 x x 
Savannah 
INTL AP 

097847/03822 
32o08’ N 81o13’ W 14 

Florida: Vicinity of St. 
Augustine 30o01’20’’ N 81o19’ 59.2” W 17 x x 

Jacksonville 
Beach 

084366/99999 
30o17’ N 81o24’ W 3 

Florida: Plant City 28o01’29”N 82o09’02” W 14 x x Plant City 
087205/99999 28o01’ N 82o09’ W 36.5 

Florida:48 km E of 
Punta Gorda 26o56’43”N 81o36’50” W 22 o x 

Punta Gorda 
4(mi) ESE 

087397/99999 
26o55’ N 82o00’ W 6 

Florida: Vicinity of 
Naples 26o10’30”N 81o48’09” W 7 x o 

Naples  
MUNI AP 

086076/12897 
26o09’ N 81o47’ W 2.7 
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Table 2. Descriptive statistics for field habitat variables of Anolis sagrei and Anolis carolinensis collected from their southernmost localities and 
Plant city, FL. 

 South, FL Plant City, FL 

Species A. sagrei A. carolinensis A. sagrei A. carolinensis 

Sex F 
(11) 

M 
(13) 

F 
(16) 

M 
(16) 

F 
(16) 

M 
(14) 

F 
(20) 

M 
(13) 

SVL (mm) 42.7+2.28 
(38-65) 

53.9+1.07 
(46-59) 

44.2+0.46 
(41-47) 

51.9+0.88 
(44-57) 

44.7+0.41 
(42-48) 

57.1+1.33 
(47-62) 

45.8+0.46 
(42-49) 

54.3+1.07 
(44-58) 

Weight (g) 1.8+0.1 
(1.3-2.3) 

4.3+0.3 
(2.6-6.2) 

1.8+0.06 
(1.3-2.2) 

2.6+0.14 
(1.6-3.7) 

2.5+0.06 
(2.1-3.1) 

6.2+0.45 
(2.7-7.8) 

2.0+0.05 
(1.4-2.5) 

3.2+0.2 
(1.6-4.1) 

BT (°C) 32.1+0.95 
(24.8-35.4) 

33.1+0.5 
(29.5-36.2) 

34+0.48 
(29-36.4) 

34.1+0.57 
(30.2-38) 

29.9+0.65 
(26-34.8) 

28.9+0.67 
(25.4-35) 

30.6+0.44 
(25.8-34.6) 

30.8+0.68 
(27.6-35.6) 

AT1cm (°C) 30.9+0.73 
(26-34) 

31.5+0.65 
(27.1-35) 

32.6+0.53 
(28.6-35.8) 

32.6+0.71 
(27.2-37.4) 

28.5+0.59 
(24.6-32.8) 

27.8+0.76 
(24.6-34) 

29.4+0.46 
(25.4-34.2) 

29.2+0.72 
(26.4-34-6) 

AT1m (°C) 30.4+0.88 
(25.2-33.4) 

31.3+0.67 
(27-34.2) 

31.9+0.46 
(28-34.2) 

32.2+0.58 
(27.6-35) 

28.7+0.59 
(24.8-33) 

27.2+0.7 
(24.2-32.4) 

29.3+0.42 
(25.4-33) 

28.9+0.7 
(26.3-34) 

RH% 61.4+0.48 
(60.2-65.2) 

63.6+2.05 
(60.2-88.1) 

68.7+2.92 
(56.8-92) 

69+2.88 
(52-80) 

83.3+2.27 
(64.2-92) 

85.5+1.73 
(67.7-92) 

81.3+2.66 
(62.3-92) 

74.3+3.51 
(46.3-92) 

PH (mm) 203+103.7 
(0-1179) 

261.1+80 
(0-1140) 

760.3+125.5 
(0-2290) 

1078+104.7 
(390-1910) 

870.3+141.7 
(260-2280) 

902.2+153.1 
(320-2350) 

811+163.5 
(0-2470) 

1322+251.9 
(0-3300) 

PD (mm) 44+33.9 
(0-375.2) 

15.5+10.6 
(0-135.2) 

29+14.9 
(0-247) 

16.3+7.2 
(0-120.6) 

157.1+51.2 
(0-611.4) 

146+53.2 
(0-676.7) 

42.5+20.6 
(0-342.8) 

51.3+30.6 
(0-390) 

Veg Cover 
(%) 

89.7+5.1 
(51-100) 

80.8+8.1 
(0-100) 

71.8+8 
(6.2-98.9) 

55.7+11.3 
(0-100) 

94.5+3.4 
(51-100) 

97.9+1.2 
(82.2-100) 

89+4.7 
(14.5-100) 

91+5.6 
(25-100) 

Data are expressed as mean + SE and range. Numbers in parenthesis are sample sizes. 
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Table 2 continued. 

 
 

Species 

St. Augustine, FL Savannah, GA 

A. sagrei A. carolinensis A. sagrei   A. carolinensis 

Sex F 
(11) 

M 
(10) 

F 
(10) 

M 
(12) 

F 
(10) 

M 
(9) 

F 
(11) 

M 
(11 

SVL (mm) 44.8+0.29 
(44-47) 

56+1.71 
(42-60) 

46.7+0.78 
(44-51) 

56.3+1.04 
(51-62) 

44.9+0.54 
(43-48) 

57+0.62 
(55-60) 

49.4+0.52 
(47-53) 

61.5+1.13 
(55-66) 

Weight (g) 2.4+0.08 
(2.1-3) 

5.6+0.53 
(1.7-7.4) 

2.1+0.09 
(1.8-2.7) 

3.5+0.25 
(2.4-5.2) 

2.7+0.1 
(2.3-3.3) 

5.6+0.3 
(4.8-7.6) 

2.8+0.14 
(2.4-3.8) 

5.3+0.39 
(3.2-7.2) 

BT (°C) 32.7+0.42 
(29.6-34.4) 

32.8+0.34 
(31-34.4) 

33.2+0.46 
(30.4-35.2) 

32.4+0.47 
(30.2-35.8) 

32.3+1.31 
(25.6-38.2) 

31+1.29 
(25.6-36.6) 

30.9+1.05 
(26.6-37.2) 

33.6+0.62 
(28.6-36) 

AT1cm (°C) 32+0.49 
(28.8-34) 

32.1+0.67 
(29.4-36) 

32.7+0.81 
(29.8-38.4) 

30.8+0.49 
(28.4-33.6) 

31.3+1.51 
(24.2-36.4) 

30.8+1.51 
(25.4-38.4) 

29.8+1.15 
(25.4-37) 

32.9+0.8 
(27.6-36) 

AT1m (°C) 31.2+0.5 
(28-33.2) 

31.5+0.73 
(29.6-37) 

31.4+0.42 
(29.6-34.2) 

30.2+0.49 
(27-32.8) 

31.5+1.35 
(25.6-36.6) 

30.0+1.36 
(24.8-36) 

29.3+1.0 
(25.4-36) 

33.2+0.81 
(27.4-37.2) 

RH% 61.3+1.39 
(52.8-72.4) 

59.8+0 
(59.8-59.8) 

69+2.65 
(59.8-79.1) 

66.2+3.56 
(52.8-100) 

75.2+3.7 
(47.7-88.6) 

80.1+2.44 
(72.2-88.6) 

83.2+2.25 
(64.8-92) 

65.8+5.52 
(39.6-85) 

PH (mm) 804.8+235.6 
(0-2020) 

1247+154.4 
(260-2160) 

605.5+167 
(0-1500) 

868.5+123.1 
(0-1330) 

444.6+123 
(140-1286) 

778.8+237.1 
(0-1810) 

686.3+113.1 
(220-1360) 

1291.8+208.3 
(550-2600) 

PD (mm) 72.1+23 
(0-207) 

93+31.6 
(0-340) 

91.2+41.2 
(0-330) 

24.4+10.3 
(0-110) 

63.6+34.3 
(0-356) 

108.3+54.5 
(0-365) 

4+2.6 
(0-24) 

37.8+7.9 
(0-80) 

Veg Cover (%) 85.8+7.5 
(20.8-100) 

93.3+2.2 
(81.2-100) 

82.1+10 
(0-100) 

73.2+11.3 
(0-100) 

93.4+2.7 
(75-100) 

80.9+9 
(15.6-100) 

66.6+11.2 
(0-98.9) 

93+3.5 
(60.4-100) 

Data are expressed as mean + SE and range. Numbers in parenthesis are sample sizes. 
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Table 3.  Descriptive statistics for Field and Laboratory Critical Thermal Minima (CTMin) of Anolis sagrei and Anolis carolinensis. 
 

Population 

Field CTMin Laboratory CTMin 

A. sagrei A. carolinensis 
A. sagrei A. carolinensis 

Female Male Female Male 

Southern, FL 16.8+0.77 (11) 
13.8-22.3 

16.3+0.47 (13) 
13-18.7 

11.6+0.84 (16) 
7.3-19.9 

10.3+0.61 (16) 
7-16.3 - - 

Plant City, FL 14.3+0.92 (16) 
8.3-20.9 

12.5+0.84 (14) 
8.2-18.4 

10.1+0.69 (20) 
5.5-17.3 

9.3+0.82 (13) 
5.8-15.1 

8.04+0.5 (15) 
4.2-13 

4.6+0.5 (6) 
2.4-6.5 

St. Augustine, FL 15.2+1 (11) 
10.3-20.2 

12+1 (10) 
7.8-18 

8+0.95 (10) 
5.9-16 

8.7+0.66 (12) 
6.4-14 

7.5+0.4 (11) 
5.6-9.8 

4.4+0.3 (9) 
3-7.2 

Savannah, GA 10.1+0.67 (10) 
8-15.2 

9+0.56 (9) 
7.2-11.7 

7.7+0.37 (11) 
5.8-9.4 

7.5+0.38 (11) 
6.2-10.2 

7.25+0.4 (12) 
3.5-9 

5.3+0.5 (11) 
3-8.3 

Data are expressed as mean + SE and range. Numbers in parenthesis are sample sizes. 
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Table 4. Mean Daily Minimum and Maximum temperature for each month for five years (2007-2011) for each of the field sites. 
Data represent means (SE). Different superscripts within each month indicate a significant difference (P<0.05) between localities 
(ANOVA, Tukey’s HSD) 
 
 
 
 

Naples, FL Punta Gorda, FL Plant City, FL St. Augustine, FL Savannah, GA  Effect of Localitya 

Minimum 
Temperature        

January 12.6 (0.4)A 10.2 (0.4)B 9.3 (0.4)BC 7.7 (0.4)C 3.3 (0.4)D  *** 
February 13.4 (0.3) A 11.2 (0.4) B 9.8 (0.4) BC 8.5 (0.4) C 4.2 (0.4) D  *** 
March 15.3 (0.2) A 12.9 (0.3) B 12.4 (0.3) B 12.5 (0.3) B 8.2 (0.3) C  *** 
April 18.2 (0.2) A 15.9 (0.2) B 15.6 (0.2) B 15.9 (0.2) B 12.2 (0.3) C  *** 
May 21.3 (0.1) A 19 (0.2) C 19.2 (0.2) C 20.4 (0.1) B 17.5 (0.2) D  *** 
June 23.6 (0.1) A 22.1 (0.1) C 22.1 (0.1) B 23 (0.1) C 21.9 (0.1) C  *** 
July 24.3 (0.1) A 23.5 (0.09) B C 23.2 (0.09) C 23.7 (0.09) B 22.6 (0.1) D  *** 
August 24.9 (0.08) A 24.2 (0.09) B 23.6 (0.08) C 24.4 (0.1) B 23.4 (0.1) C  *** 
September 24.1 (0.07) A 22.9 (0.1) B 22.4 (0.1) B 23.7 (0.1) A 20.2 (0.2) C  *** 
October 21.3 (0.2) A 19.4 (0.3) B 18.3 (0.3) B 19 (0.3) B 14 (0.4) C  *** 
November 16.5 (0.3) A 14 (0.3) B 13.4 (0.3) B 13.4 (0.3) B 7.8 (0.3) C  *** 
December 14.2 (0.3) A 11.8 (0.4) B 10.9 (0.4) B 10.2 (0.4) B 5.4 (0.4) C  *** 
Maximum 
Temperature        

January 23.4 (0.3) A 23.2 (0.3) A 22 (0.3) A 17.3 (0.3) B 15 (0.4) C  *** 
February 24.2 (0.3) A B 24.3 (0.3) A 22.7 (0.3) B 18.6 (0.4) C 17.6 (0.4) C  *** 
March 26.5 (0.2) A 26.8 (0.2) A 25.7 (0.3) A 21.6 (0.3) B 22 (0.3) B  *** 
April 28.9 (0.2) A 29.4 (0.2) A 28.8 (0.2) A 24.7 (0.2) C 25.9 (0.3) B  *** 
May 31.1 (0.1) B 32.3 (0.1) A 31.4 (0.1) B 27.7 (0.1) D 29.2 (0.2) C  *** 
June 32.6 (0.1) C 33.7 (0.1) A 33 (0.1) B C 30.8 (0.1) D 33.5 (0.2) A B  *** 
July 32.6 (0.1) B 33.2 (0.1) A B 33 (0.1) A B 31.4 (0.1)  C 33.4 (0.1) A  *** 
August 32.8 (0.1) B 33.5 (0.1) A B 33.1 (0.1) A B 31.6 (0.1) C 33.3 (0.1) A  *** 
September 32.4 (0.1) A B 32.9 (0.1) A 32.3 (0.1) B 29.8 (0.1) D 30.5 (0.2) C  *** 
October 30.2 (0.2) A B 30.5 (0.2) A 29.4 (0.1) B 26.6 (0.2) C 25.9 (0.3) C  *** 
November 27 (0.2) A 27.1 (0.2) A 25.6 (0.2) B 21.8 (0.2) C 21.1 (0.3) C  *** 
December 24.6 (0.3) A B 24.8 (0.3) A 23.3 (0.3) B 19.3 (0.3) C 17.9 (0.4) D  *** 
 aP>0.05, ***P<0.001. 
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Table 5.  Maximum number of consecutive days, maximum number of runs of 2 or more consecutive days and total number of days 
with minimum daily temperature ≤0° C in December, January and February during a five year period (2007-2011) for the sampling localities of 
Anolis sagrei and Anolis carolinensis.  Data obtained from the United States National Oceanographic and Atmospheric Administration, 
Asheville, North Carolina. A. sagrei was not sampled at Punta Gorda, FL; A. carolinensis was not sampled at Naples, FL. 
 
 Naples,  FL Punta Gorda, FL Plant City,  FL St. Augustine, FL Savannah, GA 
Maximum number of 
consecutive days with 
minimum temperature ≤0° C 
 

1 3 5 5 14 

Maximum number of runs of 2 
or more consecutive days with 
minimum temperature ≤0° C 
 

0 4 8 9 31 

Total number of days with 
minimum temperature  ≤ 0°C  1 16 29 35 125 
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Table 6. Pearson’s correlations between the climatic variables, Field Critical Thermal Minima (CTMin) 
and Body Condition Index (BCI) for Anolis sagrei and Anolis carolinensis. 

 

Climatic 
Variables 

Field CTMin BCI 

A. sagrei A. carolinensis A. sagrei A. carolinensis 

F M F M F M F M 

MMNT r = 0.56, 
p = 0.001 

r = 0.69, 
p = 0.001 

r = 0.40, 
p = 0.001 

r = 0.39, 
p = 0.001 

r = -0.29, 
p = 0.03 

r = -0.26, 
p = 0.07 

r = -0.37,  
p = 0.004 

r = -0.5, 
p<0.001 

EMNT r = 0.56, 
p = 0.001 

r = 0.71, 
p = 0.001 

r = 0.35, 
p = 0.001 

r = 0.38, 
p = 0.001 

r = -0.34,  
p = 0.01 

r = -0.37, 
p = 0.01 

r = -0.39, 
p<0.002 

r = -0.52, 
p<0.001 

DT0° r = -0.57, 
p = 0.001 

r = -0.68,  
p = 0.001 

r = -0.40, 
 p = 0.001 

r = -0.40, 
p = 0.001 

r = 0.29, 
p = 0.04 

r = 0.25, 
p = 0.09 

r = 0.37, 
p<0.003 

r = 0.51, 
p<0.001 

TPCP r = -0.002, 
p = 0.98 

r = -0.21, 
p = 0.15 

r = 0.22, 
p = 0.001 

r = 0.21, 
p = 0.001 

r = 0.2, 
p = 0.17 

r = 0.48,  
p < 0.001 

r = -0.22, 
p = 0.08 

r = -0.24, 
p=0.07 
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Table 7.  Mean daily minimum temperature and Total monthly precipitation for collection sites of Anolis sagrei and Anolis 
carolinensis for June and July of 2011. Mean monthly temperature, mean monthly minimum temperature, extreme minimum 
temperature and Number of days with temperature ≤0°C for the sites for the month of January between 2007 and 2011. Data obtained 
from the United States National Oceanographic and Atmospheric Administration, Asheville, North Carolina. 
 

 June-July 2011  January 2007-2011 

Site 
Mean daily 
minimum 

Temperature 

Total monthly 
Precipitation 

(mm) 
 Mean monthly 

temperature 

Mean monthly 
minimum 

temperature 

Extreme 
minimum 

temperature  

 Mean number of 
days with 

temperature ≤ 0°C  

Naples, FL 23.6+0.1 
(20.6-26.1) 332  18.1+0.9 

(15.5-20.6) 
12.7+0.9 

(10.3-15.4) 
1.8+0.8 
(0-4.4) 

0.2+0.2 
(0-1) 

Punta Gorda, FL 22.5+0.2 
(17.8-25.6) 600.7  16.9+0.9 

(14.3-19.5) 
10.3+0.9 
(7.9-13.5) 

-1.3+0.6 
(-3.3-0) 

1.8+0.8 
(1-5) 

Plant City, FL 22.7+0.1 
(19.4-25.6) 829.6  15.8+0.9 

(12.9-18) 
9.5+1 

(6.6-12.4) 
-2.3+1 
(-5-1.1) 

3.4+1.4 
(0-8) 

St. Augustine, FL 23.5+0.1 
(21.1-26.1) 576.6  12.6+1 

(10.2-15.3) 
7.8+1 

(5.1-10.9) 
-2.2+0.7 
(-3.3-2.8) 

5+2 
(7-17) 

Savannah, GA 22.7+0.2 
(17.8-27.8) 423.9  9.2+0.8 

(7.3-11.4) 
3.3+0.9 
(0.9-5.6) 

-5.8+0.7 
(-7.8-(-3.9)) 

10.4+1.7 
(9-17) 

Data are expressed as mean + SE and range in parentheses. 
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