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Abstract. Prevention and control of Lyme disease is difficult because of the complex biology of the pathogen’s
(Borrelia burgdorferi) vector (Ixodes scapularis) and multiple reservoir hosts with varying degrees of competence.
Cost-effective implementation of tick- and host-targeted control methods requires an understanding of the relation-
ship between pathogen prevalence in nymphs, nymph abundance, and incidence of human cases of Lyme disease. We
quantified the relationship between estimated acarological risk and human incidence using county-level human case
data and nymphal prevalence data from field-derived estimates in 36 eastern states. The estimated density of infected
nymphs (mDIN) was significantly correlated with human incidence (r = 0.69). The relationship was strongest in high-
prevalence areas, but it varied by region and state, partly because of the distribution of B. burgdorferi genotypes. More
information is needed in several high-prevalence states before DIN can be used for cost-effectiveness analyses.

INTRODUCTION

Lyme disease is the most common vector-borne disease in
the United States, with more than 25,000 confirmed cases in
2009.1 Incidence of reported cases continues to rise. Between
2005 and 2009, mean incidence in the 13 states with highest
incidence had increased from 29.6 ± 10.6 per 100,000 in 2005
to 49.6 ± 15.5 per 100,000 in 2009, whereas in 11 states with
lower incidence, mean incidence has increased from 1.3 ± 0.7
to 2.3 ± 1.7 per 100,000.2 Efforts to stop this emergence have
been hampered by the complex ecology of the disease and
the lack of effective and affordable interventions.3–7

In the Northeastern and Midwestern United States, Lyme
disease is caused by the bacterium Borrelia burgdorferi sensu
stricto and transmitted to humans by Ixodes scapularis, pri-
marily nymphs.8 Humans acquire the disease mainly during
the months of May and July after contact with the vector
during outdoor activities in tick habitat, which is character-
ized by closed-canopy deciduous and mixed forest. Three
previous studies have shown a positive relationship between
human cases and the density of B. burgdorferi-infected
ticks, but these studies were limited in geographic scope
to Connecticut and Rhode Island, which are both states
with very high prevalence.9–11 Another two studies showed a
positive correlation between tick abundance and human
cases, again focusing on specific regions (Wisconsin12 and
Westchester, New York13). Two more location-specific stud-
ies have examined the link between numbers of ticks sam-
pled by passive surveillance and cases in Rhode Island and
Maine.14,15 To our knowledge, these studies are the only
studies that have attempted to quantify and/or characterize
the relationship between acarological risk and human cases
in the eastern United States. However, an understanding of
this relationship and how it varies geographically is impor-

tant for models used in identifying optimal strategies for
implementing vector- and reservoir-targeted interventions.
In 2009, 95% of Lyme disease cases in the United States

were reported from the Northeast and Midwest.2 However,
there is large variation in incidence among states where
transmission of B. burgdorferi occurs, possibly because of
differences in reservoir host ecology,16–18 climate,19–23 rates
of human contact,13 genetic variation among strains,23–26 or
differences between states in reporting practices. Thus, rela-
tionships between acarological risk and incidence may differ
among geographic regions. Investigating the differences is an
important stepping stone to a mechanistic understanding of
the underlying drivers linking density of infected nymphs
(DIN) and human incidence. Improved knowledge of the
relative importance of individual drivers in different loca-
tions might aid in tailoring prevention and control recom-
mendations to different geographical regions.
We have previously reported on a large-scale study to

measure and develop models of the density of I. scapularis
nymphs and B. burgdorferi prevalence in 36 states (2,411
counties) at an 8 + 8-km spatial scale.27–29 Here, we used
the raw data (rDIN and raw density of nymphs [rDON]) to
examine the strength of the relationship between DON,
DIN, and human incidence at the county level to evaluate
whether the model-based predictions of acarological indices
(mDON and mDIN) significantly correlated with reported
human Lyme disease incidence and identify factors that mod-
ify the relationship between DIN and human cases. We then
used the estimated indices to investigate geographical differ-
ences in the relationship between acarological risk and
county-level incidence. To our knowledge, this study is the
first study to examine the relationship over such a broad
spatial extent and evaluate geographic differences in how
DIN translates to human incidence.

MATERIALS AND METHODS

Human case data. Human case data were obtained from
case reports to the Centers for Disease Control and Prevention
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(CDC) by state and territorial health departments as part
of the National Notifiable Diseases Surveillance System
(NNDSS); detailed information on methods and case defini-
tions has been published previously.30 For each county in the
United States, the number of cases between 2004 and 2006 was
averaged to get the mean number of cases per county during
the time period that tick data were collected (Figure 1C shows
these data as incidence per 100,000). Note that cases are
reported based on the county of residence, and thus, it is possi-
ble that transmission occurred outside the county of residence
if a person had traveled recently.
Density of nymphs. Host-seeking I. scapularis nymphs were

collected by drag sampling at 301 sites in the United States east
of the 100th meridian between 2004 and 200627,28 (Figure 1A).
All sites were closed-canopy deciduous forests in state parks,
state forests, or other natural areas with public access. The
spatial distribution of sites included 36 states (286 counties),
which we classified based on the incidence of human cases as
follows: > 10/100,000, DE, CT, ME, MD, MA, NH, NJ, NY,
PA, RI, VT, WI, and MN (high); 0.5–5/100,000, VA, WV, OH,
SC, NC, IL, IN, IA, MI, and ND (low); < 0.5/100,000, AL, AR,
FL, GA, KS, KY, MS, MO, NE, OK, SD, TN, and TX (rare).
Each site was dragged three to six times in summer between

late May and September, each time covering 1 km2 per visit.
Visits were spaced as uniformly as possible throughout this
time frame in each location to prevent detection bias because
of sampling time (Supplemental Figure 1) (note that there
were several sites where this spacing was not possible, but they
were not localized in a single area and thus, should not consis-
tently bias the results). Daily nymphal density per 1,000 m2

(i.e., DON) was calculated as the area under the nymphal
frequency curve between the first and last sampling dates
divided by the total number of days during this time period.
Although nymphs tend to be most active in May and June in
the northeast, we continued to sample through late summer
(August and September), because (1) peak nymphal activity
dates could differ across a large geographic area sampled, (2)
human cases are most prevalent in late summer, and (3)
humans tend to be most active in forested areas during summer
holidays (May and September). In most counties, the same site
was dragged each year except in three locations (Cumberland,
ME; Suffolk, NY; and Chippewa, WI), where different sites
were visited in different years. Because each site was consid-
ered to be representative of the county in which it was situated,
daily nymphal densities from multiple years and/or all sites
within the same county were averaged to get the nymphal

Figure 1. Map of study sites, estimated acarological risk, and human incidence. (A) Counties are color-coded by mDON/km2; unique study sites
are shown as dark red dots. (B) Counties are color-coded by mDIN/km2. (C) Counties are color-coded by incidence/100,000 of human Lyme disease.
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density per 1,000 m2 during the entire study period. Density
estimates were scaled to the county level by multiplying by the
proportion of deciduous and mixed forest (i.e., I. scapularis
habitat31) for the county where each site was located. This area
was estimated using the ArcMap Zonal Statistics tool (ESRI,
Redlands, CA) based on the US Geological Survey National
Land Cover Database (http://www.mrlc.gov/nlcd.php). Here-
after, we refer to this estimate of DON as rDON. Note that
accounting for land cover in the calculation of rDON was
necessary to compare the tick data with human case data
(which were available at the county level), because there is
high variability between counties in forest coverage (amount
of I. scapularis habitat).
A previous study28 developed a regression model for

predicting DON at an 8 + 8-km resolution throughout the
eastern United States. This model assumed a zero-inflated
negative binomial error structure and included climate, land-
scape, and spatial structure as covariates. Specifically, eleva-
tion, monthly vapor pressure deficit, annual amplitude of the
maximum daily temperature, and annual phase of the mini-
mum daily temperature were covariates in the zero-inflated
component of the model, whereas the annual amplitude of
the normalized vegetation index and spatial autocorrelation
were covariates in the negative binomial component. For the
current study, we calculated the average DON by county
using the previously developed model. We refer to model-
derived estimates of DON as mDON. Nine counties were
excluded because of missing climate or landscape data that
were used as covariates. This lack of data was because the
climate/landscape data, obtained from National Aeronautics
and Space Administration (NASA), consisted of 8-km grids
that were clipped to minimize the number of pixels that
contained both land and water. Some counties that were
coastal and small did not either contain data or have a
sufficient number of pixels to calculate an average value.
These 10 counties included Dukes, Nantucket, Suffolk, and
Barnstable in Massachusetts; Bronx, Kings, New York,
and Richmond in New York; and Bristol and Newport in
Rhode Island.
Density of infected nymphs. Detection and quantification

of B. burgdorferi in nymphal tick specimens was performed
by species-specific quantitative polymerase chain reaction
(PCR) as previously described.23 Individual ticks were
screened for the presence of B. burgdorferi. Nymphal infec-
tion prevalence (NIP) was calculated as the proportion of
nymphs that tested positive for B. burgdorferi. Using a bino-
mial probability distribution, it was expected with 95% con-
fidence that at least 1 of 14 ticks would be infected if the site
harbored B. burgdorferi-infected nymphs with an infection
prevalence of 0.20. Thus, the lower limit for pathogen detec-
tion was 14 ticks, and sites with fewer ticks were excluded
from analyses with rDIN. In the high and low prevalence
areas (for which we conducted the analyses using rDIN and
mDIN), the average number of ticks collected per site was
77.6 ± 21.6 (2 standard errors of the mean [SEMs]), meaning
that most sites had at least 55 ticks. Yearly prevalence per
county was calculated as the mean prevalence for all sites
within the same county during the study period. The density
of infected nymphs (rDIN) was calculated as the product of
rDON and prevalence.
Similar to mDON, model DIN (mDIN) was estimated at

the county level using a model that was developed previously

for predicting DIN at a finer spatial scale29 (Figure 1B). The
model used for predicting DIN was similar to the DON
model, except that maximum daily temperature was excluded
from the zero-inflation component and the largest forest
patch index (which is a surrogate for fragmentation describ-
ing the size of the largest forested patch in a county) was
substituted for the normalized difference vegetation index in
the negative binomial component. Predictions were made for
all counties within the study region, except for the nine men-
tioned above for which there was no climate/landscape data.
Additional covariates in the model of rDIN and human

incidence. We included B. burgdorferi genotype frequency,
climate, and forest fragmentation variables in a model selec-
tion routine that included rDIN as a fixed component of the
model (described in Statistical analyses) to examine whether
these variables accounted for some of the variation in inci-
dence left unexplained by rDIN. Our logic was that these
variables could impact human behavior or B. burgdorferi

transmission from vectors to humans. For example, the 16S-
23S rRNA intergenic spacer restriction fragment length poly-
morphism sequence types (RSTs) have been previously
linked to differential capacity for hematogenous dissemina-
tion in humans and severity of Lyme disease symptoms26,32 as
well as disease severity in animal models and transmission
rates in reservoir mice.25,33 Because the frequency of these
types varies geographically,23 we hypothesized that differ-
ences in pathogenicity and transmissibility between RST
types may explain part of the geographic variation in Lyme
disease incidence. As for the fragmentation and weather
variables, we are unaware of work that has directly tested
whether they could impact human contact with vectors or
transmission rates, but weather has been hypothesized to
impact transmission.34 Furthermore, the direction of the rela-
tionship between fragmentation and DIN compared with
fragmentation and human incidence is conflicting,17 suggesting
that fragmentation could act directly on incidence through
some unexplained mechanism. Thus, we incorporated weather
and fragmentation variables from a hypothesis-generating
standpoint. These variables included the amplitude of county-
level maximum temperature (TMAXmag) derived through
temporal Fourier transformation, the mean area of forest
patches (mean patch area [MPA]), and the mean area occu-
pied by the largest forest patch (largest patch index [LPI]).
The proportion of each of the three RST types was esti-

mated for 29 sites (thus, there was some missing data in this
covariate, because the others were N = 40) as described pre-
viously.35 In brief, real-time PCR with probes specific for
RST 1 or RST 2 strains was carried out for all individual B.
burgdorferi-positive tick extracts. A nymph was characterized
as containing an RST 3 strain if it was positive by species-
specific PCR for B. burgdorferi but negative by PCR specific
for RST 1 or RST 2. These data were previously reported in
the work by Gatewood and others,23 which found that the
frequency of RST types was associated with variability in the
synchronization of I. scapularis life stages.
Statistical analyses. All statistical analyses were conducted

in R and Matlab. We evaluated the relationship between
rDON and cases (N = 286 counties in the full raw data) by
negative binomial regression on different subsets of the data
(based on human incidence). County population size was
included as an offset, and thus, the model essentially predicts
incidence (frequency of infection per county with weighted
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effects from population size). Inspection of residuals showed
that a negative binomial model was better for rDON, but a
Poisson model with square-root transformed case data was
equally good for rDIN (N = 40; only sites with > 14 ticks were
included) analyses. Thus, we used a Poisson model for all DIN
analyses; the negative binomial model tended to largely
overestimate case numbers in high prevalence areas, and the
Poisson model is simpler with one less parameter.
We evaluated performance of mDON and mDIN by fitting

them to incidence in counties for which there were observed
data (N = 40) using a Poisson model. We compared these fits
to those fits with rDON and rDIN by Akaike Information
Criterion (AIC). Lower scores indicate better model fits (a
two-point difference is significant). Because both mDON and
mDIN fitted the incidence data better than rDON and rDIN,
we used the mDIN data to investigate spatial differences in
the relationship between DIN and human cases. Thus, we
assumed that mDIN in the 40 counties where rDIN was mea-
sured was similarly representative of mDIN in the other 1,141
counties in high- and low-prevalence regions where rDIN was
not measured. We fitted data from all counties in high- and
low-incidence states to cases (N = 1,181) using mDIN as a
continuous covariate and state as a factor. We also fitted
mDIN to cases for each state individually and compared pre-
dictions from the full model to those predictions from the
state-specific models by using the likelihood function to cal-
culate AIC for each set of model predictions in each state.
Performance of the model predictions against observed cases
was evaluated by Spearman’s rank correlation r.
We investigated geographical effects on the relationship

of mDIN and incidence by including region (east versus
west) as a factor. East included states east of and including
Ohio (classification of the 23 states included is indicated in
Results). To identify factors that were responsible for modi-
fying the relationship between DIN and incidence region-
ally, we conducted model selection with rDIN in the model
to start and six covariates: RST types 1–3, LPI, MPA, and
TMAXmag (described above). Only main effects were exam-
ined. Variables were selected by forward selection and 10-fold
cross-validation (where coefficients are estimated from 90%
of the data and used to predict the other 10%) using the
c2-distributed difference in deviance for determining whether
a variable is kept. This method of model selection decreases
overfitting by requiring that candidate variables contribute to
significantly accurate out of sample predictions for their incor-
poration into a model. Competing models generated by the
selection procedure were compared by AIC. Last, to under-
stand the hierarchical structure of the effects of region and
other factors on the relationship between rDIN and inci-
dence, we conducted a recursive partitioning analysis by con-
ditional inference36 implemented using the party package in
R. This method is non-parametric, and it identifies covariates
that explain the most significant amount of response variable
(i.e., incidence) variation by repeatedly splitting the response
variable into two groups. The resulting tree indicates the hier-
archical nature of the covariate effects on rDIN.

RESULTS

Relationship of rDON and cases in different regions.

Overall, rDON was significantly correlated to reported inci-
dence (Spearman’s r = 0.66, N = 286). Next, we compared the

relationship of rDON with cases in regions where the inci-
dence is rare, low, or high to investigate whether vector den-
sity could explain case variability in any or all of these areas
(Figure 1A versus C). We found that, within rare areas,
rDON did not explain variation in human Lyme disease inci-
dence across counties (P = 0.99; AIC change over the null
model with only an intercept was -0.7, which is less than 2)
(Table 1). However, rDON explained a significant amount of
variation in human incidence in each of the low- and high-
incidence areas (P < 0.03 and P < 0.0001, respectively; DAIC =

80 and 13, respectively) (Table 1).
Addition of B. burgdorferi prevalence data. Next, we

examined whether the incorporation of B. burgdorferi preva-
lence data explained more of the variation in incidence rela-
tive to vector abundance alone (Figure 1B versus C and
Table 2). For the raw data, all covariates explained a signifi-
cant amount of the variation in incidence (DAIC was greater
than two above the null model) (Table 2), but much was left
unexplained (Spearman’s r = 0.57 for rDON and 0.60 for
rDIN). rDIN performed only slightly better than NIP, despite
the apparently larger variation in rDIN by location (Supple-
mental Figure 2).
Dissecting the roles of additional factors. Because much of

the variation in human incidence remained unexplained by
the model with rDIN (r = 0.6) (Table 2), we identified other
factors that may be needed for interpreting human incidence
in terms of rDIN. First, we examined whether accounting for
geographical region (Northeast versus Midwest) improved
the fit of rDIN and incidence. For this examination, we
included region as a two-level factor and examined if either
the intercept or slope of the relationship of rDIN and inci-
dence differed by region. We found that there was no differ-
ence in the slope of the relationship between regions but
that the relationship between rDIN and incidence had a
significantly higher intercept in the Northeast relative to the
Midwest (P < 0.0001). Figure 2A and Table 3 show statistics

Table 1

Fit of DON in different regions

Human incidence DAIC P value n

All 45 < 0.0001 286
Rare −0.7 0.99 72
Low 80 0.03 125
High 13 < 0.0001 89

Cases at the county scale were modeled using a negative binomial model with a log link and a
square root transformation of cases. The population size of the county was included as an offset.
Fits were done on difference subsets of the data (rows 3–5) that correspond to rare- (< 0.5/104),
low- (0.5–5/104), and high- (> 10/104) incidence regions. Change in AIC is the difference between
the model with DON and the null model (i.e., intercept only). Values above two indicate that
rDON is a significantly better explanation of incidence than the null model. Columns 3 and 4
show the P value for rDON and the number of points in the dataset, respectively.

Table 2

Comparison of raw data with model data covariates

b ±SE P value r* Pseudo-R2 DAIC n

rDON 0.25 0.10 0.020 0.57 0.12 25 40
mDON 0.36 0.10 0.0016 0.58 0.23 47 40
rDIN 0.24 0.11 0.035 0.60 0.10 21 40
mDIN 0.42 0.09 < 0.0001 0.69 0.36 74 40
NIP 0.25 0.12 0.044 0.50 0.10 20 40

*Spearman’s rank correlation of predicted and observed cases (P < 0.001 for all).
Cases at the county scale were modeled using a Poisson error structure with a log link

and a square root transformation of the response variable. P values were adjusted with an
estimated dispersion parameter. The population size of the county was included as an off-
set. Only points for which there was raw DON, prevalence, and DIN data are included.
Columns 2–4 show the parameter estimates and their significance. Deviance-based pseudo-R2

is a measure of model fit relative to the mean of the data. Change in AIC is the difference
between the model with a covariate and the null model (i.e., mean of the data).
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for the reduced model that excludes the non-significant
interaction term between region and rDIN, and more of the
variation was explained (r = 0.77). Figure 2A and B high-
lights that similar levels of rDIN occurred in both regions,
but mean levels of incidence are lower in the Midwest rela-
tive to the Northeast region (Figure 2A).
When region was excluded from the model, the best model

of rDIN and incidence included the frequency of RST 3 and
TMAXmag (r = 0.74) (Figure 1C and Table 3). Both variables

were negatively related to incidence (Table 3), indicating that
a higher frequency of RST3 strains and a larger difference
between summer and winter temperatures are associated with
lower incidence in humans. Although RST 1, RST 2, and the
fragmentations indices (MPA and LPI) were not selected as
the most significant modifiers of the rDIN–human incidence
relationship, LPI and RST1 were significant in models that
contained only rDIN and one other variable (LPI, P < 0.031;
RST 1, P < 0.0002). The regression trees in Figure 2D and E

Figure 2. Factors influencing the relationship of DIN and cases. (A) Relationship of rDIN and incidence with geographic region included in
the model (model details in the text). (A–C) Eastern counties are in black, and western counties are in grey. (B) Mean values of each candidate
predictor of incidence in eastern versus western regions. Absolute values were rescaled to be between zero and one to compare them on the same
plot. Error bars include 1 SEM. (C) Relationship of rDIN and incidence in the best model that was selected based on landscape, climate, and B.
burgdorferi strain type variables. Model selection excluded the region factor and included rDIN in the model to start (Materials and Methods).
Covariates in the best model included rDIN, the frequency of RST 3, and TMAXmag. (D and E) Regression trees for covariates in the models inA
and B. Cases were transformed to the same scale as was used in the Poisson models in A and C [log(sqrt[x]) – offset] for comparison between the
two analytical methods. Box plots show the median value of the transformed cases for each terminal node on the tree. The stopping criterion for
splitting was alpha = 0.05. EW = region; LPI = largest patch index; MPA = mean patch index; TMAXmag = magnitude of difference between
summer and winter daily temperature maximums.

Table 3

Comparison of parameter estimates and model fits between a model that takes regional differences into account and the best model without
region effects

Model DAIC Covariate b SE P value Partial pseudo-adjR
2 Model pseudo-adjR

2 P

Full model: Intercept + rDIN + region
Intercept 0 Intercept 1.72 0.11 < 0.0001 0.49 2
Intercept + rDin 14.5 rDIN 0.28 0.08 0.002 0.11
Intercept + rDin + Region 97.8 Region 0.59 0.11 < 0.0001 0.41

Full model: Intercept + rDIN + rst3 + Tmax
Intercept + rDin + rst3 84.7 Intercept 1.74 0.14 < 0.0001 0.61 3
Intercept + rDin + Tmax 78 rDIN 0.36 0.12 0.006 0.11

rst3 −0.37 0.14 0.02 0.25
Tmax −0.43 0.12 0.002 0.20

DAIC for the model with rDIN relative to the null model shows that rDIN is better than the null model. Likewise, models with region, RST 3, or TMAX are better than the model with
only rDIN.
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illustrate the hierarchical structure of the most significant
combination of factors explaining the variation in incidence.
The major factors that separate high from low incidence
irrespective of rDIN are region (Figure 2D, top node) and
RST 3 frequency (Figure 2E, top node). In the Midwest,
where RST 3 frequencies are higher, incidence is lower,
although rDIN occurs at similar levels as in the Northeast
(Figure 2B). After variation because of region or RST 3 is
segregated, in the Midwest, there is more variation in inci-
dence that can be significantly classified into two groups (high
versus low) according to levels of rDIN (second nodes). The
second node does not occur for the Northeast, because the
number of points with low rDIN was not high enough (mini-
mum number for division was 10). Although TMAXmag was
also significant, with a lower value in the Northeast relative
to the Midwest (Figure 2B), it did not show significant par-
titioning in the regression tree analysis.
Evaluation of model-estimated acarological indices: mDON

and mDIN.We compared the performance of previously esti-
mated acarological indices, mDON and mDIN, with rDON
and rDIN by fitting all four covariates individually to the

counties for which there were empirical observations. Both
estimated indices performed significantly better than the raw
data (Table 2) (pseudo-R2 showed 11% and 26% improve-
ments in fit over rDON and rDIN, respectively), and mDIN
(r = 0.69) fit the incidence data better than mDON (r = 0.58).
This finding shows that the estimated indices performed
better at explaining variation in incidence, likely because they
account for effects of other factors (i.e., landscape fragmenta-
tion, spatial autocorrelation, and weather) that are known to
affect I. scapularis and B. burgdorferi distributions16–18,28 and
their interactions.23

Spatial variation in the relationship between mDIN and

human incidence at the state level. Because mDIN fit the
incidence data best and provided acarological risk data for
all counties within the 23 states in high- and low-prevalence
areas (listed in Tables 4 and 5), we used this index to exam-
ine whether differences in the relationship of mDIN and
human incidence occurred at a finer spatial scale: the state
level (rather than the east versus west). We investigated
state-specific differences in the relationship between mDIN
and incidence through two model structures: a national-level

Table 4

Model including all 23 states

Full model n countries Inc*/105 ±SE DIN ±SE Pseudo-adjR
2 AIC b

Multi-state
model of
incidence SE P value r†

1,181 36 3 0.48 0.03 0.66 2,833 0.69
Intercept 0.46 0.05 < 0.001
DIN 0.29 0.02 < 0.0001
Factor: state High-prevalence states all were significantly

positive except for Vermont (not significant)
Low-prevalence states all were significantly

negative except for North Carolina (not available)

*Statistics from the national model; larger AIC and smaller pseudo-R2 relative to the state-based model indicate that the national model performs worse than the state-based model.
†Spearman’s r for the correlation of predictions and observed data.

Table 5

Models for individual states

Region

n countries Ranked state Incidence*/105 ±SE DIN ±SE

Pseudo-R2 AIC

b SE P value r‡Incidence Area State Full† State Full†

H E 8 CT 239 62 6.5 0.39 0.01 −1.09 16 71 0.02 0.11 0.84
H E 3 DE 183 61 1.0 0.06 0.99 0.22 4 48 0.28 0.03 0.063
H E 21 NJ 158 40 4.6 0.32 0.11 −0.24 66 133 0.14 0.09 0.13
H W 72 WI 157 21 1.6 0.09 0.23 0.20 151 198 0.30 0.06 < 0.0001 0.52
H E 58 NY 125 40 1.3 0.30 0.50 0.50 387 429 0.60 0.08 < 0.0001 0.86
H E 3 RI 114 75 4.4 0.29 0.13 −0.49 7 51 −0.14 0.36 0.77
H E 24 MD 105 17 0.7 0.06 0.01 0.01 78 120 0.05 0.12 0.66
H E 10 MA 87 9 3.0 0.50 0.37 −3.42 16 128 −0.21 0.09 0.049 0.85
H E 67 PA 79 14 0.6 0.10 0.42 0.27 299 415 0.47 0.07 < 0.0001 0.62
H W 87 MN 60 10 0.4 0.04 0.31 0.10 248 362 0.45 0.07 < 0.0001 0.81
H E 10 NH 58 18 1.2 0.14 0.08 0.06 43 86 0.23 0.32 0.50
H E 16 ME 47 12 0.6 0.04 0.31 0.05 42 99 0.47 0.18 0.019 0.47 (mns)
H E 14 VT 35 16 0.6 0.09 0.16 0.08 25 69 0.28 0.18 0.14
L E 100 VA 9 2 0.1 0.01 0.18 0.03 210 289 0.44 0.10 < 0.0001 0.48
L W 99 IA 8 1 0.1 0.01 0.17 0.03 125 188 0.33 0.06 < 0.0001 0.52
L E 55 WV 5 2 0.05 0.01 0.14 0.01 83 137 0.42 0.14 0.004 2 (ns)
L W 102 IL 4 2 0.1 0.02 0.47 0.05 105 226 0.81 0.08 < 0.0001 0.48
L W 83 MI 3 2 0.1 0.01 0.24 0.02 90 157 0.52 0.09 < 0.0001 0.54
L W 23 ND 2 1 0.1 0.02 0.13 0.01 20 64 0.58 0.39 0.15
L E 100 NC 2 0 0.02 0.004 0.03 0.00 134 180 −0.28 0.18 0.13
L W 92 IN 2 0 0.1 0.01 0.10 0.01 96 146 0.38 0.11 0.001 0.21
L E 46 SC 1 0 0.001 0.0005 0.01 0.00 49 92 0.12 0.13 0.38
L E 88 OH 1 0 0.1 0.01 0.03 0.00 105 151 −0.22 0.13 0.095

*Incidence/100,000 during the study period (2004–2006); basis for state rank.
†Statistics from the national model; larger AIC and smaller pseudo-R2 relative to the state-based model indicate that the national model performs worse than the state-based model.
‡Spearman’s r for the correlation of predictions and observed data.
Significant relationships between DIN and cases are in bold; E = east; H = high prevalence; L = low prevalence; mns = marginally not significant; ns = not significant at a = 0.05; W = west.
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model that included state as a factor versus separate models
of mDIN for individual states. We found that there was a
significant effect of state in the full model (P < 0.0001) and
that the state-level models performed better than the full
model in all states (Tables 4 and 5, compare AIC for full
with state). Lack of fit of the full model was not specific to
any geographic location (Figure 3B–I) or levels of mDIN or
incidence (Table 5, columns 6–9).
Of 23 states, 12 states showed a significant relationship

between mDIN and human incidence, with an average corre-
lation between model predictions and incidence of 0.55
(range = 0.2–0.86) (Tables 4 and 5). The other 11 states
showed no significant relationship. Three of these states,
Delaware, Rhode Island, and Connecticut (Table 4), had a
very low number of counties, and thus, their lack of fit is
likely because of small sample size. For states where the
relationship was significant, the fit was good (r > 0.6) in 4
of 12 states (New York, Pennsylvania, Massachusetts, and
Minnesota), weak (r = 0.4–0.6) in 5 more states (Wisconsin,
Virginia, Iowa, Illinois, and Michigan), and poor (r < 0.40) in
the other 3 states (Maine, West Virginia, and Indiana),
despite the high significance of mDIN in the models (Tables 5,
bold P values and Supplemental Figure 3). Furthermore, the
slopes of the relationship were significantly different among
the states where the relationship was significant, including
an unexpected negative relationship for Massachusetts
(Figure 3B–I and Table 5, bold b-values and SE), highlighting
that there are quantitative differences between states, even
where the relationship is highly significant.

DISCUSSION

We quantified the relationship of acarological risk and
human Lyme disease incidence for all of the known US range
of I. scapularis-borne B. burgdorferi. Our study is the first to
examine this association over such a large geographic range.
We found that both rDON and rDIN explained a statistically
significant amount of variation in human incidence in low-
and high-incidence areas but that neither explained variation
in incidence in rare areas. Restricting the analysis to low- and
high-incidence areas, we found that the relationship of mDIN
and incidence varied quantitatively by geographic location,
that mDIN alone explained a statistically significant amount
of variation in human incidence at the county level in only
12 of 20 states (including only states with more than eight
counties), that the fit of the relationship was good in only
four states (New York, Pennsylvania, Massachusetts, and
Minnesota), and that fit was reversed in one of these states
(Massachusetts). A subanalysis of 40 high incidence counties
with NIP data identified some of the factors that contribute to
geographic differences in the relationship of rDIN and inci-
dence, most notably, genetic composition of B. burgdorferi.
One factor that has been proposed to modify the rela-

tionship between DIN and reported cases is variation in
B. burgdorferi genotype frequency.26,32 Differences in viru-
lence37 and transmission efficiency25,38 may lead to differ-
ences in infection risk and/or reporting rates by humans
infected with different strains. Thus, areas with low incidence
but high rDIN could be explained by an overrepresentation

Figure 3. Relationship of DIN and cases by state. The full model (A) included DIN as a continuous predictor and state as a 23-level factor.
Because state was highly significant, we also modeled the relationship of DIN and human cases individually for each state (B–I) and compared
these relationships (black circles) to predictions from the full model (grey circles). Only some of the states from each region are shown to illustrate
differences in performance between the national-level and state-based models. (B, C, F, andG) High prevalence, east. (D andH) High prevalence,
west. (E and I) Low prevalence. Statistics are summarized in Table 4.
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of strains with a low virulence in or transmission to humans.
Although more studies are needed to confirm this hypothe-
sis, our regression analyses support it for RST 3. We found
that (1) incidence data could be partitioned similarly by
region or RST 3, (2) RST 3 was more frequent in the region
with lower incidence but similar rDIN, and (3) there was a
negative relationship between RST 3 and incidence esti-
mated by the Poisson regression model. Although the other
two RST types each showed different regional distributions,
neither of these two types alone caused deviations from the
mean relationship of rDIN and reported incidence. Never-
theless, because higher levels of RST 3 (a genetically diverse
group defined as non-RST 1 or 2) led to lower than expected
incidence based on rDIN, by extrapolation, the sum of RST 1
and RST 2 frequencies was correlated with higher than
expected incidence based on rDIN. Thus, our results suggest
that the monophyletic RST 1 and 2 groups39 cause higher
than expected reported cases based on rDIN, whereas a high
prevalence of other strains results in fewer reported cases.
More generally, our results highlight that genotypic differ-
ences are important for predicting human incidence spatially
through acarological risk indices. However, more analyses of
the genetic determinants of virulence (and transmission) in
humans and the spatial dynamics of B. burgdorferi genetic
diversity are needed to understand the effects of B. burgdorferi
genotype on reported incidence.
In addition to B. burgdorferi genotype, there are other

factors not measured in our study that could contribute to
geographical differences and weak associations in the rela-
tionship between mDIN and human incidence. One possibil-
ity is human movement. Although peridomestic exposure
accounts for most cases of Lyme disease,12 some cases are a
consequence of travel to other counties for outdoor work or
recreation. This movement could explain the negative
relationship between mDIN and cases that was found for
Massachusetts. For example, if Massachusetts residents tend
to get infected in counties that are densely forested but live in
counties (i.e., where cases would be reported) that are mainly
urban (i.e., low estimates of mDIN), then such a negative
relationship could be observed. More accurate spatial risk
predictions might be obtained if case reports included proba-
ble place of exposure, although accurate estimates are very
challenging to obtain.40 Also, we found that spatial scale was
crucial for interpreting the relationship between mDIN and
incidence, because we showed that there are quantitative
differences regionally (Midwest versus Northeast) as well as
between states within these regions. It is possible that the
county scale is appropriate in states with larger forested
patches, such as New York and Pennsylvania (which showed
relatively strong positive relationships between mDIN
and incidence), whereas a finer scale is necessary in highly
residential states with very dispersed forest cover, such as
New Jersey and Maryland (which showed no significant rela-
tionship). For example, a study that measured DIN in for-
ested areas in six Rhode Island towns found that DIN
explained 97% of the variation in incidence among those
towns.9 However, most of our study sites were not located in
residential areas, and the incidence data corresponded to a
much broader range relative to the acarological data, which
increases the variance in the relationship between mDIN and
incidence. Last, geographical differences in Lyme disease
control efforts at the residential or personal level could also

contribute to variation in the relationship between mDIN
and human incidence.
There are also some experimental design caveats that

should be noted when interpreting our results. First, our esti-
mates of mDIN were based on data collected exclusively
in public forested areas. Thus, our estimates of mDIN in
counties that are mainly residential could be inaccurate. Sec-
ond, sampling at different sites was done at different times
between May and early September, and although most sites
were sampled at least five times, some sites were only sam-
pled three times. Although these sampling design caveats
likely account for some of the unexplained variation in the
relationship between DIN and human incidence, they were
not spatially systematic (i.e., they occurred randomly with
respect to state and region) and thus, should not introduce
systematic bias in our results. Third, this analysis is based
on original field efforts that were optimized for collections of
I. scapularis nymphs based on phenology in the northeastern
United States (emergence in late May); therefore, areas in
which nymphs become active earlier would have inaccurate
estimates of nymphal densities. For example, a previous study
found that nymphs were observed as early as April in the
south.41 However, even with intensive sampling, only a few
specimens were recovered at this time; thus, this difference
should not introduce much bias in our results. There are also
two other factors unaccounted for in our sampling design that
could cause geographic variation in human incidence between
northern and southern areas. First, because we only sampled
I. scapularis, the existence of an alternative vector might
uncouple the relationship between mDIN and incidence.
However, this possibility would only occur if the alternative
vector caused a significant proportion of human cases, and
there is no evidence to support this case. Second, it has been
reported that nymphs in southern areas very rarely feed on
humans,41 although it is still unclear whether this differ-
ence from northern areas is because of the low densities of
I. scapularis nymphs or an actual feeding preference. Future
environmental surveillance should aim to quantify DIN in
residential areas as well as other habitats and potential vec-
tors to better understand how DIN translates to incident
human cases across varying ecological conditions.

CONCLUSION

Reservoir- or vector-targeted control of human Lyme dis-
ease relies on understanding how DIN corresponds to human
incidence geographically. Additionally, a mechanistic under-
standing of the link between DIN and incidence should be
sought, because it is important for model frameworks that
anticipate changes in the geographic range of human inci-
dence and evaluate the cost efficacy of all types of prevention
methods over time. Our multistate analysis showed large
variation in the relationship of DIN and incidence between
states, with only three states showing a reliable quantifica-
tion of the relationship. To more accurately quantify how
acarological risk translates to human Lyme disease risk
spatially, longitudinal environmental surveillance of several
factors at spatial scales finer than the county level would
be needed. Unfortunately, such studies are not likely to be
cost-effective if conducted using a random sampling design.
Thus, future research to determine how acarological risk
translates to human incidence spatially should first aim to
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identify probable sites of transmission to humans over a broad
spatial scale through epidemiological studies that monitor
human movement (preferably to and from areas where
acarological risk is quantified). Intensive environmental
sampling in some of these sites would help in quantifying the
relationship betweenDIN and human incidencemore cheaply.
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Supplemental Figure 1. Spatial variation in samling design. The proportion of drags that were completed in early (May and July) versus late
(August and September) summer by location. Open circles are scaled relative to the proportion of drags (early/late summer); larger circles indi-
cate stronger sampling intensity during early summer. Filled black circles indicate locations where no samples were collected in late summer; filled
grey circles indicate locations where no samples were collected in early summer. Size of filled circles is scaled relative to the mean proportion at
all other sites.

Supplemental Figure 2. Spatial variation in prevalence (NIP) and DIN. NIP and DIN are plotted for each site sampled. Dots indicate sites
where there were too few ticks to estimate NIP (and hence, DIN). Size of the circles is scaled to the levels of NIP or DIN.



Supplemental Figure 3. Accuracy of model predictions. Observed cases are plotted against predicted cases from the state-based model (black)
and the national-level model (grey). Cases were square-root transformed. Points that fall along the dotted line indicate a perfect fit. Only states for
which the state-based model was significant are shown.
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