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Abstract
We previously showed that colonies of thriving and non-thriving honeybees co-located in a single geographically isolated 
apiary harboured strikingly different microbiomes when sampled at a single time point in the honey season. Here, we profiled 
the microbiome in returning forager bees from 10 to 12 hives in each of 6 apiaries across the southern half of Ireland, at early, 
middle, and late time points in the 2019 honey production season. Despite the wide range of geographical locations and forage 
available, apiary site was not the strongest determinant of the honeybee microbiome. However, there was clear clustering 
of the honeybee microbiome by time point across all apiaries, independent of which apiary was sampled. The clustering of 
microbiome by time was weaker although still significant in three of the apiaries, which may be connected to their geographic 
location and other external factors. The potential forage effect was strongest at the second timepoint (June–July) when the 
apiaries also displayed greatest difference in microbiome diversity. We identified bacteria in the forager bee microbiome that 
correlated with hive health as measured by counts of larvae, bees, and honey production. These findings support the hypothesis 
that the global honeybee microbiome and its constituent species support thriving hives.
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Introduction

The honeybee Apis mellifera occupies an unusual position in 
conservation biology: it is a species that faces many threats 
despite its artificial introduction into all continents except 
Antarctica; it is a species considered to be domesticated live-
stock by many conservationists; it survives existential threats 
in some regions largely due to human protective measures; it 
is promoted at the expense of native bees in some locations; 
it is indispensable for human food production and is bred 
and managed on an industrial scale to facilitate the mass 
production of nuts and fruit that are dependent on it for pol-
lination [1, 2]. In many respects, Apis mellifera is therefore 
an emblematic species for the complex global ecological and 
sustainability challenges we face.

Colony collapse disorder (CCD) has previously caused 
catastrophic losses to hobby apiaries, honey producers 
and to commercial pollination operations, particularly in 
North America. Though the precise reasons for CCD are 
still under investigation, infections by the parasite Varroa 
destructor that increase the susceptibility of bees to viral 
pathogens is emerging as a primary factor [3, 4]. This may 
be exacerbated by the usage of a group of pesticides known 
as neonicotinoids that have been widely applied to crops, 
horticulture and pets, and that interfere with honeybee 
navigation, circadian rhythms and sleep [5–7]. A ban on 
outdoor application of three neonicotinoids (clothianidin, 
imidacloprid and thiamethoxam) was implemented by 
the European Union in 2018. Apart from these factors, 
honeybees are susceptible to infectious diseases caused by 
bacterial, fungal, viral and microsporidial pathogens [8] 
that can cause significant losses to apiaries, even greater 
than CCD in many geographical regions, and that must 
be managed by a combination of surveillance, prompt 
treatment, or in some cases (e.g. foul-brood), selected 
colony destruction.

Thriving bee hives are obviously desirable because 
they produce more forager bees, more efficient pollination, 
greater honey yields, and greater potential for increasing 
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hive numbers through splits and queen-generation, but they 
also have greater resistance to common chronic endemic dis-
eases such as nosemosis [9] and chalkbrood [10]. Protein 
nutrition achieved through pollen gathering is an important 
determinant of resistance to microbial pathogens [11]. In 
recent years, interest has grown in the role of the honeybee 
microbiome in modulating health and disease risk [12–14]. 
Multiple studies have shown that the microbiome is domi-
nated by 5–8 bacterial phylotypes [15, 16] that are involved 
in digesting the main dietary ingredients, nectar (carbohy-
drate) and pollen (protein) [17, 18]. There are also indica-
tions of microbiome-pathogen susceptibility interactions, 
since the intensity of Nosema ceranae infection is related 
not to global microbiome composition but to the relative 
abundance of a few key taxa such as Gilliamella spp. [19].

We previously studied the microbiome in a single 
apiary in an isolated peninsula in south-western Ireland 
and reported that variation in microbiota composition 
and relative abundance exist between workers within the 
same colony and in between hives [20]. We also noted 
differences in the abundance of taxa associated with 
carbohydrate and protein degradation, which were higher 
in thriving and non-thriving hives respectively [20]. We 
suggested these differentially abundant taxa might be 
useful as biomarkers or intervention points for promoting 
hive health. An obvious limitation of that study was its 
cross-sectional nature and single location. Here, we 
studied 6 apiaries across southern Ireland, surrounded by 
different forage types, and surveyed them across the 2019 
honey production season, to investigate diet-microbiome-
health interactions in honeybees and more specifically 
the influence of location and time point in the honeybee 
microbiome.

Materials and Methods

Specimen Collection

Bee samples were collected from 6 apiaries in southern 
Ireland at map locations shown in Fig. 1. Sampling dates 
are provided in Supplementary Table 1. All apiaries used 
National, Commercial or Rose hives. All hives were wooden 
except Apiary 5, which used Swienty Styrofoam hives. Api-
aries were sampled at 3 time points throughout the 2019 
season, spanning from April 28th to September 7th. Api-
ary 1 (North County Cork) was additionally sampled to 
collect debris from the hive floor/varroa insert board, from 
which the microbiome of the physical hive environment was 
measured.

For collecting bees, 10 to 12 hives were selected per api-
ary and serially sampled on the indicated dates. Bees were 

collected when it was not raining and when the temperature 
was above 12 °C—conditions when forager bees are typi-
cally airborne in Ireland. The hive entrances were blocked 
with foam rubber and returning foragers were collected in 
sterile 50-ml Falcon tubes at the hive entrance. The major-
ity but not necessarily all bees had pollen in their corbicu-
lae. The bees were euthanized by rapid cooling on ice, then 
transported same day under refrigeration to the laboratory 
where they were stored at − 80 °C until DNA was extracted.

To analyse hive debris samples, material was recovered 
into a sterile collection tube from the Varroa insert board 
under the open-mesh floor of the National brood boxes from 
Apiary 1. This material consisted of wax cap fragments, bee 
body detritus, occasional moths and other debris.

A sample of a commercial bee fondant feed (Candipol-
line, Enolapi SRL, Italy) was collected from Apiary 2.

DNA Extraction and Bacterial 16S rRNA Gene 
Amplicon Sequencing

Total bee DNA was extracted from 908 whole bees (forager) 
samples (6 apiaries, 3 time points, 10 or 12 hives, 4 or 5 bees 
each) plus 36 hive debris samples (1 apiary, 3 time points, 
12 hives) using the Qiagen POWER SOIL pro kit according 
to the manufacturer's instructions. The hive debris material 
and the commercial bee fondant samples were suspended in 
sterile saline solution, bacteria were released by vigorous 
vortexing, and the soluble phase was recovered for DNA 
extraction. To analyse the total bee microbiome, libraries 
for 16S rRNA gene sequencing were prepared using Phusion 
HF DNA polymerase and V3/V4 specific primers including 
the Illumina adapter sequence and unique 8 nt dual indices 
(Illumina Nextera XT indices) as previously described by 
our laboratory [20]. Samples were DNA sequenced over 5 
runs on the Illumina MiSeq Platform (600 cycles per run, 
paired end, 2 × 300 bp, approx. 44 million DNA sequence 
reads) by Teagasc, Moorepark, Co. Cork.

Bioinformatics and Biostatistical Analyses

Raw reads were processed for quality filtering and trimming 
using DADA2 (version 1.18) (parameters trimLeft = 15, 
truncLen = 240, maxEE = 2) in R (version 4.0.3) [21, 22]. 
Only forward reads were further processed and analysed 
due to decreased quality of the reverse reads, which can 
negatively affect sample inference in the DADA2 pipeline. 
Reads dereplication, learning of the error rates with 
randomised reads, and sample sequence variant inference 
with pooled samples were performed using DADA2. 
Construction of amplicon sequence variant (ASV) table 
and removal of chimeras were performed using DADA2, 
followed by taxonomy assignment and species assignment 
using DADA2 and the SILVA v138.1 database [23]. Rare 
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ASVs were removed, keeping only those present in at 
least 10% of the samples per apiary and sample type. All 
microbiome composition analyses were performed at ASV 
level, unless specified otherwise.

At each apiary inspection, we recorded the number 
of frames (FR)  of bees, brood, pollen and honey in 
each hive when available (n = 182, frames of bees 
n = 172, brood n = 180, honey n = 154, pollen n = 68; 
Supplementary Table 2 and Supplementary Fig. 1). We 
refer to these as the hive metadata. As a generalization, 
the higher these numbers, the healthier the hive. 
Spearman correlations of the mean relative abundance 
of individual bacterial taxa in the microbiome of hives 
with their respective metadata values were computed 
and represented as heatmaps.

All biostatistical and microbial community analyses 
were performed in R and RStudio (version 1.5.46) 
[24], with the packages phyloseq (version 1.36) [25], 
vegan (version 2.5–7) [26], ade4 (version 1.7–16) 
[27], ggpubr (version 0.3.0) [28], psych (version 
2.1.3) [29] and dunn.test (version 1.3.5) [30]. Graph-
ics were generated in R using the packages ggplot2 
(version 3.3.3) [31], ComplexHeatmap (version 2.8.0) 
[32] and ggpubr. Unless specified otherwise, statis-
tical significances were determined employing the 
non-parametric Kruskal–Wallis’ test and the Dunn’s 
post hoc test, or Wilcoxon’s test when specified, with 
p values < 0.05 considered significant, all of which 
were adjusted for false discovery rate (FDR) using the 
Benjamini–Hochberg method.

Fig. 1  Location of the 6 apiar-
ies where honeybee microbi-
ome profiling was performed 
throughout the 2019 season. 
To maintain apiary/beekeeper 
confidentiality, locations are 
approximate only. Map adapted 
from: Wikimedia Commons, 
Author: Nilfanion, under the 
Creative Commons Attribution-
Share Alike 3.0 Unported 
license
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Sequence Data Accession Number

All 16S rRNA gene sequence data are available through the 
European Nucleotide Archive (ENA) database under the 
accession number PRJEB47333.

Results

The Honeybee Microbiome Is Distinct from That 
of Hive debris

For this longitudinal microbiome survey, we chose 6 apiaries 
covering southern Ireland (Fig. 1) and a variety of location 
types and forage regimes (Table 1). Although most of the 
apiaries were close to farmland, only half had other apiar-
ies within a 5 km flying radius. Apiary 4 was on an agri-
cultural research station surrounded by oil seed rape fields, 
which was associated with bees that reacted aggressively 
during sampling. The colonies in Apiary 5 were located on 
the premises of a commercial fruit grower with large areas 
of outdoor fruit, and fruit under glass (with open windows) 
supplied with commercial bumblebee pollinators. Apiary 6 
was located in a remote coastal setting, but was not the same 
apiary surveyed in our previous study [20].

Based upon our previous study [20], where we estab-
lished the whole-body microbiota as reliably representing 
the gut microbiome while also capturing the whole-body 
microbial exposure that was expected to vary during the 
season, we similarly extracted total bacterial DNA from 
both the hive debris samples and a representative fondant 
sample, profiled the microbiome by 16S rRNA gene ampli-
con sequencing and compared the microbiome to that of all 
the bees sampled. Principal co-ordinate analysis (PCoA) of 
microbiome profiles was performed at amplicon sequence 
variant (ASV) level which gives maximal discrimination, 
revealing that the data clustered according to sample type 
(i.e. whole body from foragers (WB) or hive debris (HD); 
Fig. 2A). The microbiome present in the commercial fon-
dant was also distinct from that of the whole-bee samples, 
while more similar to the hive debris samples (Fig. 2A). 

The honeybee microbiome was distinct from that of the hive 
debris, collected from Apiary 1 at a single timepoint, which 
confirms that the microbiome data collected are derived 
from the bee rather than the physical hive environment, or 
supplementary feeding at the first time point.

The Honeybee Microbiome Does not Cluster 
by Apiary but Clusters by Time Point

A hypothesis at the beginning of this project was that the 
physical location of an apiary and the locally available for-
age (as shown in Table 1) would have a strong influence on 
the honeybee microbiome, over-riding other factors. How-
ever, when we excluded the hive debris and fondant samples 
and performed β-diversity analysis (all whole-bee samples, 
all time points), there were clear clustering and separation 
of the honeybee microbiome by time point, independent 
of apiary identity (Fig. 3A). In contrast, there was no clear 
separation of the bee microbiome by apiary (Fig. 3B), and 
thus, the location/geography/local forage did not appear 
to be a major determining factor for the bee microbiome. 
Furthermore, although statistical (envfit) analyses identified 
significant correlation between plot ordinations for both time 
point and apiary groups, the squared correlation coefficient 
(r2) was higher for time point than for apiary (r2 = 0.111 and 
0.069, respectively), as shown in Fig. 3A and B, respec-
tively. Additionally, a visible difference in the dispersion 
by apiary could be observed in the PCoA plot, which was 
further confirmed using the betadisper function (p = 0.001), 
with pairwise comparisons showing that Apiaries 1 and 2 
had similar levels of dispersion (p = 0.96), while being dif-
ferent from all other apiaries (p < 0.05). This observed dif-
ference in dispersions seemed to be particularly caused by 
samples clustering at the upper section of the ordination 
plot (Fig. 3A), and Spearman correlations (r >|0.4| and p 
adjusted < 0.05 cutoffs) between the PC2 axis and ASV rela-
tive abundance indicated that this was driven to some extent 
by an increased relative abundance of Arsenophonus ASVs, 
for which 8 ASVs were positively correlated with PC2. 
Conversely, negative correlations were detected with the 
relative abundance of ASVs classified as Bartonella apis; 

Table 1  Locations and properties of the apiaries subjected to microbiome analysis in this study

Apiary Location Apiary setting

1 North Co. Cork Surrounded by tillage and dairy; southerly aspect; other apiaries within 5 km
2 Central Co. Galway Surrounded by sheep and cattle grazing; other apiaries within 5 km
3 North Co. Tipperary Grassland for cattle raising
4 North Co. Carlow Central plains; close to oil seed rape crop and government agricultural/ horticultural station; other apiaries 

within 5 km
5 North Co. Dublin Managed pollinator apiary on lands of large commercial fruit grower with indoor and outdoor horticulture
6 West Co. Cork Remote coastal apiary bordered by mixed tillage and pastoral land
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Fig. 2  Principal co-ordinate 
analysis of the honeybee micro-
biome across all apiaries, all 
time points

a

b

c
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Bifidobacterium (which also had 2 ASVs positively associ-
ated with PC2), Bifidobacterium indicum, Candidatus Proff-
tella, Frischella, Frischella perrara, Gilliamella, Gilliamella 
apicola, Orbaceae, Rhizobiaceae and Snodgrassella.

The tightest clustering of the bee microbiome data was 
early in the season (time point 1 or T1). Meanwhile, at time 
point 2 (T2), the microbiome had shifted to a more dissimilar 
composition across all apiaries/hives, with the exception of 
Apiary 5 (Supplementary Fig. 2). This time point coincided 
with either at the end of the “June gap” in nectar flow in Ire-
land (which is quite regional and local in timing), or in early 
summer flow in most apiaries. In the last time point (T3), 
which was after honey harvest, the microbiome had moved 
back to being more similar to the starting microbiome, sug-
gesting loss of the effect of the summer forage—again, with 

the exception of Apiary 5, which appeared to have a more 
continuous change in microbiota composition over time 
points (Supplementary Fig. 2). The extent to which sam-
ples clustered by time point varied; this was visible from 
examining the beta diversity separately for individual hives 
in individual apiaries (Supplementary Fig. 2). Specifically, 
weaker correlations between microbiome composition and 
time point were detected in hives from Apiaries 2, 4, and 6.

The Honeybee Microbiome Alpha Diversity 
and Composition Changes During the Season

The diversity of an ecosystem is—in most circum-
stances—a good indicator of ecosystem health. This 
is a generalization, and it depends on the nature of the 

Fig. 3  Principal co-ordinate 
analysis of the honeybee 
microbiome across all apiar-
ies, all time points, whole-bee 
microbiome of foragers only 
(i.e. hive debris and fondant 
samples excluded)

a

b
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ecosystem, and what index of alpha diversity is used. In 
humans for example, loss of alpha diversity in the gut 
microbiome may be an indicator of risk or state of disease 

[33]. For the microbiome, one can measure the number of 
species, their richness, or evenness. We measured Shan-
non, Simpson, and Chao1 indices and Observed Species 

Fig. 4  Alpha diversity in whole-
bee microbiome over time by 
apiary as measured by A Shan-
non index; B observed species. 
Pair-wise comparisons that 
reach statistical significance are 
asterisked; ns = not significant

a

b
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(Fig. 4, Supplementary Fig. 3), ultimately focusing on 
the Shannon index as it accounts for both abundance and 
evenness of the species present [34].

Within individual apiaries, we detected the greatest varia-
tion and range in the Shannon index at the second time point, 
which also corresponded to the time when the microbiome 
had become most different from the beginning and end of 
the season (Fig. 4). Apiary 1 displayed a high level of vari-
ability of alpha diversity at the third time point, which may 
have been related to recent i.e. late honey harvest, thus later 
than usual nectar collection. Measurement of the changes 
in alpha diversity over time within individual hives (Sup-
plementary Fig. 4) revealed that hives 2, 4, 8, and 11 were 
largely responsible for the low alpha-diversity measurement 
for Apiary 1 at T3. Apiary 2 had four hives with low alpha 
diversity at the second time point. Apiaries 5 and 6 had sig-
nificantly lower alpha diversity at the final time point than 
the first or second timepoints (Fig. 4), but the absolute range 
of values over time were relatively small.

Correlations Between Honeybee Microbiome 
and Hive Health

The hive metadata including the number of frames (FR) of 
bees, brood, pollen and honey were utilised as proxies 
for hive health and these data were tested for correla-
tion with differences in the relative abundance of bacte-
rial taxa. When all time points were aggregated across 
all hives/apiaries for which data were collected, and all 
ASVs were agglomerated at their most specific taxonomic 
rank (Fig. 5), we identified several bacterial taxa with sta-
tistically significant correlations, either positive or nega-
tive, with the number of frames of honey, bees and brood, 
and only one statistically significant correlation with the 
number of frames of pollen. We detected statistically sig-
nificant negative correlations between seven bacterial taxa 
and honey production.

Correlations between bacterial taxa and frames of bees 
and brood showed similar patterns of associations, with 
these two variables being more closely related in the Spear-
man distances dendrogram in Fig. 5. Agglomerated ASVs 
classified as Commensalibacter possessed statistically sig-
nificant positive correlations with both these metadata val-
ues, while other taxa also showed this trend, although not 
passing the strict FDR-adjusted p values of 0.05 employed 
in this analysis. These included ASVs classified in the 
genus Arsenophonus, which were negatively correlated with 
frames of bees (p adjusted < 0.05) and frames of brood (p 
adjusted < 0.10), while positively correlated with the frames 
of honey (p adjusted < 0.05). Coprococcus comes was the 
only bacterial taxon with statistically significant association 
with number of frames of pollen, with a positive association 

and no significant associations with the other metadata val-
ues. This could have been influenced to some degree by the 
lower number of data points available for this parameter 
(n = 68).

When analysing correlations in finer detail at ASV-level, 
i.e. non-agglomerated at higher taxonomy ranks, a much 
larger number of statistically significant correlations were 
detected, including additional correlations with number of 
frames of pollen, although maintaining the general trend 
observed in the correlation analysis with agglomerated taxa 
(Supplementary Fig. 5 and Supplementary Fig. 6). These 
included a large number of ASVs assigned to the genus 
Commensalibacter, which showed strong positive associa-
tions with both number of frames of brood and number of 
frames of bees (Supplementary Fig. 6). This analysis also 
highlighted a group of bacteria whose abundance negatively 
associated with pollen counts, but positively associated with 
other metadata types, which included ASVs assigned to 
the families Orbaceae and Rhizobiaceae. This trend was 
further emphasised by determining correlations within the 
hive metadata values (Supplementary Fig. 7), which clearly 
showed strong positive correlations with number of frames 
of bees and number of frames of brood, as well as number 
of frames of honey, while these have weaker correlations 
with frames of pollen.

Differentially Abundant Bacterial Taxa During 
the Honey Production Season

We investigated if bacterial taxa were differentially repre-
sented in whole-bee samples across the different time points 
(Fig. 6). For this analysis, only agglomerated taxa with at 
least 1% relative abundance in at least 10% of the samples 
were retained, which resulted in a total of 23 differentially 
abundant taxa. Interestingly, 5 of these included ASVs 
assigned to Lactobacillus species, namely Lactobacillus 
apis, L. helsingborgensis, L. kimbladii, and L. melliventris 
and L. kullabergensis, all of which were more abundant in 
T1. In contrast, although the relative abundance of ASVs 
belonging to the genus Arsenophonus varied considerably 
between whole-body samples, these were less abundant at 
T1 when compared to other time points. Conversely, ASVs 
belonging to the genus Gilliamella, including Gilliamella 
apicola, were higher in T1. These observations are in keep-
ing with the overall microbiome compositions at Family and 
Genus levels per apiary over time points, as shown in Sup-
plementary Fig. 8 and Supplementary Fig. 9.

To further assess a possible co-differential abundance of 
these agglomerated taxa, Spearman correlations between 
taxon relative abundance were also computed, aiming 
to identify taxa with positively or negatively associated 
prevalence over time (Supplementary Fig. 10). Indeed, this 
analysis showed that most taxon groups determined to be 
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differentially abundant also had their relative abundances 
significantly correlated to at least one other taxon, with 

Bifidobacterium indicum and Bifidobacterium spp. being 
the only two exceptions.

Fig. 5  Heat-map of Spearman correlations of the abundance of bacterial taxa (agglomerated taxonomy) and metadata variables (FR honey, FR 
bees, FR brood, FR pollen). All WB samples were used for the analysis; Spearman correlations with FDR-corrected p values
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Discussion

A main objective of this project was to determine the influ-
ence of location and time point, i.e. the seasonal and for-
age effects, upon the bee microbiome. We thus analysed the 
honeybee microbiome from 6 apiaries from varied environ-
ments across southern Ireland over the 2019 honey produc-
tion season, also seeking to identify associations and/or 
patterns between microbiota composition and hive “health” 

or productivity. The microbiota composition of samples 
derived from apiaries in very different environments was 
more similar to each other within time points than across 
time points in the same apiary, i.e. apiary location was not 
the strongest factor driving differences or changes in the 
honeybees’ microbiota. This finding is broadly in line with 
the observation that the microbiome of corbiculate bees 
is largely stable [35], and perhaps site differences would 
be detectable in future studies by investigating strain-level 

Fig. 6  Box plots with the differentially represented bacterial taxa over 
time in whole-bee samples in all apiaries/hives (agglomerated at most 
specific taxa rank). Only taxa with at least 1% relative abundance in 
at least 10% of the samples have been considered for analyses. Sta-

tistically significant differences were computed with Kruskal–Wallis 
test and Dunn test, with a FDR-adjusted p < 0.05 considered signifi-
cant
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resolution of the microbiome [36]. However, achieving this 
level of detail would require the employment of shotgun 
metagenomics rather than 16S rRNA data, which would 
be challenging for the scale and number of samples in the 
present regional study, across an entire season. Correla-
tions between microbiota composition and time points were 
weaker in apiaries 2, 4 and 6, when compared to the other 
apiaries. This could potentially be due to their respective 
locations or other factors playing stronger roles in microbial 
composition changes, considering that Apiary 2 colonies 
were being fed with Candipolline, while Apiary 4 is located 
in an agricultural research area, and Apiary 6 is located in a 
remote peninsular area. Also notable was the fact that sam-
ples from time points 1 and 3 were more similar among 
each other in most apiaries, with a stronger compositional 
shift observed in time point 2. This was not the case, how-
ever, for Apiary 5, whose samples became increasingly dif-
ferent over time (i.e. T1 is more similar to T2 rather than 
T3), perhaps due to a higher degree of human intervention 
and management in this apiary, operated as a fixed pollina-
tor site for commercial fruit production, or as a result of a 
potential additional diversity in pollen supplied in the area 
by both commercial crops as well as several surrounding 
managed wildflower areas. Another hypothesis that could 
explain these observations regarding the influence of the 
time of the year on the microbiome composition is that some 
winter bees were sampled in T1 and T3, rather than summer 
bees which were more likely to be found in higher abun-
dance in T2. Long-lived winter bees have a life expectancy 
of 6 months or more [37], and can persist in colonies up until 
May and reappear in colonies around September. Impor-
tantly, they are known to be physiologically different from 
summer bees in many ways, including in their gut microbiota 
composition [38].

We identified differences in abundances of bacterial taxa 
as well as changes of taxon abundance over time. Though it 
is hard to convey the complexity of the patterns at this level 
of scale, some potentially interesting signatures could be 
observed in the microbiome composition. For example, we 
noted differences in abundance of the genera Arsenophonus 
and Lactobacillus, the former being a known insect endos-
ymbiont that could be related to generally poor hive health 
[39–41], and the latter which could be related to improved 
hive health [40]. Some bee microbiota were identified to be 
constituted almost entirely by Arsenophonus ASVs, which 
could potentially indicate very poor health of these honey-
bees, although this somewhat extreme relative abundance 
was not observed in the average abundance of samples. This 
hypothesis is supported by previous studies which associated 
Arsenophonus species with poor honeybee colonies health 
[40], and identified an abnormally high abundance of Arse-
nophonus in colonies suffering from CCD [42], as well as in 
bumblebees infected with the eukaryotic parasite Apicystis 

bombi [43]—although the biological mechanisms underly-
ing these observations are still lacking. We also observed 
an interesting trend towards lower Arsenophonus relative 
abundance with an increased relative abundance of other 
taxa known to be associated with honeybees’ health, such 
as Gilliamella, Lactobacillus, Bombilactobacillus (formerly 
referred to as Lactobacillus Firm-4), Commensalibacter and 
Bifidobacterium, as indicated by differential bacterial taxa 
abundance and correlation analyses [20, 44, 45]. Among 
these, Commensalibacter are considered to be part of the 
core microbiome of honeybees, and have also been previ-
ously linked to greater honeybee health, for example by 
being detected in higher occurrence in healthy colonies in 
comparison to those affected by European foulbrood [46]. 
Furthermore, although Gilliamella members are biologically 
diverse and have been reported to have various ecological 
associations, their abundance patterns in the current study 
are in line with previous reports that proposed that members 
of this genus could provide health benefits to honeybees, 
particularly with respect to the metabolism of toxic sugars 
[45]. Further investigation is required in order to determine 
whether these observed patterns and correlations are the 
result of antagonistic effects of these “positive” taxa against 
“negative” taxa such as Arsenophonus, or if these are linked 
to more complex synergistic effects on the overall bee health.

Our results also indicated numerous correlations between 
hive health metadata and bacterial taxon abundance, which 
is consistent with a number of recent studies that have 
increasingly shown the importance of the microbiota for 
hive and bee health [20, 44, 47]. These included all of the 
Lactobacillus species that showed significant correlations, 
while the abundance of members of the genus Apilactobacil-
lus—which include bacteria formerly classified as Lactoba-
cillus kunkeei—was shown to be positively correlated with 
honey production. This observation may be due to the com-
positional nature of the 16S rRNA amplicon data, for which 
flower-associated bacteria such as Apilactobacillus species 
[48] are expected to appear in increased loads in the forager 
bees as nectar gathering is increased and consequently honey 
production is increased, which in turn will decrease the rela-
tive abundance of other taxa, such as Lactobacillus, but not 
necessarily decrease their absolute quantities in the micro-
biome. In fact, it was interesting to note that many of the 
taxa shown to be positively correlated with honey produc-
tion include flower-associated species, e.g. Apilactobacillus, 
Fructobacillus fructosus, Acinetobacter boissieri, Neokoma-
gataea [48–52]. This increased prevalence and abundance in 
the microbiome is potentially reflective of increased nectar 
gathering and, consequently, increase in honey production—
although a role in promoting hive productivity cannot be 
excluded. The clustering of honeybee microbiome by time 
point also relates with the clustering of plant resources by 
time point as plants enter and exit flowering seasons, and 
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the fact that honeybees appear to select the same frequently 
encountered plants across different habitats [53].

Associations detected here included positive correlation 
between ASVs belonging to the genus Apilactobacillus 
(which include species formerly classified as Lactobacil-
lus kunkeei) and frames of honey, as aforementioned; Arse-
nophonus ASVs negatively correlated with the number of 
frames of bees; and Commensalibacter ASVs positively 
correlated with both number of frames of bees and number 
of frames of brood. In addition to the previously discussed 
Arsenophonus and Commensalibacter genera, Apilactobacil-
lus species have been previously reported to provide varied 
health benefits to honeybees, including inhibitory activity 
against pathogens [54–56]. More specifically, this antibacte-
rial activity has been recently identified in a member of this 
genus, viz. Apilactobacillus kunkeei FF30-6, via a narrow-
spectrum nisin variant bacteriocin, namely Kunkecin A, with 
strong antimicrobial activity against Melissococcus pluto-
nius—the causative agent of European foulbrood [56]. This 
combined evidence further highlights the importance of taxa 
such as Apilactobacillus species for the health of honeybees, 
not only from the metabolic aspect but also with respect to 
the host defence mechanisms against pathogens.

Previous studies that had assessed to varying degrees 
the effects of season and location on the honeybee micro-
biome, for the most part analysed either single or a couple 
of locations over single or a couple of time points [36, 57, 
58]; and/or focused on microbiome differences between 
seasons rather than within a season [57], particularly with 
regard to wintering bees [38, 58–60]. Therefore, our study 
further enriches the current knowledge regarding the influ-
ence of time point and location over the honey production 
season, by analysing a large number of individual samples 
from six different apiary locations, deliberately chosen to 
encompass very different environment types. However, it is 
important to note some limitations due to the relative abun-
dance/compositional nature of the 16S rRNA data employed 
in this study. It is possible, for example, that differences in 
relative abundance of a bacterial taxon are affected by the 
increase/decrease of other taxa—such as flower- or nectar-
associated—but not necessarily reflective of differences in 
its absolute abundance. Additionally, it is also feasible that 
the observed correlations reflect an increase in collected 
nectar, which would consequently increase the abundance 
of flower-associated bacterial species, such as Apilactobacil-
lus. Although we have previously shown that the honeybee 
whole-body and gut microbiomes are generally very similar 
and share the same dominant core taxa [20], it is possible 
that seasonal- or location-dependent variations in the crop 
microbiome are either not detectable, or over-influential of 
the whole-bee microbiome, i.e. compared to what might 
have been detected in a comparative analysis of crop, hind 
gut and whole-bee microbiomes. However, with our desire 

to achieve statistical power from large sample numbers, dis-
sections on that scale for so many individual bees samples, 
apiaries and time points were not feasible.

This is the first study investigating the microbiome 
composition across different locations and time points in 
honeybees in Ireland. In future studies, we will employ 
shotgun sequencing metagenomics rather than 16S amplicon 
sequencing, with an aim to increase bacterial species detection 
resolution as well as functional profiling at gene level. We may 
also utilise more granular honeybee health indicators assisted by 
electronic hive monitoring. However, our data already highlight 
the potential importance of the microbiota for honeybee health, 
a proper understanding of which might play a crucial role in the 
sustainable management of these important pollinators.
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