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Physical environment, man-made pollution, nutrition and their mutual interac-

tions can be major causes of human diseases. These disease determinants have

distinct spatial distributions across geographical units, so that their adequate

study involves the investigation of the associated geographical strata. We

propose four geographical detectors based on spatial variation analysis of the

geographical strata to assess the environmental risks of health: the risk detector

indicates where the risk areas are; the factor detector identifies factors that are

responsible for the risk; the ecological detector discloses relative importance

between the factors; and the interaction detector reveals whether the risk factors

interact or lead to disease independently. In a real-world study, the primary

physical environment (watershed, lithozone and soil) was found to strongly

control the neural tube defects (NTD) occurrences in the Heshun region (China).

Basic nutrition (food) was found to be more important than man-made pollution

(chemical fertilizer) in the control of the spatial NTD pattern. Ancient materials

released from geological faults and subsequently spread along slopes dramati-

cally increase the NTD risk. These findings constitute valuable input to disease

intervention strategies in the region of interest.

Keywords: Geographical detectors; Disease; Determinants; Spatial consistence;

Birth risk

1. Introduction

Environmental health is a modern yet critically important scientific discipline, which
is generally concerned with the study of connections between environmental

attributes that can affect the state of human health and the processes describing this

state (e.g. Shields 1990). Ambient air pollutants, groundwater chemical contami-

nants, acid precipitation and net radiation are examples of environmental attributes.

Coronary heart disease cases, breast cancer incidence and mesothelioma mortality
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are examples of health effects. Rigorous concepts and quantitative techniques have

been developed for the purpose of assessing human exposure to environmental

hazards and their various effects on the population in a space-time domain under

conditions of multi-sourced uncertainty (Christakos and Hristopulos 1998, Kentel

and Aral 2005, Robson and Toscano 2007).

Certain environmental attributes have the potential to become health determi-

nants. In general, an environmental determinant of health is any attribute

(biological, chemical, physical, social or cultural) that can be causally linked to a

change in health state, e.g. known determinants include particulate matter and

ozone concentrations, tobacco smoke, radiation, biological agents in the water

and soil, persistent organic pollutants, greenhouse gases, various forms of waste,

and contaminants transported via the food chain. The corresponding health effects

include respiratory diseases, malaria, diarrheal diseases, cancers, tuberculosis,

pneumonia, and cardiovascular disease (Flaum et al. 1996, Christakos and Vyas

1998, Chen et al. 2004). In many cases, the exposures are closely related in space-

time to the health effects they produce, whereas in some others the exposures are far

apart in space-time from the witnessed effects (Maxwell and Kastenberg 1999,

Breslow 2002, Tamerius et al. 2007).

The residents of a geographical region (city, county, state, etc.) have the right to

be informed about potential environmental determinants that are active in their

region; policy-makers are interested about the geographical variation of environ-

mental health risk in a population; and decision-makers developing disease

intervention strategies need to differentiate between independent and interconnected

health factors across space and time (Morgan 2002, Gu et al 2007, Mutshinda et al.

2007). The above considerations are all linked to spatial information technology

matters that may be summarized into four questions:

(1) What is the geographical domain of the health risk?

(2) Which environmental parameters are responsible for the risk?

(3) What is the relative importance of each risk factor?

(4) Do the risk factors operate independently or they are interconnected?

Over the years, a number of quantitative tools have been developed to address

questions such as the above. Among them, hotspots statistics techniques address

question (1) above by testing the statistical significance of high in situ disease

incidence ratios compared to the surrounding areas (Anselin 1995, Kulldorff 1997).

Stochastic analysis accounts for the spatial dependence of disease characteristics and

generate detailed maps of non-homogeneous disease variations together with a

measure of map accuracy (Christakos and Lai 1997). Spatial linear regression and

conditional logistic regression techniques identify the risk factors by means of the

t-value of the regression coefficients (Haining 2003). In cases where the uncertainties

of the relevant health risk variables cannot be presented in terms probabilities, they

can be handled through fuzzy membership functions (Heng et al. 2008).

In this study, we address the four risk-related questions above by means of spatial

variance analysis (SVA), which can be used for both measurable and categorical

variables. The basic idea of SVA is to compare the spatial consistency of health risk

distribution (e.g. disease cases) versus the geographical strata (e.g. climate, soil,

water, population, ethnicity, culture and lifestyle, poverty, nutrition and land use) in

which potential health risk factors exist. We first explore the relationship between

environmental determinants of disease and their geographical variations. Then, we
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introduce the concept of the power of determinant to the potential health effect,

followed by a review of data preparation techniques. Four geographical detectors

are defined and their basic features are examined. Finally, we obtain valuable insight

by means of the neural tube defects (NTD) study (Heshun County, China).

2. Disease determinants and geographical space

As we mentioned above, there is a number of environmental attributes that can be

determinants of disease development and evolution (Christakos and Hristopulos

1998, Collins 2004, Burton 2005). These attributes are characterized by their distinct

spatial variations, in which case the geographical space can provide the interface to

uncover possible determinants. In recent years, the geographical information system

(GIS) technology offers a versatile operational platform to host spatial information,

whereas quantitative spatial analysis provides powerful tools to complement the

objective.

Rapid advances in earth observation technology made geographical data much

more accessible and visible (Gewin 2004). In fact, many parts of the world have

already been completely evaluated, digitally surveyed and are currently under real

time surveillance. In many areas of the world, the geographical strata of health

related factors have already been stored in GIS or, at least, they are available at

coarse spatial resolutions, thus providing the relevant datasets and operational

tables needed to investigate environmental health risk determinants.

If an environmental attribute leads to a disease, this disease would exhibit a

spatial distribution similar to that of the environmental factor, the spatial ‘factor-

disease’ consistency indicating the in situ existence of causal factors. According to

table 1, that the occurrence of factor increases the disease risk is equivalent to the

fact that the absence of the factor decreases the risk; conversely, that the occurrence

of the factor decreases the disease risk is equivalent to the fact that the risk would

increase if the factor is absent.

There are, at least, four kinds of relationships between health determinants and

geographical space, as follows:

N Physical determinants of health are spatially distributed: Potential health

hazards include surface and subsurface water contaminated by insufficiently

oxygenized ancient geological media; also, radiation emissions from certain

rocks or along faults (Boulding 1995, Burton 2005).

N Man-made pollution is spatially distributed: Hazards of this kind include

pesticides and chemical fertilizers spread over crop fields; also, polluted air and

water emission from workshops and electromagnetic radiation in workplaces

(Shields 1990, Morgan 2002).

N Nutrition processes are spatially distributed: e.g. nutrition strongly depends on

the spatially varying residential income; hence, it is usually proportional to the

Table 1. Occurrence (absence) of an environmental attribute increases (decreases) the disease
risk.

Area with environmental
attribute

Area without environmental
attribute

Area with disease cases Yes (No) No (Yes)
Area without disease cases No (Yes) Yes (No)

Geographical detectors of health risk 109
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GDP that is regularly surveyed across space and published in the government’s

annual statistics/census reports (Jamison 1986, Berdanier 2002).

N Heredity and habits are spatially distributed: Ethnic groups have specific

genetic and food habits and behavioral patterns, some of which are hazardous

to health (McMichael 2001). Health determinants may be detected when the

disease cases and the ethnic features share similar spatial features, e.g. that the

shape and size of spatial disease clusters is consistent with that of citizens’ daily

activities suggests that heredity is relevant to the neural tube defects in the

region (Wu et al. 2004).

3. Power of determinant

We will demonstrate the concept of ‘power determinant’ with the help of a simple

yet illustrative example. In figure 1 we consider a study region A and a health effect

Figure 1. Division of the A study region A, the grid system G5{gi; i51, 2, …, n} and the
geographical stratum D5{Di; i51, 2, 3}; the overlaid A, G and D with the corresponding
statistical parameters are also shown.

110 J.-F. Wang et al.
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H (heart disease rate, cancer mortality ratio, etc.) recorded on a grid system G

consisting of units gi (i51, 2, …, n) covering A. Assume that Di (i51, 2, 3) are the

attributes associated with the geographical stratum of a suspected health

determinant (e.g. climate or pollution), denoted as D5{Di}. In many environmental

health studies one needs to carefully examine the spatial relationship between the

effect H and the stratum associated with the attributes Di.

For this purpose, we first overlay the distribution of the health effect H over the

geographical stratum of the suspected determinant D5{Di} (see figure 1). The mean
value and the dispersion variance of H over the sub-regions of the attributes Di are

denoted as HD, i and s2
HD, i

i~1, 2, 3ð Þ, respectively. The significance of the variation

of the mean values of H over the respective sub-regions i can be statistically tested.

The D5{Di} is often suspected as a disease determinant, when the s2
HD, i

of each sub-

region is small, whereas the variances between sub-regions is large (which means

that such a division explains most or even all of the spatial H variation). Note that

s2
HD, i

?0, in the ideal case of a perfect division of the region.

Let nD,i be the number of samples in the sub-region i of the determinant Di and let

n be the total number of samples over the entire region A of interest, i.e.
n~

P3
i~1 nD, i. The power of determinant D5{Di} to the health effect H is given by

PD, H~1{
1

n s2
H

X3

i~1
nD, is

2
HD, i

ð1Þ

where the second term in the right hand side of equation (1) denotes the ratio of the

nD,i weighted divisional variations s2
HD, i

over the global variance s2
H of the health

effect H in the study region. Note that, if it is a perfect division and s2
H=0, then

PD,H51. The PD,H concept is also considered in equation (10) below.

The health effect dispersion variance, the mean and its variance are the building

blocks of geographical detectors and have to be estimated in the presence of spatial

dependence. Consider a geographical region divided into environmental attribute

units z. The mean and variance of the mean health effect Hz are given by,

respectively, Hz~mz (the super-population mean of H in unit z) and

s2
Hz

~ 1
n

s2
Hz 2

n2

P
ivj cH i, jð Þ, where cH denotes the covariance of the H across

space. The s2
H is estimated using (Haining 1988, Arlinghaus 1996),

s2~ 1
n{1

Pn
i~1 Hi{H
� �2

s2~s2
H{ 2

n n{1ð Þ
P

ivj cH i, jð Þ

9
=

;
ð2Þ

where Hi is the value of the sample i51, 2, …, n. Next, we describe the various steps

of the population health risk assessment approach under real-world conditions.

Then, we apply this approach in the study of NTD occurrences in the Heshun region

(China).

4. Data preparation

4.1 Downscaling from the r-framework to the z-framework

In many studies there is a scale difference between the disease count unit r and the

environmental attribute unit z, in that a disease is conveniently assigned to units
selected by the human agent (postal, census, administrative), whereas the

environmental attributes and geographic layers are naturally formed. Each
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environmental attribute unit z is clipped by the disease count unit r, which divides it

into a number of sub-units (polygons). There are, at least, five approaches of

downscaling from the r-framework to the z-framework:

The first approach is based on even spatial discretization: The estimated

population in geographical zone z is

PEst
z ~

XNz r

r~1
PEst

z r ð3Þ

where the estimated population in the unit r of z is PEst
z r ~

PObs
r

AObs
r

AObs
z r ; PObs

r is the

observed population in unit r, AObs
r is the observed area of r, AObs

z r is the observed

area of r that lies within z, and Nzr is the number of report units r in z. Accordingly,

the estimated health effect (e.g., mortality or morbidity) in unit r of z will be

HEst
z r ~

HObs
r

PObs
r

PEst
z r , where HObs

r is the observed health effect in unit r; then, the effect in

geographical unit z will be

HEst
z ~

XNz r

r~1
HEst

z r ð4Þ

Another approach is in terms of monitoring classification: Let Hp be the health

effect at the sampling point p and zp be the geographical unit covering p. Consider

the conditional mean

Hp zp

�
� ~azb zp ð5Þ

where a and b are suitable coefficients, the bar denotes statistical expectation, and

the vertical line denotes statistical conditional. By letting Hp zp

�
� ~HEst

z r , one can use

equation (4) to obtain the health effect HEst
z r in the geographical unit z and the

corresponding population PEst
z

� �
.

Other approaches include Gaussian process regression (using the sample to regress

dependent variables to explanation variables in a spatial kernel and employ genetic

program to form the function); smoothing values in kernel (i.e. setting the health

effect value in z by smoothing the values in r in a distance kernel) and point by area

(i.e. setting the effect value in z by taking the average of values in r); see (Gibbs 1997,

Liao et al. 2008, Huang et al. 2008).

Monitoring classification and Gaussian process regression require measurable or

scale quantities. For categorical variables, such as the geographical strata considered

in the paper, the spatial discretization, smoothing values in kernel, and point by area

approaches are applicable. The first two approaches approximate the real surface by

area weighting and distance weighting, respectively, and are both preferable to the

third approach. For the ‘kernel’ approach certain distance parameters have to be

artificially set up, which is why we have chosen to use the spatial discretization

approach in the present study.

4.2 Measures of risk

Let D denote an environmental determinant (climate, watershed, soil, poverty, etc.)

that is a potential health hazard. We define certain forms of health risk measure,

112 J.-F. Wang et al.
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say R, as

Rr~
HObs

r

Hr
, Rz r~

HEst
z, r

Hz, r

Rr~
HEst

z

Hz
, RH~

HEst
D

HD
~1

9
>=

>;
ð6Þ

where Hr~

PNz r

r~1
HObs

rPNz r

r~1
PObs

r

PObs
r , Hz, r~

HEst
z

PEst
z

PEst
z r , Hz~

HEst
z

PEst
z

PEst
z and HD~HObs

D . If neces-

sary, the values above would be adjusted by Bayesian neighbors and age (Beaglehole

et al. 1993, Haining 2003).

4.3 Exploratory data analysis and Bayesian adjustment

Since the proposed geographical detectors were based on variance addition, when a

factor has many sub-regions (statistical units) of small area, the contribution of the

factor could be underestimated or overestimated because the variances of such sub-

regions are easily disturbed by the influence of other micro-exceptional elements. In
this case, some outlier records could disguise the real spatial consistency between the

factors and the disease and the real significance rank orders of the factors in causing

a disease. Exploratory data analysis is necessary to filter out whenever outliers may

appear, whereas the small sample problem can be further alleviated by the Bayesian

adjustment technique (Haining 2003).

5. Geographical detectors

We propose four geographical detectors in order to address the following four
questions:

(1) Where is the geographical location under environmental health risk R?

(2) Which determinants Di are responsible for the risk?

(3) What is the risk difference, DR5Ri2Rj, between the geographical regions i

and j ?

(4) Are the risk determinants Di independent or interconnected as measured by

the conditional probability P[Di|Dj]?

The conceptual framework of the four geographical detectors (risk, factor,

ecological and interaction) to be used in this study is given in table 2; a detailed

technical discussion of these detectors follows.

Table 2. Conceptual framework the geographical detectors.

Detector Main ideas

Risk detector Compares the difference of average values between sub-regions; the
bigger the difference, the greater the danger to the population health of
the sub-region.

Factor detector Compares the accumulated dispersion variance of each sub-region with
the dispersion variance of the entire study region; the smaller the ratio,
the stronger the disease contribution of the stratum.

Ecological detector Compares the variance calculated from each sub-region divided
according to one determinant with that divided according to another
determinant.

Interaction detector Compares the sum of the disease contribution of two individual
attributes vs. the contribution of the two attributes when taken
together.

Geographical detectors of health risk 113
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5.1 Risk detector

The risk detector is used in the search for areas of potential health hazard. At the

moment, it is assumed that disease occurrences are independently and identically

distributed over space (p-independent; Brus and Gruijter 1997). According to the

central limit theorem (Grimmett and Stirzaker 1992), the mean disease occurrence

tends to be normally distributed. From the superpopulation perspective, the mean is

a single realization of an underlying process (Griffith et al. 1994), therefore the

difference between two superpopulation means was tested by student t (Press et al.

1992). The superpopulation mean was estimated by the observed mean using the

ergodic assumption (Haining 1988). We compared the difference of the super-

population means in paired regions.

The geographical zones z are ordered in descending order of risk Rz.

The difference between the means of two geographical zones could be due to

either sample random variation or fundamental differences of superpopulations,

which have different meanings in epidemiology. Such a discrimination could be

made by means of the statistics for measuring the significance of difference

between the means of two distributions having an unequal variance (t-test; Press

et al. 1992):

tRz~1{Rz~2
~

Rz~1{Rz~2

1
nz~1, p

s2
Rz~1

z 1
nz~2, p

s2
Rz~2

h i1=2
ð7Þ

where nz,p refers to the number of sample units p in zone z. This statistic is distri-

buted approximately as Student’s t with a number of degrees of freedom equal to

df ~

1
nz~1, p

s2
Rz~1

z 1
nz~2, p

s2
Rz~2

h i

1
nz~1, p{1

1
nz~2, p

s2
Rz~1

h i2

z 1
nz~2, p{1

1
nz~2, p

s2
Rz~2

h i2
ð8Þ

To test the null hypothesis H0 : Rz~1~Rz~2, we give a significant level a (usually

5%), and find ta by checking the student-t distribution table. If tRz~1{Rz~2

�
�
�

�
�
�wta=2,

reject H0; hence, we conclude that there is a significant difference between the health

risks of zone 1 and 2. This suggests examining the underlying natural mechanisms

(chemical processes, interface between soil and people, the soil layer consists of

different types distributed in different zones etc.) in order to explain the significant

difference above.

5.2 Factor detector

Is a geographical stratum responsible for an observed spatial disease pattern? This

can be measured by the difference between the dispersion variance s2
D, p~

1
nD, p

PnD, p

p~1

RD, p{mD

� �2
and the stratified population dispersion variance s2

D, z~
1

nD, p

PnD, z

z~1
PnD, p

p~1 Rz, p{mz

� �2
, where mD~RD, p, mz~Rz, p. We define s2

D, p~
1

nD, p

PnD, p

p~1 HD, p{
�

HDÞ2 and s2
D, p~

1
nD, p

PnD, p

p~1 RD, p{RD

� �2
, then s2

D, p~s2
D, p 1{rD, p

� �
and s2

D, z~

s2
D, z 1{rD, z

� �
, where r denotes the spatial autocorrelation coefficient, which is

assumed to be second order spatially stationary, i.e. rD,p5rD,z.

114 J.-F. Wang et al.
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To find out whether the two data sets have variances that are significantly

different, the F-test is

F~
s2

D, p

s2
D, z

~
m s2

1 m n{1ð Þ
n s2

2 n m{1ð Þ
ð9Þ

This statistic is distributed approximately as F(m21, n21), with degrees of freedom

equal to df5(m21, n21)5(nD,p, nD,p) (Grimmett and Stirzaker 1992).

To test the null hypothesis H0 : s2
D, p~s2

D, z, we give a significant level a (usually

5%), and find the fa by checking the F(m21, n21) in the distribution table. We find

the lowest and highest f1a and f2a; if F Obs(m21, n21).f2a, we reject H0. We

conclude that s2
D, p is significantly bigger than s2

D, z; hence, geographical zonation

causes significant differences in health results. The power of determinant of z to the

disease, PD,H, is defined as

PD, H~1{
s2

D, z

s2
D, p

ð10Þ

Note that PD,H51 means that the geographical stratum completely explains the

spatial pattern of the disease, whereas PD,H50 implies a completely random spatial

occurrence of the disease.

5.3 Ecological detector

Is a geographical stratum (associated with one suspected determinant) more

significant than another one (associated with another suspected determinant) in

controlling the spread of the disease in space? e.g. if soil pollution (Layer 2) is more

likely (or more significant) than water pollution (Layer 1) to cause a disease in the

study area, we would expect the water population dispersion variance s2
D1, z~

1
nD1, p

PnD1, z

z~1

Pnz, p

p~1 RD1, p{RD1, p

� �2
to be larger than the soil population dispersion

variance s2
D2, z~

1
nD2, p

PnD2, z

z~1

Pnz, p

p~1 RD2, p{RD2, p

� �2
. The test for this is

F~
nD1, p nD1, p{1

� �
s2

D1, z

nD2, p nD2, p{1
� �

s2
D2, z

ð11Þ

This statistic is distributed approximately as F nD1, p{1, nD2, p{1
� �

, with degrees of

freedom equal to df ~ m{1, n{1ð Þ~ nD1, p, nD2, p

� �
.

Again, to test the null hypothesis H0 : s2
D1, p~s2

D2, z, we give a significant level a

(usually 5%), and find fa by checking F (m21, n21) in the distribution table. We find

the lowest and highest f1a and f2a; if FObs(m21, n21).f2a, we reject H0. We conclude

that s2
D1, p is significantly bigger than s2

D2, z; hence, the soil 2 is a more significant

health determinant than the water 1.

5.4 Interaction detector

Do two health determinants Di (i51, 2) when taken together weaken or enhance

each another, or are they independent in developing a disease? To answer this kind

of question we define the interaction detector, as follows
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Enhance : PD, H D1\D2ð ÞwPD, H D1ð Þ or PD, H D2ð Þ
Enhance, bi- : PD, H D1\D2ð ÞwPD, H D1ð Þ and PD, H D2ð Þ
Enhance, nonlinear- : PD, H D1\D2ð ÞwPD, H D1ð ÞzPD, H D2ð Þ
Weaken : PD, H D1\D2ð ÞvPD, H D1ð ÞzPD, H D2ð Þ
Weaken, uni- : PD, H D1\D2ð ÞvPD, H D1ð Þ or PD, H D2ð Þ
Weaken, nonlinear- : PD, H D1\D2ð ÞvPD, H D1ð Þ and PD, H D2ð Þ
Independent : PD, H D1\D2ð Þ~PD, H D1ð ÞzPD, H D2ð Þ

9
>>>>>>>>>>>=

>>>>>>>>>>>;

ð12Þ

where the symbol ‘>’ denotes the intersection between D1 and D2. The ‘PD,H

(D1>D2).PD,H (D1) or PD,H (D2) (Enhance)’ is not equivalent to ‘PD,H

(D1>D2).PD,H (D1) and PD,H (D2)(Enhance, bi–)’, e.g. assume that PD,H

(D1)50.2, PD,H (D2)50.5 and PD,H (D1>D2)50.3; then ‘0.3 (D1>D2).0.2 (D1) or

0.5 (D2)’ is true, but the ‘0.3 (D1>D2).0.2 (D1) and 0.5 (D2)’ is not valid. It could be

‘0.3 (D1>D2),0.2 (D1) + 0.5 (D2) (Weaken)’ and also ‘0.3 (D1>D2).0.2 (D1)

(Enhance)’, in which case the conclusion is that the D1 and D2 joint risk (0.3)

enhances the D1 single risk (0.2) but is smaller than the two individual risks added

together (0.2 + 0.5). Similarly, other pair equations in equation (12) could be used

together.

Model (12) can be easily implemented in GIS environment. The two layers D1 and

D2 are overlaid and their attributes were combined (D1>D2) as a new attribute C.

The power of determinants of D1, D2 and C are calculated respectively using

equation (10), then are put into equation (12) for judgement.

The approach is feasibly extendable to more determinants. In the case of three

determinants one finds:

Enhance : PD, H D1\D2\D3ð ÞwPD, H D1ð Þ or PD, H D2ð Þ or PD, H D3ð Þ
Enhance, tri- : PD, H D1\D2\D3ð ÞwPD, H D1ð Þ and PD, H D2ð Þ and PD, H D3ð Þ
Enhance, nonlinear- : PD, H D1\D2\D3ð ÞwPD, H D1ð ÞzPD, H D2ð ÞzPD, H D3ð Þ
Weaken : PD, H D1\D2\D3ð ÞvPD, H D1ð ÞzPD, H D2ð ÞzPD, H D3ð Þ
Weaken, uni- : PD, H D1\D2\D3ð ÞvPD, H D1ð Þ or PD, H D2ð Þ or PD, H D3ð Þ
Weaken, nonlinear- : PD, H D1\D2\D3ð ÞvPD, H D1ð Þ and PD, H D2ð Þ and PD, H D3ð Þ
Independent : PD, H D1\D2\D3ð Þ~PD, H D1ð ÞzPD, H D2ð ÞzPD, H D3ð Þ

9
>>>>>>>>>>>=

>>>>>>>>>>>;

The interpretation of these findings may become more complicated when the

number of factors involved increase, because too many factors vary simultaneously.

6. The NTD Study of the Heshun County, China

Birth defects, as formally defined by the ‘March of Dimes Birth Defects Foundation’,

refer to any anomaly (functional or structural) that is present in infancy or later in life

and is caused by events preceding birth (whether inherited or acquired). Varying from

minor cosmetic irregularities to life threatening disorders, birth defects are the major

cause of infant mortality and a leading cause of disability (Berry et al. 1999, Carmona

et al. 2005, http://www.cdc.gov/ncbddd/bd/default.htm).

Laboratory experiments and epidemiological surveys reveal that chemical, biolo-

gical, heredity, nutrimental materials and other un-identified factors, and/or their
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interaction are relevant to birth defects (Cabrera et al. 2004, Detrait et al. 2005, Gu

et al. 2007, Li et al. 2005, Meijer et al. 2005, Mitchell 2005, Wald 2004, Wu

et al. 2004).

The Heshun county of Shanxi province in northern China is among the regions

with the highest prevalence of neural-tube birth defects in the world. During the past

10 years, the Chinese government has taken measures to prevent the occurrence of

birth defects, which has reduced the prevalence to some extent. But, because the

underlying causes of many birth defects cases still remain unknown, the ratio is still

high (Gu et al. 2007). Both physical and man-made environmental exposures as well

as genetic predisposition are thought to contribute to birth defects (Wu et al. 2004),

but the relative importance of the various factors needs to be quantitatively

identified, so intervention could be more targeted and effectively implemented.

6.1 Study area

The Heshun county is located inside the Taihang mountain range in the eastern part

of the Shanxi province (figure 2(a) and (b)), with an area of 2250 km2, 330

administrative villages, 440 residents’ aggregations and a population of 134,522

people (60 persons/km2). The geomorpology is mountainous and hilly with nine

Figure 2. Maps of (a) China, (b) Shanxi, (c) Population and (d) rate of NTDs in Heshun
County.
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watersheds. The relative height difference is about 300–500 m with a mean elevation

of 1300 m. The area has a continental climate with gusty and windy springs, warm

and rainy summers, cold and rainy autumns, and long and chilly winters. The

annual mean temperature is 6.3uC; the mean temperatures in January and July are

9.2 and 19.8uC, respectively. Most of the rainfall occurs in July-August. The annual

mean precipitation of 593 mm mainly occurs during 54% of each year. Agriculture is

the major human activity, with some coal-mining, forestry and livestock production.

Both the physical environment and economic conditions are poor.

6.2 Area population

The population in the study area is 134522 (figure 2(c)), including 38,538 fertility-age

women of whom 29,375 are married. In the year 2001, 41 of the 1200 newborns had

birth defects, including 33 neural tube defects and 29 birth defect natural abortions.

Using ultrasonic B-wave, the local clinic examined 970 pregnant women, and found

42 dysplastic embryos. Abortions were artificially induced in 33 of these cases;

accordingly, the true birth defect prevalence was 6.17% (Heshun Birth Planning

Committee 2002, Wu et al. 2004) (figure 2(d)). As one of the areas with the highest

prevalence of neural-tube birth defects (NTD), inspection branches were well

organized in this county. Birth defect records for 9 years (1998–2006) were acquired

based on hospital registers and investigation in villages. These cases were divided

into neural-tube birth defects and other birth defects by organ system.

6.3 Suspect determinants of NTD

The ordination scenarios of the social and environmental factors are displayed in

figures 3–5.

6.4 Bayesian adjusted prevalence rates

For rare events, their rate values would subject to be high variance if they would be

calculated based on short term observations, because the events may occur or not in

the short period, much biased from the true superpopulation, the relationship

established in the long term interaction between the environmental determinants

and the neural birth defects in situ. In addition, the variances of the rates of rare

diseases increase if the population of census units, which is the denominate of the

rate, are small. Two efforts can reduce the variance of the rate values: collecting

cases for as long as possible and the Bayesian technique. The latter borrows strength

or information of both numerator (number of cases) and denominator (population)

from spatial neighbors to increase the sample size in situ to reduce the variance of

the ratio values. Ghosh and Rao (1994), Haining (2003) introduces the Bayesian

adjustment technique; Wu et al (2004) apply the technique to the NTD.

Because birth defect is a low probability event (Rushton 1996), to reduce the

prevalence rate variation, we collected NTD cases during seven years (1999–2005) in

order to estimate the disease prevalence rate at each village. The prevalence rate

variation arising from small sample size was further reduced by the Bayesian

adjustment technique. In order to assess potential environmental determinants of

the disease, the NTD prevalence H counted in the villages (figure 2) were transcribed

into a geographical layer (D) composed of zones (z) (Mugglin and Carlin 1998, Liao

et al. 2008).
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Figure 3. Map of suspect social strata of NTD.

Figure 4. Map of suspect environmental strata of NTD.
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6.5 Findings

The risk detector answers the question of the geographical location (z) under

environment health risk. Table 3 ordered watersheds by their risk Rz and compared

the difference of the risk between the watersheds. Similarly, for other geographical

strata.

The factor and ecological detectors disclosed that the geographical layers are

ranked by their influence (PH,D) on NTD occurrence in the following order:

Watershed (47%). lithozone (39%). soil (24%). fault (19%). river buffer (13%).

elevation (10%). slope (9%). road buffer (7%)

Figure 5. Map of suspect linearity type factors of NTD.

Table 3. Statistical significance of the risk difference between nine watersheds.

Stat Sig Diff 2 4 7 9 3 8 1 5 6

2
4 N
7 Y N
9 Y N N
3 Y Y Y Y
8 Y Y Y Y Y
1 Y Y Y Y Y Y
5 Y Y Y Y Y Y Y
6 Y Y Y Y Y Y Y Y

Note: The numbers stands for the codes of watersheds (please refer to figure 4(f)), Y means the
risk difference between the two watersheds is significant with the confidence of 95%, and N
means not.
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The following conclusions have been drawn concerning the above: The last two
factors (slope and road buffer) are statistically insignificant, and the PH,D difference

between the first four geographical factors is also statistically insignificant. The

variance of NTD rates within watersheds is the smallest, and the values in the upper,

middle and lower courses in watersheds are not significantly different, which

indicates that the NTD rates are relatively homogeneous within the watershed area.

Water is the better medium than other physical factors to homogenize the spatial

distribution of chemical and biological factors; a relatively closed watershed

topology tends to assimilate the physical environment, human culture and their
interaction. In addition, the variance of NTD rates in lithozone, soil and fault are

small as well, showing that the primary natural environment strongly controls the

NTD occurrence in the study area. The variances of the NTD rates within each

buffer distance from the river, slope classifications of elevation and slope, and road

buffer are bigger, reflecting their lower contributions to the disease (spatial pattern).

River, elevation and slope are external drivers for the displacement of chemical

elements. We used the risk detector to find that the NTD occurrence in the Carbon

and Changchen lithozones were significantly higher than that in other zones,
whereas NTD occurrence in the Permain and Triassic lithozones were significantly

lower than others (see figure 6).

In addition to the above primary physical determinants, we also tested the impact

of man-made environment and socioeconomic factors on NTD occurrence. Using

the factor detector, the human factors were ranked according to their effect on NTD

in the following order:

Crop production (17.5%). vegetable production (11.6%). GDP (11.3%). number of

doctors (1.3%). fertilizer use (0.9%)

Figure 6. Prevalence rate of NTD over lithozone in Heshun county.
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The food consumption is proportional to the local production. This series revealed

that basic nutrition (food) rather than artificial pollution (fertilizer) controls the

occurrence of NTD.

In view of the above considerations, we draw the conclusion that the power of

human factors is much lower than that of physical factors in generating NTD cases

in the study area.

The interaction detector was used to check whether two NTD determinants work

independently or not. The findings are tabulated in table 4. Geological faults and

slopes were found to enhance each other to increase the NTD risk (fault>slope

50.86.0.285fault (0.19) + slope (0.09)). Faults are often generated by intense

deformation of rock stratum causing the release of very ancient materials such as gas

or radiation, whereas slope is an external force that facilitates the spread of the

materials. Lithozone was found to disrupt the watershed’s control of NTD

(lithozone>watershed50.45,0.865lithozone (0.39) + watershed (0.47)).

We also investigated the joint impact of physical and human factors on NTD

rates. Ranked by power of determinant (PD,H) it was found that:

Lithozone>fruit (51.6%). lithozone>fertilizer (45.5%). lithozone>vegetable

(40.3%). lithozone + GDP (39.3%); soil>vegetable (28.5%). soil>fruit (28.1%).

soil>fertilizer (24.9%). soil>GDP (24.7%). soil>doctor (24.6%); fault>vegetable

(29.3%). fault>fruit (28.2%). fault>doctor (24.2%). fault>fertilizer (24.1%).

fault>GDP (23.3%)

Table 4. Interaction between pairs of physical factors in introducing NTD.

L~C~A\B : 1{
s2

L, z

s2
L, p

AzB :
P

L~A, B 1{
s2

L, z

s2
L, p

� �

Conclusion Interpretation

soil>slope 50.1,0.335Soil(0.24) + slope(0.09) C,A slope soil
lithozone>slope 50.39,0.485lithozone (0.39) + slope

(0.09)
C5A;
C,A + B

slope lithozone

lithozone>fault 50.45,0.585lithozone
(0.39) + fault(0.19)

C.A, B;
C,A + B

lithozoneFFfault

lithozone>watershed 50.45,0.865lithozone(0.39) +
watershed(0.47)

C.B lithozone
watershed

lithozone>soil 50.51,0.635lithozone (0.39) +
soil(0.24)

C.A, B;
C,A + B

lithozoneFFsoil

soil>elevation 50.56.0.345soil (0.24) +
elevation(0.10)

C.A + B soil elevation

fault>elevation 50.66.0.295fault (0.19) +
elevation(0.10)

C.A + B fault elevation

fault>watershed 50.71.0.665fault (0.19) + watershed
(0.47)

C.A + B fault watershed

fault>soil 50.78.0.435fault (0.19) + soil (0.24) C.A + B fault soil
stratum>elevation 50.84.0.495lithozone (0.39) +

elevation (0.10)
C.A + B lithozone

elevation
fault>slope 50.86.0.285fault (0.19) + slope (0.09)C.A + B faul slope

Notes: A B denotes A weakens B; A8B denotes A enhances B; AFFB denotes A and B
enhance each other when C.A, B; AEEB denotes A and B weaken each other. AOB denotes A
and B are not independent in leading to disease; A%B denotes A and B are independent in
leading to disease; A B denotes nonlinear enhancement of A and B; A B denotes nonlinear
weakening of A and B.
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The interactions of the two types of factors, listed in table 5, shows that there is not

much difference between PD,H (D1>D2) and PD,H (D1) + PD,H (D2) which means that

human factors have only a slight impact on physical factors in controlling the NTD

spatial patterns. Note that the SVA conceptual framework is general and can be

used in the study of other environment-related diseases, as well.

7. Conclusions and discussion

The causes of many diseases are complicated (Christakos et al. 2005) and the health

resources are limited in developing countries. So, tools are extremely welcome that

are relatively cheap and easy to implement in determinant detection for priority

prevention and disease intervention. The four geographical detectors have been

developed in this paper as a response to this objective.

Many diseases can only be partially explained by genetic, environment, nutrition

or other single factors; actually, they are often comprehensive consequences of

mixture and interaction of multiple factors (Texas Department of State Health

Service 2008). Clinical and laboratory work are concerned about a single patient and

a single sample of a disease, whereas epidemiology uses population-based surveys to

investigate the factors common to patients.

The prevalence of environment-related diseases often exhibits wide variations

over geographic locations, in which case it may offer new perspectives about disease

epigenetics. A single patient (the object of clinic) always exists at specific spatial

sites, where all environmental and social determinants of the disease play a role. The

determinants vary over geographical strata (soil, water, climate, poverty nutrition,

pollution or any other spatial zone) associated with populations of patients. The

spatial correspondence between disease determinants and their geographical storage

units enable us to investigate the determinants through the geographical strata.

Once a geographical stratum is tested to be statistically significant in controlling the

spatial pattern of the occurrence of a disease, the search for disease determinants

focuses on factors related to the geographical stratum. These factors could be

genetic, dietary, infectious, occupational, chemical, physical, biological, social or

interactions therein. In this study, we proposed four novel geographical detectors to

Table 5. Interaction between physical and human factors in introducing NTD.

L~C~A\B : 1{
s2

L, z

s2
L, p

AzB :
P

L~A, B 1{
s2

L, z

s2
L, p

� �

Conclusion Interpretation

lithozone>
GDP

50.39 , 0.50 5 lithozone (0.39) + GDP
(0.113)

C5A;
C,A + B lithozoneEEGDP

lithozone>ve-
getable

50.40 , 0.51 5 lithozone (0.39) + vegetable
(0.116)

C.A, B;
C,A + B

lithozoneEE
vegetable

lithozone>fer-
tilizer

50.45 . 0.40 5 lithozone (0.39) + fertilizer
(0.009)

C.A + B lithozone
fertilizer

lithozone>fruit 50.52 , 0.56 5 lithozone (0.39) + fruit
(0.175)

C.A, B;
C,A + B

lithozoneFFfruit

Notes: A B denotes A weakens B; A8B denotes A enhances B; AFFB denotes A and B
enhance each other when C.A, B; AEEB denotes A and B weaken each other. AOB denotes A
and B are not independent in leading to disease; A>B denotes A and B are independent in
leading to disease; A B denotes nonlinear enhancement of A and B; A B denotes nonlinear
weakening of A and B.
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filter out and differentiate the relative importance of the determinants based on

spatial variation information.

The four detectors proposed in this paper were used to identify the environmental

risk of NTD in the pilot area. The primary physical environment strongly controls

NTD occurrence. Basic nutrition was found to be more important than chemical

fertilizers in controlling the spatial NTD pattern. Ancient materials released from

faults and spread along slopes dramatically increase the NTD risk. These findings

provide valuable information for disease intervention in the region.

The theory proposed in the study is based on spatial variance analysis of the

spatial consistency of health risk distribution with suspect geographical strata. The

validation of the results is evaluated by statistical significance test. One limitation of

the geographical detectors is that they are statistical and are not causality, but the

geographical detectors can filter out highly suspect factors of health for further

confirmation by biological experiments. Another limitation is that some health

hazards may do not present spatial patterns, or probably the study domain is too

small to display a geographical strata, therefore, our theory is not sufficient to detect

out all risks, field sampling survey for suspect factors is necessary to find out the

health hazards that have a weak spatial pattern. The power of determinant is

affected by geographical strata homogeneity, e.g. snail is an indispensable

intermediate host in the schistosomiasis transmission process and varies in some

very limited areas of marshland, which is heterogeneously distributed in lake region.

Therefore, an optimal zonation identified by both optimal classification algorithms

and prior knowledge of diseases (Wang et al. 1997, Li et al. 2007) would raise the

power of determinant’s efficiency.

Diseases are preventable at the genetic, personal and population levels, but

especially at the geographical level for environment-related and communicable

diseases (Keeling et al. 2003, Wang et al. 2006, Wang et al. 2008). Environmental

risk assessment is also meaningful in clinical practice, because the environmental

factors of a geographical zone with specified disease prevalence are most probably

the health related factors for patients coming from that zone. The probability of an

individual’s good health over time is generally similar to that of the population’s

good health in an area with similar features (Beaglehole et al. 1993). Disease

intervention could be conducted based on the findings of geographical detection

(Jacquez et al. 2005), e.g. if the primary physical environment (watershed or soil) is

responsible for a disease in the area, it is quite hard to intervene. If man-made

pollution is responsible for the disease, the risk can be controlled by removing the

pollution sources. If basic nutritional deficiency is the disease cause, nutritional

supplements can reduce prevalence. Actually, nutrition intervention had been

conducted in some Heshun province and the effects are remarkable (Chen et al.

2008). The genetic factor is not concluded in environmental models but is left in

model residuals. Accordingly, exploring the residuals of the models may reveal the

genetic susceptibility and heterogeneity of the population distributed over a space.
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