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Abstract 

Background: Many of the mosquito species responsible for malaria transmission belong to a sibling complex; a 

taxonomic group of morphologically identical, closely related species. Sibling species often differ in several impor-

tant factors that have the potential to impact malaria control, including their geographical distribution, resistance to 

insecticides, biting and resting locations, and host preference. The aim of this study was to define the geographical 

distributions of dominant malaria vector sibling species in Africa so these distributions can be coupled with data on 

key factors such as insecticide resistance to aid more focussed, species-selective vector control.

Results: Within the Anopheles gambiae species complex and the Anopheles funestus subgroup, predicted geographi-

cal distributions for Anopheles coluzzii, An. gambiae (as now defined) and An. funestus (distinct from the subgroup) 

have been produced for the first time. Improved predicted geographical distributions for Anopheles arabiensis, Anoph-

eles melas and Anopheles merus have been generated based on records that were confirmed using molecular identi-

fication methods and a model that addresses issues of sampling bias and past changes to the environment. The data 

available for insecticide resistance has been evaluated and differences between sibling species are apparent although 

further analysis is required to elucidate trends in resistance.

Conclusions: Sibling species display important variability in their geographical distributions and the most impor-

tant malaria vector sibling species in Africa have been mapped here for the first time. This will allow geographical 

occurrence data to be coupled with species-specific data on important factors for vector control including insecti-

cide resistance. Species-specific data on insecticide resistance is available for the most important malaria vectors in 

Africa, namely An. arabiensis, An. coluzzii, An. gambiae and An. funestus. Future work to combine these data with the 

geographical distributions mapped here will allow more focussed and resource-efficient vector control and provide 

information to greatly improve and inform existing malaria transmission models.
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Background
Over 100 anopheline mosquito species can transmit 

human malaria parasites but there are important differ-

ences among these species that influence their role in 

malaria transmission. Many of these species belong to a 

sibling complex; a complex is a taxonomic group of mor-

phologically identical, closely related species. In the past, 

sibling species have been hard to distinguish and com-

plexes have often been treated as a single entity despite 

important differences among sibling species. In Africa, 

Anopheles arabiensis, Anopheles coluzzii and Anoph-

eles gambiae from the Gambiae complex and Anopheles 

funestus from the Funestus subgroup are undoubtedly the 
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most important vectors transmitting both Plasmodium 

falciparum and Plasmodium vivax parasites to humans 

[1–3]. Within the Gambiae complex, Anopheles melas 

and Anopheles merus are also considered dominant vec-

tors (“dominant” is defined as a vector species that has 

been identified as the main, dominant or important vec-

tor in at least one region) whereas there is no strong evi-

dence that other species from this complex play any role 

in malaria transmission [4, 5].

In addition to differences in the vector status of each 

species, sibling species also have important differences 

in their geographical distributions. Previous studies that 

estimated the geographical distributions of the dominant 

malaria vectors were hampered by low volumes of data 

for individual sibling species and had to choose between 

mapping complexes or incorporating species records that 

had been determined on the basis of morphology alone 

and were therefore potentially misidentified [6]. Further-

more, insecticide resistance in vector species currently 

threatens the efficacy of vector control [7], making this 

a critical factor that needs to be understood within each 

vector species. In the past, many studies that used sus-

ceptibility assays to measure prevalence of resistance in 

vector populations did not fully identify sibling species. 

�us, the mortality values obtained related to the species 

complex as a whole and potentially important differences 

among sibling species were not identified.

In recent years, the importance of species identifica-

tion alongside the availability of accurate molecular iden-

tification methods has increased the number of studies 

reporting reliably identified sibling species. �e aim of 

this study was to use the increasing availability of sibling 

species records, and an improved species distribution 

model, to define the geographical distributions of indi-

vidual vector species within the Gambiae complex and 

Funestus subgroup in Africa. �e available evidence for 

insecticide resistance was then examined in these species 

to assess the feasibility of combining insecticide resist-

ance data with the geographical distributions generated. 

�e distributions of An. gambiae and An. coluzzii are 

modelled separately for the first time and An. funestus 

is modelled for the first time as the type species distinct 

from other members of the subgroup.

Methods
Summary of species distribution map generation

Records of sibling species occurrence, where species were 

identified using molecular methods, were retrieved from 

the published literature (from both resistance and behav-

ioural studies) and from unpublished sources to compile 

a set of presence records for each species. A larger data-

set, including all Anopheles surveys in the region, was 

used as a background dataset that captured sampling bias 

in the presence records. Both datasets informed a spe-

cies distribution model that identified the combinations 

of environmental variables that best distinguished areas 

supporting species presence from the range of environ-

ments sampled. �is model was then used to estimate 

the relative probability of species presence at all locations 

within the species range.

Species background and presence data

Data from two previously collated and publicly avail-

able databases of dominant malaria vector species occur-

rence and bionomics [8, 9] were combined with a new 

database of insecticide resistance records (described 

below) and duplicate records were removed. Searches 

of the more recent literature were conducted from the 

dates that the earlier searches finished (2009, 2013 and 

2015 respectively) to 29 September 2016, to fill any gaps 

in the dataset. �e new searches used the Web of Sci-

ences bibliography and the search terms “[species name]” 

and “[country name]”. New records of occurrence that 

matched the inclusion criteria were extracted and added 

to the composite database. Only studies that provided the 

location and time of collection, and gave details of the 

identification method(s) used, were included.

Geographical coordinates for the collection locations 

were converted to decimal degrees. For sites where no 

coordinates were given, coordinates were assigned using 

the site name and contextual information, such as the 

district or distance to a major city, using online gazetteers 

including GeoNames, Google Maps, and OpenStreet-

Map. All coordinates provided by the source or generated 

as part of this project were checked to ensure that they 

matched the sampling design described, fell on land and 

fell in the correct country, using the geographical infor-

mation software ArcMAP. If collection dates were miss-

ing for a data point, the year of collection was assumed 

to be two years before the article publication year based 

on the trend seen for data with a known collection date, 

for the purposes of this study. For each species, the full 

species occurrence dataset was classified into (1) stud-

ies that used molecular identification methods capable 

of detecting that species, and (2) studies that would not 

have detected that species using molecular methods.

To generate a presence dataset for each species, all 

records that used appropriate molecular identification 

methods and recorded presence of the species were 

extracted from the dataset described above. For all stud-

ies that identified the species formerly known as An. gam-

biae (An. gambiae/An. coluzzii or M/S forms combined) 

using molecular methods but did not identify the M and 

S forms, occurrences were labelled “An. gambiae (old)” 

to distinguish them from the newly defined An. gambiae 

(formerly An. gambiae S form). Records of “An. gambiae 
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(old)” outside the An. coluzzii range plus a 300 km buffer 

were designated An. gambiae and records inside the 

overlapping An. gambiae and An. coluzzii ranges, plus 

buffer, were discarded.

It is not possible to test empirically whether spatial 

clustering in the presence data is due to habitat suitability 

or spatial bias in sampling effort, so this was accounted 

for a priori through the selection of background data 

with the same spatial bias in sampling effort [10]. �e 

full mosquito occurrence dataset was used as a source of 

background data that captures the sampling bias in the 

environments surveyed for Anopheles species. Most of 

the species modelled have ranges that border on desert 

areas where Anopheles are known to be absent but no 

surveys are performed, so 210 pseudo-absences were 

generated by randomly selecting locations within the 

desert biome defined by the United Nations Environment 

Programme [11].

Summary of available insecticide resistance data for sibling 

species

A literature search was performed in the Web of Science 

bibliographic database using the search terms “insec-

ticide resistance” and “anopheles”. Articles of potential 

interest were identified and their abstracts were scanned 

to identify studies that had performed a bioassay on field-

collected mosquitoes (up to the F1 generation). Full texts 

were obtained for these articles and data extracted for all 

bioassays that had used an insecticide from one of the 

four major neurotoxic classes: carbamates, organochlo-

rines, organophosphates and pyrethroids. Unpublished 

data were also requested from authors of the published 

articles and groups working on insecticide resistance. 

Data fields extracted from both published and unpub-

lished sources covered: species; collection dates; col-

lection location; method(s) of capture; method(s) of 

identification; insecticide; bioassay protocol; percent 

mortality; and source citation(s). Data from all bioas-

says identified were extracted and any deviations from a 

standard published protocol (for example non-standard 

exposure times) were noted. Records that did not identify 

sibling species using molecular methods were discarded 

for the purposes of the current study. Summary statistics 

were calculated, based on the mortalities obtained for 

samples where  >95% of the mosquitoes were identified 

as a single species, to give an indication of bioassay data 

availability and variation among sibling species.

Species ranges

In order to model the geographical distribution within 

each species range, previously defined ranges for An. 

arabiensis, An. funestus, An. melas and An. merus [6, 

12] were used to limit the extent of the model outputs. 

�ese ranges were compared to the presence dataset for 

each species described above and if confirmed records 

of the species were found outside the previously defined 

range, the range was extended to encompass the new 

location(s). For An. coluzzii the presence dataset and a 

previous map showing records of the M form of An. gam-

biae [13] were used to define its range. One record of a 

single An. coluzzii mosquito in Zimbabwe shown on the 

previous map was discarded after a thorough search of 

the literature found no other record of this species within 

over 500 km of this location since the original record was 

published. Individual species ranges and presence points 

were combined to generate ranges for the Gambiae com-

plex, Funestus subgroup and Funestus group. A 300 km 

buffer was added to each species range to reflect uncer-

tainty in the exact ranges of these mosquitoes.

Environmental data

�e modelling approach used here relies on the rela-

tionship between species occurrence and combinations 

of environmental covariates. Covariate values were 

extracted from an existing set of spatial data layers for 

environmental covariates believed to be of importance 

to mosquito occurrence and malaria transmission [14]. 

Full details are provided in Additional file 1. Briefly, data 

layers at a 5  ×  5  km resolution were included for land 

surface temperature, seasonality in temperature, meas-

ures of wetness/greenness, seasonality in wetness/green-

ness, elevation, proportional cover of 14 land classes, and 

human population density.

Species distribution model

Each species was modelled separately using the same spe-

cies distribution model. �e approach used was a boosted 

regression trees method that combines both regression 

trees (which build a set of decision rules on the predictor 

variables by portioning the data into successively smaller 

groups with binary splits) and boosting (which selects 

sets of trees that minimise the loss function) to best cap-

ture the variables that define the distribution of the input 

data [15–17]. �e boosted regression trees methods has 

been used in previous malaria vector studies [6] and 

has recently been updated to use background data that 

characterises sampling bias in the presence records, and 

to include changes in land cover over time [18, 19]. For 

each model, the presence records for that species and the 

background data points located within the range of that 

species, excluding survey records found in the presence 

dataset, were used. �e background data were classi-

fied into (1) records from studies that used methods that 

would have identified the sibling species being modelled 

(had that species been present in the sample collected), 

and (2) all other records. Data points linked to a random 
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10% of locations from both the presence and background 

datasets were withheld for use in the model validation. 

Together the remaining presence and background data 

formed the model training dataset.

�e boosted regression trees method requires both 

presence and absence data, or background data can be 

used when true absence data is not available. Mosquito 

occurrence datasets are subject to spatial bias and if 

unaccounted for this survey bias can translate into envi-

ronmental bias in the fitted model. �e background data 

used in the study reflected the same survey bias found 

in the presence data so the model could identify suitable 

environments for the species within the sampled space, 

rather than just areas that are more heavily sampled. �is 

approach does not eliminate sampling bias issues entirely 

but improved model performance has been demonstrated 

[10]. �e model was updated further in order to weight 

the background data so that records from surveys using 

molecular methods that would have identified the spe-

cies being modelled (had that species been present in the 

sample collected) received twice the weight of other back-

ground data points. Presence and background data from 

2001 to 2012 were linked to covariate values for the rele-

vant year in order to improve the predictions where possi-

ble. For all records prior to 2001, covariate values for 2001 

were used, and for any data collected after 2012, covariate 

values for 2012 were used. Model predictions were made 

to the most contemporary covariate data available.

For each species, 200 submodels were then fitted 

trained to a bootstrap of the presence/background data-

set. Each submodel generated a predicted value for 

the relative probability of species occurrence at every 

5 km × 5 km pixel and together the ensemble of submod-

els generated a distribution of predicted values for every 

pixel. Mean values together with 0.025 and 0.975 quantile 

values were then derived from the distribution of predic-

tions at every 5 × 5 km pixel.

Model validation

Withheld data (the test data) from each presence and 

background dataset were used to validate each mean map 

generated. �e area under the receiver operator curve 

(AUC) was calculated to assess the mean map’s ability 

to distinguish species presence points from background 

points that are representative of the locations surveyed 

for Anopheles vectors, whilst marginalising the arbitrary 

choice of a classification threshold [20]. An AUC of 0 

means the model ranked all sites the wrong way round, 

0.5 means the model was no better than random, and an 

AUC of 1 means it made a perfect prediction. �e same 

test presence and background datasets were used to cal-

culate the AUC value for previously published maps of 

these species to allow us to compare model performance.

Results
Compiled species occurrence database

�e data volumes available for each species are given in 

Table 1, the presence and background data that went into 

the training and test datasets are provided in Additional 

file 2, and maps showing the distributions of these data-

sets are provided in Additional file 3.

Geographical distributions of the sibling species

�e mean estimated relative probability of occurrence 

for each modelled sibling species is shown in a set of pre-

dictive maps (Fig. 1a–f). In addition, predictive maps for 

the Gambiae complex as a whole, Funestus subgroup and 

Funestus group are provided in Additional file 4.

�e AUC values for the Gambiae complex model outputs 

were 0.870 for An. arabiensis, 0.783 for An. coluzzii, 0.778 for 

An. gambiae, 0.866 for An. melas, and 0.804 for An. merus. 

�ese values are consistently higher than those obtained 

for the previously published maps (available for An. ara-

biensis, An. melas and An. merus only) as shown in Addi-

tional file 5. �e AUC values for the modelled An. funestus 

map was 0.824, for the Funestus subgroup it was 0.806 and 

for the Funestus group it was 0.796. �e AUC value for the 

Funestus subgroup was higher than the value obtained for 

the previously published map (Additional file 5). Maps show-

ing uncertainty in these predictions, in the form of the range 

from the 2.5th to the 97.5th centile, are provided in Addi-

tional file 5. �e GeoTIFF files containing the mean, median 

and quantile predictions for every 5 × 5 km pixel are pro-

vided in Additional files 6, 7, 8, 9, 10, 11, 12, 13, 14.

�e environmental variables that proved to be the top 

predictors in each species model are also provided in 

Additional file 5. For members of the Gambiae complex 

the top two predictors were always related to tempera-

ture and/or wetness, or elevation which is closely corre-

lated with both. For An. funestus, land cover types were 

also strong predictors.

Table 1 The volumes of data collated

The total number of presence points for each species is provided and the 

subtotal that fell outside the time range for which the annual covariate data 

is given in parentheses. Background data points are split into those that used 

molecular methods that would have identi�ed the species modelled (class 1) 

and those that did not (class 2)

Species Number of presence points Number of back-
ground points

Class 1 Class 2

An. arabiensis 2106 (505) 1066 784

An. coluzzii 1086 (172) 385 762

An. funestus 720 (172) 50 2991

An. gambiae 1703 (420) 1070 1058

An. merus 111 (71) 447 0

An. melas 178 (58) 1021 3
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Fig. 1 Predictive maps for occurrence of sibling species. The relative probability of occurrence for each species is shown within its range plus a 

300 km buffer. a An. coluzzii. b An. gambiae c An. arabiensis. d An. funestus. e An. melas. f An. merus
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For the most part, there are few contiguous areas of 

high relative probability of occurrence that cross from 

the known range of a species into the 300 km outside this 

range, indicating biogeographical barriers are limiting 

the species ranges (Fig. 1). For An. coluzzii, however, an 

area of high relative probability of occurrence, or envi-

ronmental suitability, can be seen running from within 

its range in Chad out to the northwest. A similar area 

in South Sudan can be seen for An. gambiae. �is could 

indicate areas suitable for future expansion of the ranges 

of these species, or it could reflect uncertainty about the 

current species ranges in this part of Africa. �e same 

pattern can be seen at the southern end of the An. ara-

biensis range where this species may be restricted by fac-

tors that have not been captured in this model.

Insecticide resistance in sibling species

Bioassay results from samples where more than 95% of 

the mosquitoes were identified as belonging to a sin-

gle species were included in the final insecticide resist-

ance dataset, providing 2437 records. �e results for 

each insecticide class and species are given in Additional 

file 15 and the results for pyrethroid resistance in mem-

bers of the Gambiae complex are shown in Table 2. A fur-

ther 1156 records provided mortality records for mixed 

samples of identified sibling species within the Gambiae 

complex and 424 records came from studies that used 

molecular methods to identify species but did not pro-

vide the species composition of the samples.

When the criterion of  >95% of the mosquitoes con-

firmed as a single sibling species is applied, it is apparent 

that since the year 2000 over 100 bioassay results from 

multiple countries have been made available for each of 

the following: pyrethroid resistance in An. arabiensis, 

An. coluzzii, An. gambiae and An. funestus; carbamate 

resistance in An. arabiensis and An. coluzzii; organochlo-

rine resistance in An. arabiensis and An. gambiae; and 

organophosphate resistance in An. arabiensis. Far fewer 

data points are available for the years up to 2000 and the 

first results for sibling species start in the late 1990s. For 

other African vector species, available data are limited or 

were not found at all. �e search included malaria vec-

tor species outside the Gambiae complex and Funestus 

group, but no available data were found for An. coustani 

(An. coustani data are available but not confirmed using 

molecular identification methods), An. moucheti, species 

of the Nili complex, or An. pharoensis.

Consistent susceptibility to organophosphates was 

found for An. funestus across all 11 countries sampled 

from 1999 to the current time, and was also seen in the 

small number of results for other members of this group. 

Within the Gambiae complex, differences are appar-

ent among sibling species in terms of their resistance 

to each of the four major classes of insecticide (Table 2; 

Additional file  14). Caution is needed, however, when 

identifying apparent variation or trends in the insecti-

cide resistance data. For example, the summary data in 

Table  2 appears to show that resistance to pyrethroids 

has consistently increased over time within members of 

the Gambiae complex but Table 2 also shows that there is 

substantial bias in the locations sampled and in the times 

sampled. �ese biases are likely also to be present at finer 

spatial and temporal scales, and need to be incorporated 

in any analysis of the patterns of resistance in sibling spe-

cies. Further, the values shown are derived from bioas-

says that used a range of protocols and these differences 

need to be captured and included in the data in order to 

perform a robust analysis of the dataset.

Discussion
�is study provides full modelled geographical distribu-

tions for An. coluzzii and An. gambiae (as now defined) 

for the first time and clear differences can be seen 

between these two sibling species, formerly considered a 

single species. Estimates for the distributions of An. ara-

biensis, An. melas and An. merus (also within the Gam-

biae complex) are provided based on improved methods 

and updated data, resulting in notably better model per-

formance than seen with a previous mapping study [6]. 

�e geographical distribution of An. arabiensis has also 

been modelled in recent years by an independent group 

[21]. �eir aim was to extrapolate into the future when 

environmental conditions not currently in existence may 

occur so they selected a low bias bootstrap aggregation 

for one class data (LOBAG-OC) model. �e data output 

by their model were not released so a quantitative com-

parison is not possible but a visual comparison shows 

broader habitat suitability in the earlier modelled map 

compared to the current study. �e AUC value gener-

ated by that study was marginally lower than the value 

generated here (0.77 compared to 0.78, although cau-

tion is needed because the data used to generate these 

values differed), the data volumes were much lower, and 

the data for each environmental variable used in the ear-

lier model was a single average over a long time period 

(1950–2000), meaning the current map is based on a 

more robust approach.

Although the full geographical distributions of An. 

coluzzii and An. gambiae have not been modelled pre-

viously, a recent study modelled the probability of An. 

coluzzii presence relative to the probability of An. gam-

biae presence in their sympatric range [22]. It is difficult 

to compare (1) an analysis of the relative occurrence of 

two species with (2) two independent species maps, but 

the results presented here are consistent with the predic-

tions made by the earlier study. Both show An. coluzzii 
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Table 2 Available data on pyrethroid resistance for sibling species of the Gambiae complex

A record is de�ned as a mortality value for a single mosquito population sampled at a speci�ed time and place by a unique study. For species with <10 bioassay 

records, records for all years were aggregated and the year range is noted in parentheses. For species with >10 bioassay records, the data was divided into three year 

ranges and the year of the �rst record is given in parentheses. The mean (given in italics), minimum (min) and maximum (max) mortality values across all records for 

that time period are given together with a list of the countries where the �eld collections were taken

Year range No. records Mortality (%) Countries

An. arabiensis

Up to 2000 (first year = 1996) 3 Min 100 South Africa

Max 100

Mean 100

2001–2005 67 Min 75 Cameroon, Kenya, Madagascar, Mozambique, Nigeria, South Africa, Sudan, Tanzania

Max 100

Mean 95.6

2006–2010 218 Min 0 Burkina Faso, Cameroon, Chad, Ethiopia, Kenya, Mozambique, Senegal, Sudan, Tanzania, 
The Gambia, Uganda, Zambia, ZimbabweMax 100

Mean 79.3

2011–2015 161 Min 9 Ethiopia, Kenya, Malawi, Mali, South Africa, Senegal, Sudan, Tanzania, Uganda

Max 100

Mean 74.7

An. coluzzii

2001–2005 38 Min 19 Benin, Cameroon, Nigeria

Max 100

Mean 89.7

2006–2010 144 Min 0.9 Benin, Burkina Faso, Cameroon, Côte d’Ivoire, Ghana, Mali, Nigeria

Max 100

Mean 73.2

2011–2015 44 Min 1 Benin, Burkina Faso, Cameroon, Côte d’Ivoire, Mali, Mozambique, Liberia

Max 100

Mean 60.6

An. gambiae

Up to 2000 (first year = 1999) 10 Min 100 Zambia

Max 100

Mean 100

2001–2005 55 Min 27 Angola, Burundi, Cameroon, Equatorial Guinea, Mozambique, Nigeria, Uganda

Max 100

Mean 88.82

2006–2010 139 Min 0 Benin, Burkina Faso, Burundi, Cameroon, Congo, Ghana, Guinea, Kenya, Malawi, Mozam-
bique, Uganda, ZambiaMax 100

Mean 75.2

2011–2015 48 Min 0 Cameroon, DRC, Ghana, Kenya, Mali, Tanzania, Uganda

Max 100

Mean 48.7

An. melas

All years (2005) 4 Min 100 Cameroon

Max 100

Mean 100

An. quadriannulatus

All years (2002) 1 Min 100 South Africa

Max 100

Mean 100
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extending further north and closer to the coast than An. 

gambiae within west Africa. An interesting extension of 

the current work would be to characterize the locations 

where both species are sympatric while maintaining 

reproductive isolation.

A modelled distribution for An. funestus (distinct from 

the subgroup) has also been generated here for the first 

time. Only range maps were previously available for this 

species but the geographical distribution of the Funestus 

subgroup has been modelled previously [6]. �e geo-

graphical distribution for the Funestus subgroup gener-

ated by the current study, using the same methods as the 

current An. funestus map, showed better model perfor-

mance than the earlier work.

It is well established that Anopheles species are 

strongly influenced by temperature and humidity or 

wetness [23–25], and previous studies have found dif-

ferences in the relationships between these variables 

and individual sibling species [26–32]. �e study pre-

sented here used a model that provides strong predic-

tive power to generate robust species distributions but 

it cannot elucidate relationships with individual envi-

ronmental variables. It was clear, however, that the vari-

ables with the strongest influence on each model were 

wetness and temperature or factors strongly correlated 

with these two variables, namely elevation and a veg-

etation index, and the exact set of top predictors var-

ied among each sibling species. Relationships between 

species and vegetation type have also been found by 

previous studies [33, 34] and pollution is known to play 

a role [22]. Fourteen land classes were included in this 

work and some of these were important predictors as 

was human population density, which is linked to pol-

lution, but caution is needed when interpreting the 

ranking of covariate influence by the model. �e model-

ling framework used here is not an appropriate tool to 

confirm the specific relationships with environmental 

variables found by detailed field studies and the maps 

also need to be viewed in the context of the scale used. 

�e aim here was to produce continent-wide maps at a 

5 × 5 km resolution and the land cover data used by the 

model were expressed as the proportion of square kilo-

metres within each 5  ×  5  km assigned to a particular 

land cover type. All other environmental and socioeco-

nomic variables were provided to the model at 5 × 5 km 

resolution. �is approach does not capture microscale 

variation that may be important to these species locally. 

At the other end of the spectrum, however, for vector 

and malaria control plans devised at a national or sub-

national level, the data from the maps presented here 

can be aggregated to provide information for the areas 

used for planning.

�e temporal resolution of the data used to generate 

these maps was annual and thus seasonal variation is 

not captured here and the maps presented provide the 

relative probability of a species occurring at each loca-

tion during at least one time of the year. Strong seasonal 

fluctuations in mosquito abundance occur, particularly 

in West Africa, and these differ among species [35–38]. 

If the dataset used here incorporated a systematic bias 

towards collection times that would miss particular spe-

cies then this could impact the maps generated, however, 

the collated data provide good coverage for each spe-

cies within areas with strong seasonal patterns as well as 

regions with smaller fluctuations (Additional file 3).

�e geographical distribution of a species is not suf-

ficient information alone to inform vector control pro-

grammes and these distributions need to be used in 

combination with data on the key attributes of each spe-

cies. Use of indoor insecticide-based control measures has 

resulted in important reductions in vector populations and 

malaria prevalence [39, 40] but at the same time the rela-

tive abundance of individual malaria vectors has changed 

[41–44] leading to greater importance placed on mos-

quitoes that bite or rest outdoors or have less restricted 

feeding preferences [8, 45, 46]. Also critically important 

is resistance to the major insecticide classes and data is 

essential to provide evidence for insecticide resistance 

management planning [47]. Changes in the prevalence of 

insecticide resistance over time and differences among sib-

ling species are apparent in the dataset presented here but 

a full analysis of this data must take account of the strong 

spatial bias in sampled locations and potential confound-

ing factors such as variation in the protocols used. �e 

one exception is susceptibility to organophosphates in 

An. funestus, which has remained constant over time at all 

locations, in agreement with earlier reviews [48]. It is clear 

that there are far fewer data available for individual species 

than for complexes [49]. �ere is, however, sufficient data 

available for the most important vectors species to allow 

variation in resistance at the species level to be considered 

and combined with species distributions.

Conclusions
Sibling species within the Gambiae complex display 

important differences in their geographical distributions 

and the same appears to be true for prevalence of insec-

ticide resistance. �e most important malaria vector sib-

ling species in Africa have been mapped here for the first 

time and the evidence for insecticide resistance in these 

species has been summarised. �e species-specific dis-

tributions can now be coupled with data on insecticide 

resistance, behaviour and vector status to make better 

informed decisions on vector control policy.
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Additional �les

Additional �le 1. Environmental covariates used in the model.

Additional �le 2. Presence and background datasets for each species. 

Each dataset is provided in a separate worksheet within the workbook.

Additional �le 3. Maps showing the spatial distribution of the data that 

went into the model.

Additional �le 4. Additional maps for the Gambiae complex, Funestus 

subgroup, and Funestus group.

Additional �le 5. Tables of AUC values and top predictors, and maps 

showing the prediction ranges.

Additional �le 6. Geotiff that can be opened in GIS software such as 

QGIS (http://www.qgis.org/) or ArcMap (http://www.esri.com/software/

arcgis). Model output data for An. arabiensis. Band 1 contains the mean 

values per pixel, band 2 contains the median values, band 3 contains the 

2.5% quantile values, and band 4 contains the 97.5% quantile values.

Additional �le 7. geotiff that can be opened in GIS software such as 

QGIS (http://www.qgis.org/) or ArcMap (http://www.esri.com/software/

arcgis). Model output data for An. coluzzii. Band 1 contains the mean 

values per pixel, band 2 contains the median values, band 3 contains the 

2.5% quantile values, and band 4 contains the 97.5% quantile values.

Additional �le 8. geotiff that can be opened in GIS software such as 

QGIS (http://www.qgis.org/) or ArcMap (http://www.esri.com/software/

arcgis). Model output data for An. funestus. Band 1 contains the mean 

values per pixel, band 2 contains the median values, band 3 contains the 

2.5% quantile values, and band 4 contains the 97.5% quantile values.

Additional �le 9. geotiff that can be opened in GIS software such as 

QGIS (http://www.qgis.org/) or ArcMap (http://www.esri.com/software/

arcgis). Model output data for An. gambiae. Band 1 contains the mean 

values per pixel, band 2 contains the median values, band 3 contains the 

2.5% quantile values, and band 4 contains the 97.5% quantile values.

Additional �le 10. geotiff that can be opened in GIS software such as 

QGIS (http://www.qgis.org/) or ArcMap (http://www.esri.com/software/

arcgis). Model output data for An. melas. Band 1 contains the mean values 

per pixel, band 2 contains the median values, band 3 contains the 2.5% 

quantile values, and band 4 contains the 97.5% quantile values.

Additional �le 11. geotiff that can be opened in GIS software such as 

QGIS (http://www.qgis.org/) or ArcMap (http://www.esri.com/software/

arcgis). Model output data for An. merus. Band 1 contains the mean values 

per pixel, band 2 contains the median values, band 3 contains the 2.5% 

quantile values, and band 4 contains the 97.5% quantile values.

Additional �le 12. geotiff that can be opened in GIS software such as 

QGIS (http://www.qgis.org/) or ArcMap (http://www.esri.com/software/

arcgis). Model output data for the Gambiae complex. Band 1 contains 

the mean values per pixel, band 2 contains the median values, band 3 

contains the 2.5% quantile values, and band 4 contains the 97.5% quantile 

values.

Additional �le 13. geotiff that can be opened in GIS software such as 

QGIS (http://www.qgis.org/) or ArcMap (http://www.esri.com/software/

arcgis). Model output data for the Funestus subgroup. Band 1 contains 

the mean values per pixel, band 2 contains the median values, band 3 

contains the 2.5% quantile values, and band 4 contains the 97.5% quantile 

values.

Additional �le 14. geotiff that can be opened in GIS software such as 

QGIS (http://www.qgis.org/) or ArcMap (http://www.esri.com/software/

arcgis). Model output data for the Funestus group. Band 1 contains 

the mean values per pixel, band 2 contains the median values, band 3 

contains the 2.5% quantile values, and band 4 contains the 97.5% quantile 

values.

Additional �le 15. Tables of summary insecticide resistance data. A 

separate worksheet is provided for each insecticide class for each of the 

Gambiae complex and the Funestus group.
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