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Geographical drivers and climate-linked dynamics
of Lassa fever in Nigeria
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Lassa fever is a longstanding public health concern in West Africa. Recent molecular studies

have confirmed the fundamental role of the rodent host (Mastomys natalensis) in driving

human infections, but control and prevention efforts remain hampered by a limited baseline

understanding of the disease’s true incidence, geographical distribution and underlying dri-

vers. Here, we show that Lassa fever occurrence and incidence is influenced by climate,

poverty, agriculture and urbanisation factors. However, heterogeneous reporting processes

and diagnostic laboratory access also appear to be important drivers of the patchy dis-

tribution of observed disease incidence. Using spatiotemporal predictive models we show

that including climatic variability added retrospective predictive value over a baseline model

(11% decrease in out-of-sample predictive error). However, predictions for 2020 show that a

climate-driven model performs similarly overall to the baseline model. Overall, with ongoing

improvements in surveillance there may be potential for forecasting Lassa fever incidence to

inform health planning.
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B
etween 2018 and 2020, Nigeria recorded its highest annual
incidences of Lassa fever (LF) to date (633 confirmed cases
in 2018, 810 in 2019 and 1189 in 2020, across 29 states),

prompting national and international healthcare mobilisation and
raising concerns about an ongoing, systematic emergence of LF
nationally1,2. Lassa virus (LASV; Arenaviridae, Order: Bunyavir-
ales) is a WHO-listed priority pathogen and a major focus of
international vaccine development funding3 and, although often
framed as a global health threat, LF is foremost a neglected
endemic zoonosis. Lassa virus disease has a varied presentation,
with many cases thought to be mild or asymptomatic4. More
severe cases usually start with an unspecific fever and malaise,
and occasionally progress to haemorrhagic symptoms, with
fatalities in around 20% of severe cases. The disease has typically
been characterised as having two main endemic foci in West
Africa, one centred around Sierra Leone and Liberia, and the
other in Nigeria, but in recent years most countries in the region
have reported regular or sporadic cases4. Concurrently there has
been a decline in surveillance-based case reports from the western
hotspot around Sierra Leone, which may be related to the sig-
nificant negative impacts of the recent Ebola epidemic on health
systems and personnel. Conversely, Nigeria, which saw more
limited impacts from Ebola, has continued to record a trend of
increasing numbers of cases in this time.

The significant majority of observed LF cases—including those
from recent years in Nigeria5—are thought to arise directly from
spillover from the LASV reservoir host, the widespread synan-
thropic rodent Mastomys natalensis, although with hospital-
acquired infections potentially occurring in small clusters of
human-to-human transmission6–8. M. natalensis is the most
abundant agricultural rodent pest in sub-Saharan Africa and is
generally found in high numbers in many human-dominated
land types, with lower abundance in natural and forested eco-
systems. Populations of this species have a strong seasonal
dynamic that varies across habitat types, likely related to changes
in food availability over time9. Unintentional interactions with
people occur in a variety of settings from cropland and house-
holds, as well as intentional contact through hunting-related
practices. Risk factors for spillover, while not well understood, are
thought to include factors that increase the direct and indirect

contact between rodents and people, including ineffective food
storage, housing quality, and certain agricultural practices such as
crop processing10,11. Evidence of correspondence between human
case surges and seasonal rainfall patterns suggests that LF is a
climate-sensitive disease12, whose incidence may be increasing
with regional climatic change13.

The present-day incidence and burden, however, remain
poorly defined, because LASV surveillance has historically been
opportunistic or focused on known endemic districts with pre-
existing diagnostic capacity4, and often-cited annual case esti-
mates (of up to 300,000) are consequently extrapolations based
on limited serological evidence from a handful of early
studies14,15. This, alongside LF’s nonspecific presentation, means
that many mild or subclinical infections (possibly 80% or more of
infections) are thought to go undetected16,17. The patchy
understanding of LF’s true annual incidence and drivers hinders
diagnosis, treatment and disease control18 and provides a limited
contextual understanding of whether the recent surges in repor-
ted cases have resulted from improvements in surveillance or a
true emergence trend. To address these gaps, in this study we
analyse the first long-term spatiotemporal epidemiological dataset
of acute human LF case data, systematically collected over 8 years
of surveillance in Nigeria. We use this dataset to characterise the
epidemiology and spatial trends of LF in Nigeria between 2012
and 2019, and evaluate the drivers that explain the geographical
distribution of LF occurrence and incidence. We then develop
spatiotemporal predictive models to evaluate whether climatic
variability can be used to predict interannual differences in the
size and timing of outbreak peaks, to evaluate the scope for future
forecasting of this high-burden disease.

Results
Recent trends in LF surveillance in Nigeria. The dataset, col-
lated by the Nigeria Centre for Disease Control (NCDC), consists
of weekly epidemiological reports (WERs) of acute human LF
cases collected by all 774 local government authorities (LGAs)
across Nigeria between January 2012 and December 2019 (Fig. 1).
Throughout the study period, 161 LGAs from 32 of 36 states
reported cases, with a mean annual total of 276 (range 25 to 816)
confirmed cases (for definitions see Supplementary Table 1),
though with evidence of pronounced spatial and temporal clus-
tering. For example, the majority of cases (~75%) are reported
from just 3 of the 36 Nigerian states (Edo, Ondo and Ebonyi),
with lower incidence overall in northern endemic states, in areas
notably distant from diagnostic centres. There is consistent evi-
dence of seasonality in all areas across the reporting period,
except for 2014 to 2015, when a lull in recorded cases was
coincident in timing with the West African Ebola epidemic
(Supplementary Fig. 1). Annual dry season peaks of LF cases
typically occur in January, confirming past hospital admissions
data from Nigeria19,20 and Sierra Leone21, with some secondary
peaks evident in early March and, increasingly, a small number of
cases detected throughout the year (Fig. 1). Both overall temporal
trends and cumulative case curves suggest that 2018 and 2019
appear to be markedly different from previous years, with very
high peaks in confirmed cases extending from January into
March, and high suspected case reporting continuing throughout
2019 (Fig. 1 and Supplementary Fig. 1).

Improvements to country-wide surveillance could, however, be
driving any apparent increase in both the incidence and
geographical extent of LF in Nigeria. For instance, during the
2012–2019 monitoring period, within-country LF surveillance
and response was strengthened under NCDC coordination, with
a dedicated NCDC Technical Working Group (LF TWG)
established in 2016, the opening of three additional LF diagnostic

Fig. 1 Temporal trends in country-wide Lassa fever case reporting from

2012 to 2019. Polygon height shows the weekly total cases reported across

Nigeria, with colour denoting the proportion of cases that were laboratory-

confirmed (yellow) or suspected (blue). The full case time series was

compiled from two reporting regimes at the Nigeria Centre for Disease

Control: Weekly Epidemiological Reports 2012 to 2016, and Lassa Fever

Technical Working Group Situation Reports 2017 to 2019 (with case

reports followed-up to ensure more accurate counts; datasets shown

separately in Supplementary Fig. 1). A full description of case definitions

and reporting protocols is provided in Methods.
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laboratories in 2017–19 (to a total of five; Fig. 2), the ongoing
rollout of country-wide intensive training on LF surveillance,
clinical case management and diagnosis (Supplementary
Table 1)22, and the deployment of a mobile phone-based
reporting system to 18 states during 201723 (Methods). The
result of these improvements is potentially reflected in the
smoother case accumulation curves in 2018–19 than observed
previously (Supplementary Fig. 1), as well as the notable, marked
increase in the geographical extent of LF case reports over time.
From 2012 to 2015 most reported cases originated from Esan
Central in Edo state, the location of Nigeria’s longest-established
LF diagnostic laboratory and treatment centre at Irrua Specialist
Teaching Hospital (ISTH)19,20 (Fig. 2). The geographical extent of
suspected and confirmed case reports rapidly expanded across
Nigeria from 2016, with a contemporaneous decline in observed
cases from Esan Central. This process can be seen clearly in LGAs
surrounding Esan Central (Fig. 2, inset) and may reflect
increasingly precise attribution of the true geographical origin
of cases.

Evaluating the geographical distribution and correlates of LF
occurrence and incidence. We developed spatiotemporal Baye-
sian models to evaluate the influence of climatic and socio-
economic factors on the geographical distribution of LF risk,
using confirmed case data from 2016 to 2019 inclusive (i.e. the
period following the rapid expansion of systematic surveillance;
n= 3096; 774 LGAs over 4 years). We adopt a two-level, hurdle
model-based approach, and separately model the annual prob-
ability of LF occurrence (using logistic regression, i.e. identifying
the determinants of the LF endemic area; Fig. 3a) and incidence
(using a zero-inflated Poisson likelihood, i.e. identifying the
determinants of relative incidence within the endemic region;
Fig. 3b). Country-wide surveillance has continued to expand since
2016, so we account for this ongoing expansion trend by fitting

annual, LGA-specific, spatially structured and unstructured ran-
dom effects (Methods, Supplementary Fig. 2). For each response
variable (occurrence and incidence) we conducted model selec-
tion by comparing candidate models including covariates to a
spatiotemporal random effects only (baseline) model using
Deviance Information Criterion (DIC). We considered linear and
nonlinear effects for climate (several temperature and precipita-
tion metrics) and linear effects for socioeconomic, landscape and
reporting-based covariates (see Methods). Full selected models
including covariates substantially improved overall model fit
relative to baseline models for both occurrence (ΔDIC=−161.1)
and incidence models (ΔDIC=−195.2) (Supplementary Table 2)
and were robust to structured sensitivity tests (Methods, Sup-
plementary Fig. 3).

Both full occurrence and incidence models included linear
effects of agricultural land use, poverty prevalence and built-up
land (Fig. 3c) and a nonlinear effect of mean annual precipitation
(Fig. 3d, e). Additionally, the occurrence model included a
negative effect of annual mean temperature, and the incidence
model included a negative effect of travel time to the LF
diagnostic laboratory (Fig. 3c). The results show that LF risk is
strongly constrained by local climatic conditions, peaking in areas
with medium-to-high annual precipitation levels (around
1500–2000 mm/year), and declining sharply in the more arid
northeast, mirroring earlier work assessing the host environ-
mental niche area (Redding et al. 2016). LF occurrence and
incidence are also positively associated with increasing agricul-
tural land use, which may synergistically affect both reservoir host
population sizes and contact with people. Similarly there is a
positive association with poverty and urbanisation, which likely
jointly influence effective human–rodent contact, healthcare
access and LF awareness (Fig. 3c and Supplementary Table 3).
The strong positive association with built-up land appears
counterintuitive given that LF has typically been considered a
rural disease; this effect may be indexing other ecological (e.g.

Fig. 2 Spatiotemporal trends in Lassa fever surveillance, confirmed cases, and diagnostic laboratory capacity across Nigeria. Maps show, on the

natural log scale, the total reported Lassa fever cases (suspected and confirmed; top row) and laboratory-confirmed cases only (bottom row) in each local

government authority during the specified year(s). Triangles in the top row show the locations of laboratories with Lassa fever diagnostic capacity. Irrua

Specialist Teaching Hospital (Edo, established 2008; inset box, pale blue) and Lagos University Teaching Hospital (Lagos, southwest; black) were both

operational since before 2012. Three further laboratories became operational during the study period: Abuja National Reference Laboratory in 2017 (FCT

Abuja, north-central; dark blue), Federal Teaching Hospital Abakaliki in 2018 (Ebonyi, southeast; green), and Federal Medical Centre Owo in 2019 (Ondo,

south, purple).
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rodent synanthropy) or reporting-based processes (e.g. greater
awareness and medical access in urbanised areas) that are not
accounted for by other covariates. These results are consistent
when modelling at lower spatial resolution (from 774 LGAs into
130 aggregated districts; Supplementary Fig. 4), although with
weaker effects of urbanisation and poverty (suggesting these may
act on detection or risk at more localised scales; Fig. 3b).

Overall, the limits of the endemic area of LF appear to be
defined, therefore, by the interface of suitable environmental
conditions for the reservoir host and socioeconomic conditions
that facilitate human–reservoir contact, principally rainfed
agricultural systems. Notably, LF incidence within endemic areas
is higher in areas close to LF diagnostic laboratories (suggesting a
substantial effect of detection bias) and is robustly associated with
increasing poverty (Fig. 3c and Supplementary Fig. 3), which
suggests that socioeconomic factors regulating human exposure
are also an important driver of relative risk within environmen-
tally suitable areas. Public programmes aimed at poverty
alleviation, improving housing and sanitation infrastructure,
and reducing human–rodent contact, may therefore have a
positive impact in terms of reducing LF incidence.

Spatially projecting the fixed effects of the occurrence model
(Supplementary Fig. 5) suggests that large contiguous areas of
Nigeria are environmentally suitable for LF transmission and that
underreporting may be highest in northern and eastern states.
Some localities with high predicted suitability and nearby to
existing endemic foci represent key areas to target increased
surveillance (e.g. in Oyo, Osun and Ogun states). However, the
socio-environmental covariates included in our models do not
explain the highly discontinuous observed spatial distribution of
LF (Fig. 3a, b) or the consistent, the very high incidence in Edo
and Ondo states (Supplementary Figs. 2b, d and 5). One
interpretation of our results is that the known geographical
distribution of LF is predominantly shaped by surveillance effort

and that undetected cases are much more ubiquitous than
currently recognised; this is plausible given the widespread nature
of M. natalensis, and indeed is supported by the year-on-year
expansion of the endemic area in Nigeria as surveillance
continues to be rolled-out1. Additionally, since LASV prevalence
in rodents can vary widely over small geographical scales (e.g.
between neighbouring villages)24, it is also possible that LF risk is
highly discontinuous and localised. For example, fluctuations in
rodent populations, pathogen dispersal, infection and immune
dynamics, could lead to significant and challenging-to-predict
variations in spillover risk over space and time. To identify
underreported areas and target interventions, therefore, future
surveys outside known endemic foci are urgently needed to
understand unmeasured social or environmental factors influen-
cing risk (e.g. high public and clinical awareness, agricultural
practices25 or LASV hyperendemicity in rodents26,27).

Climatic predictors of seasonal LF peaks and the scope for
forecasting. Understanding and predicting how LF risk dynamics
vary seasonally within the currently-identified endemic area is
critical to inform disease diagnosis, prevention and control. We,
therefore, analysed the spatiotemporal climatic predictors of
weekly incidence (2012–2019) focusing on the six states that
comprise the main endemic foci of LF in the south (Edo, Ondo
and Ebonyi; 75% of all reported cases) and north (Bauchi, Plateau
and Taraba; 12% of cases)5,28. We modelled weekly confirmed
case incidence at the state-level as a Poisson process with state
population as an offset (n= 2820; 470 weeks in six states;
Methods). We first developed a baseline spatiotemporal model
including spatially structured (state-level) and region-specific
temporally-structured (year and week) random effects, and a
fixed effect for travel time to Lassa diagnostic laboratory, to
account for expansions of surveillance, intra-annual seasonality
and baseline differences between states (Methods). To investigate

Fig. 3 Spatial distribution and correlates of annual Lassa fever occurrence and incidence (2016 to 2019) at local government authority level across

Nigeria. Maps show fitted probability of LF occurrence (a) and incidence (b; cases per 100,000 persons, visualised on the natural log scale) for 774 LGAs

in 2019. Points and error-bars (c) show socio-ecological linear fixed-effects parameter estimates (posterior mean and 95% credible interval) for best-fitting

models of Lassa fever occurrence (dark blue; log odds scale) and incidence (pale green, log scale) (n= 3096 observations). Linear covariates were centred

and scaled before fitting, so parameters measure the effect of 1 scaled unit change in the covariate (1 standard deviation) on either log odds of occurrence

or log incidence. Curves show nonlinear effects of total annual precipitation on LF occurrence (odds ratio; d) and incidence (relative risk; e), specified and

fitted as second-order random walks. Models included spatiotemporally structured random effects (LGA per year) to account for geographical

heterogeneity and expansion of reporting effort (Methods) and were robust to cross-validation tests (Supplementary Fig. 3) and modelling at lower spatial

resolution (Supplementary Fig. 4).
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additional effects of environmental conditions on interannual LF
outbreak dynamics and evaluate the scope for forecasting, we
conducted out-of-sample (OOS) based model selection for linear
and nonlinear effects of climate covariates: air temperature,
vegetation greenness (Enhanced Vegetation Index; EVI), mean
daily precipitation and Standardised Precipitation Index (SPI; a
measure of relative drought or wetness in a 3-month window
relative to historical trends at the same location). These were
averaged across a 60-day period starting at 0, 1, 2, 3 and 4-month
lags prior to reporting week, to account for delayed effects of
climate and any delays between infection and reporting (Meth-
ods, Supplementary Fig. 6). We considered candidate models for
all lagged combinations of all four covariates, and identified the
model that minimised OOS predictive error (measured as root
mean square error, RMSE) on sequential 6-month holdout win-
dows across the study period (Table 1).

The best combination of climatic predictors included nonlinear
effects of SPI (120–180 days lag), precipitation (60–120 days lag)
and EVI (0–60 days lag), and substantially reduced OOS error
relative to a random and reporting effects-only baseline model
(11.3% reduction in RMSE over 2012–2019, and 19.5% reduction
over 2016–2019; Table 1). Posterior predictive simulation for
sequential 6-month holdout windows showed that the climate-
driven model had a good ability to reproduce historical case
trends (Fig. 4a, b and Supplementary Figs. 7, 8; 93.5% of
observations falling within the 95% predictive interval). Sepa-
rately examining the marginal effects of year, season and climate
covariates over time suggests that combinations of interannual
changes in reporting, natural seasonality and climatic factors,
explain both LF periodicity (distance between peaks) and trends
(relative height of peaks over time) in both regions (Supplemen-
tary Fig. 7). Climatic variability is associated with interannual
differences in predicted timing and amplitude of LF seasonality.
The climate-driven relative risk does appear to have been
unusually high in the south during the large case surge in 2018,
although climate conditions during recent high-incidence years
overall tend to fall within a similar range to previous years
(Supplementary Fig. 6a). This suggests that the unprecedented
surges in 2018–2019 probably resulted mainly from a sharp
change in surveillance and/or other unmeasured factors (Supple-
mentary Fig. 7b).

The climate-driven model results suggest that seasonal LF risk
in endemic areas is linked to the distribution of rainfall in the
preceding months (non-extreme conditions at 120–180 days lag,
and low precipitation at 60–120 days lag) and with declines in
vegetation in the preceding 0–60 days (Fig. 4c–e). Together with
the geographical models of annual incidence (Fig. 3c–e), these
results point to a substantial effect of climate in explaining LF
occurrence and incidence patterns across Nigeria. The effect of
lagged rainfall and vegetation dynamics on seasonal risk strongly
suggests an important role of reservoir host population ecology.
Indeed, past studies have shown that inter- and intra-annual
precipitation characteristics—including the distribution of rainfall
throughout the rainy season—are predictive of subsequent M.
natalensis population surges and crop damage in East Africa29.

Temporal variation in rodent and human LASV infections may
be driven by seasonal and interannual rodent population
dynamics (putatively linked to climate-driven cycles in resource
availability and land use30) or human agricultural and food
storage practices4, all of which are important targets for future
research. For example, declines in vegetation during the weeks
preceding transmission could lead to synchronous food-seeking
behaviour in rodents (as natural food availability reduces) and
human behaviour changes relating to harvest and crop proces-
sing. The retrospective OOS predictive accuracy of the seasonal
models (Fig. 4 and Supplementary Fig. 8) suggests that, provided
reporting effort is adequately accounted for, lagged climate
variables might feasibly assist in advance forecasting of LF peaks a
month in advance within known endemic areas31. To examine
this further, we used the baseline and climate-driven models fitted
to 2012–2019 data to make prospective predictions of weekly
cases beyond the study period (to 31 December 2020), fixing all
effects except climatic predictors at 2019 levels (i.e. assuming that
reporting effort and other interannual differences stay the same).
Both models substantially underpredict the true number of cases
observed in 2020 (841 climate-driven and 798 baseline, compared
to 1027 reported), potentially because neither effectively captures
ongoing improvements in surveillance sensitivity or other
potential unobserved events (e.g. hospital-acquired infections).
The climate-driven model predicts a higher number of cases
overall, likely because the model slightly better anticipates the
longer duration of the Lassa season in 2020 than the baseline
model (Fig. 4 and Supplementary Fig. 9). However, the climate-
driven model shows a worse prospective predictive performance
on weekly observations than the baseline (15% increase in OOS
RMSE; Table 1), which may be a consequence of the relatively
short time series used to learn climate associations (n= 8 years,
and only 3 years following the rollout of surveillance).

Discussion
Our results show that LF is a climate and land-use sensitive
disease of poverty. Much of the environmental mediation of case
numbers is likely driven by ecological dependencies of the prin-
cipal host M. natalensis, resulting in a strong association between
LF cases and rainfall. Peak LF occurrence appears to be in areas
experiencing around 1500 mm of rain annually, though incidence
increases with rainfall, though with very wide uncertainty under
very high rainfall conditions. While the role of host ecological
suitability could be important, it may also be human behaviours
that vary in response to climatic conditions, such as crop planting
or farming techniques, that could be the principal or additional
underlying cause of case variation. The trend of increasing inci-
dence with higher rainfall, but the decreasing probability of dis-
ease occurrence, could be reflecting the correlation between
rainfall and host habitat suitability in Nigeria. Areas with very
high rainfall in the south are principally rainforest, which is
unsuitable habitat forM. natalensis4. One possible implication for
disease risk is that landscape conversion towards derived savan-
nah or agriculture in these areas could drive increases in risk, as

Table 1 Retrospective and prospective predictive accuracy of climate-driven Lassa fever incidence model.

Model RMSE (2012–2019) RMSE (2016–2019) RMSE (2020) DIC (WS)

Baseline 3.287 4.328 3.932 5030.5

Climate-driven 2.915 3.483 4.518 4793.9

Proportion change in prediction error −0.113 −0.195 0.149

The table shows the differences in the predictive performance of weekly LF cases by the baseline (random and reporting effects only) and best climate-driven model. We measured predictive

performance as OOS RMSE, calculated for retrospective predictions across the entire study period (2012–2019) and following the widespread rollout of surveillance (2016–2019), and for prospective

predictions for 2020. The climate-driven model also substantially improved within-sample model fit, measured using Deviance Information Criteria (DIC).
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environmental conditions become more conducive for M. nata-
lensis populations.

While the broad limits of the endemic area of LF occurrence
and seasonal nature of observed LF cases may be driven by the
ecological tendencies of the host or climate-responsive agri-
cultural practices, the spatially discontinuous nature of incidence
could be driven by several factors, for example, land-use patterns
creating a mosaic of suitable and unsuitable host habitat, or
heterogeneous human socioeconomic factors. Although our
models identify an overall role of poverty, this is a higher level,
compound metric that is likely to influence several more specific
risk factors, such as the prevalence of rodent hunting, availability
of food storage options, or the probability of having poor-quality
housing that allows high levels of rodent ingress. The environ-
mental covariates we examine in our models are, however, still
limited in their ability to account for the fine-scale, LGA-level
heterogeneity in case incidence; in future, incorporating more
detailed socioeconomic and anthropological data may provide
further insights. Additionally, it could be that reporting effort,
which our models account for using random and distance-based
effects, is driving the variation in observed cases at these finer
spatial scales, and that more detailed data on reporting proce-
dures would provide clearer insights into these spatial patterns.

Indicative of this, the highest reporting state, Edo, is not pre-
dicted to be a very high incidence state using socio-environmental
factors alone, with high cases mostly explained by the effect of
distance to the laboratory. From the comparison of the yearly
maps (Fig. 2), there is an apparent over-reporting of cases in Esan

Central (the location of Irrua Specialist Teaching Hospital) in the
early years of the dataset, while in later years the geographical
locations of cases in Edo become more spatially disaggregated as
surveillance and reporting systems are improved. This role of
reporting effort in explaining case numbers is generally suggestive
of missing cases in areas typically considered to be low incidence.
The high case-fatality rates in lower reporting areas1 could be a
further indication that less severe cases are going undetected.
Efforts to better delimit the endemic area and total burden of LF
would strongly benefit from investigation of areas with medium-
to-high predicted suitability but currently lower observed case
incidence, to understand if these are truly low incidence locations.

During the time period of data collection, West Africa
experienced two particularly disruptive epidemics: the Ebola
epidemic in 2013–15, and the ongoing global Covid-19 pandemic.
Observed cases during the period of the Ebola epidemic are
overestimated by our predictive models (Fig. 4) suggesting that
our models are not accurately capturing some aspects of the
climate variation, or potentially that case reporting was lower due
to behavioural changes (e.g. hospital avoidance) or repurposed
diagnostic capacity. Our ability to characterise the predictors of
interannual LF variation is, as such, limited by the relatively short
length and substantial interannual variation of our case time
series, and by the need to account for an ongoing trend of
increasing surveillance.

The improvement we show in retrospective predictive perfor-
mance provided by a climate-driven model suggests that such an
approach could in the future provide the basis for developing a

Fig. 4 Modelled temporal dynamics and drivers of confirmed Lassa fever cases in the south and north Nigeria. Case time series show observed and out-

of-sample (OOS) predicted weekly case counts from a climate-driven model (n= 2820), summed across all states in the southern (a; Edo and Ondo

states) and northern (b; Bauchi, Plateau and Taraba states) endemic areas to visualise regional differences. Time series graphs (a, b) show observed counts

from 2012 to 2019 (grey bars), OOS posterior median predicted cases (red line) and OOS 95% (grey shading) posterior predictive intervals (both

calculated from 2500 samples drawn from the joint posterior). OOS predictions were made while holding out sequential 6-month windows across the full

time series at state-level (Supplementary Fig. 8). The dark blue line and shaded area in 2020 shows prospective predicted cases (median and 95%

predictive interval) compared to observed cases from this period, which were not included in model fitting (Methods). Inset maps show states included in

the models. Panels show nonlinear fitted effects of Enhanced Vegetation Index (EVI) (c), mean daily precipitation (d), and 3-month Standardised

Precipitation Index (SPI3; e) on relative risk, showing posterior mean and 95% credible interval. The marginal contributions of yearly, seasonal and climatic

effects are visualised separately in Supplementary Fig. 7.
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forecast system in LF-endemic areas (similar to systems
increasingly used for dengue32). However, the uncertain pro-
spective performance shows that robust evaluation of climate-
based forecasting approaches will be limited by the length and
quality of the case time series used to develop the models.
Improving these models year-on-year with new surveillance data,
and including more precise information on agricultural practices,
spatiotemporal variation in landscape characteristics and mod-
elled rodent suitability, should assist in further identifying the
drivers of large case surges and improving prospective prediction
accuracy. Overall our findings have implications for ongoing
disease management and targeting of LASV surveillance in
rodents and humans toward environmentally suitable areas where
LF is apparently absent, prioritising hotspot areas for future
vaccination rollouts, and highlights the critical role of improve-
ments in systematic human case surveillance across West
Africa20,21 in helping to explain rising numbers of cases. With LF
surveillance continuing to improve in Nigeria, these data and
analyses provide a foundation for the future development of user-
focused LF risk mapping and forecasting systems, to aid public
health responses in this region.

Methods
We analyse weekly reported counts of suspected and confirmed human cases and
deaths attributed to LF (as defined in Supplementary Table 1), between 1 January
2012 and 30 December 2019, from across the entire of Nigeria. The weekly counts
were reported from 774 LGAs in 36 Federal states and the Federal Capital Terri-
tory, under Integrated Disease Surveillance and Response (IDSR) protocols, and
collated by the NCDC. All suspected cases, confirmed cases and deaths from
notifiable infectious diseases (including viral haemorrhagic fevers; VHFs) are
reported weekly to the LGA Disease Surveillance and Notification Officer (DSNO)
and State Epidemiologist (SE). IDSR routine data on priority diseases are collected
from inpatient and outpatient registers in health facilities, and forwarded to each
LGA’s DSNO using SMS or paper form. Subsequently, individual LGA DSNOs
collate and forward the data to their respective SE, also by SMS and paper form, for
weekly and monthly reporting respectively to NCDC. From mid-2017 onwards,
data entry in 18 states has been conducted using a mobile phone-based electronic
reporting system called mSERS, with the data entered using a customised Excel
spreadsheet that is used to manually key into NCDC-compatible spreadsheets.
Data from this surveillance regime (WERs) were collated by epidemiologists at
NCDC throughout the period 2012 to March 2018 (Supplementary Fig. 1).

Throughout the study period, within-country LF surveillance and response has
been strengthened under NCDC coordination2,20,33. LGAs are now required to
notify immediately any suspected case to the state-level, which in turn reports to
NCDC within 24 h, and also sends a cumulative weekly report of all reported cases.
A dedicated, multi-sectoral NCDC LF TWG was set up in 2016 with the respon-
sibility of coordinating all LF preparedness and response activities across states.
Further capacity building occurred in 2017 to 2019, with the opening of three
additional LF diagnostic laboratories in Abuja (Federal Capital Territory), Aba-
kaliki (Ebonyi state) and Owo (Ondo state) (to a total of five; Fig. 2) and the rollout
of intensive country-wide training on surveillance, clinical case management and
diagnosis. We note that, due to the rapid expansion in a test capacity, the definition
of a suspected case in our data has subtly changed over the surveillance period:
from 2012 to 2016, suspected cases include probable cases that were not lab-tested,
whereas from 2017 to 2019, all suspected cases were tested and confirmed to be
negative.

In addition to the WERs data, since 2017 LF case reporting data has also been
collated by the LF TWG and used to inform the weekly NCDC LF Situation
Reports (SitRep data; https://ncdc.gov.ng/diseases/sitreps). This regime includes
post hoc follow-ups to ensure more accurate case counts, so our analyses use WER-
derived case data from 2012 to 2016, and SitRep-derived case data from 2017 to
2019 (see Fig. 1 for full time series). A visual comparison of the data from each
separate time series, including the overlap period (2017 to March 2018) is provided
in Supplementary Fig. 1, and all statistical models considered random intercepts for
the different surveillance regimes. Where other studies of recent Nigeria LF inci-
dence have been more spatially and temporally restricted34,35, the extended
monitoring period and fine spatial granularity of these data provide the opportu-
nity for a detailed empirical perspective on the local drivers of LF at a country-wide
scale and their relationship to changes in reporting effort.

Recent trends in LF surveillance in Nigeria. We visualised temporal and seasonal
trends in suspected and confirmed LF cases within and between years, for both
surveillance datasets. Weekly case counts were aggregated to country-level and
visualised as both annual case accumulation curves, and aggregated weekly case
totals (Fig. 1 and Supplementary Fig. 1). We also mapped annual counts of

suspected and confirmed cases across Nigeria at the LGA-level to examine spatial
changes in reporting over the surveillance period (Fig. 2). State and LGA shapefiles
used for modelling and mapping were obtained from Humanitarian Data Exchange
under a CC-BY-IGO license (https://data.humdata.org/dataset/nga-administrative-
boundaries).

Analyses of aggregated district data are sensitive to differences in scale and
shape of aggregation (the modifiable areal unit problem; MAUP36), and LGA
geographical areas in Nigeria are highly skewed and vary over >3 orders of
magnitude (median 713 km2, mean 1175 km2, range 4–11,255 km2). We therefore
also aggregated all LGAs across Nigeria into 130 composite districts with a more
even distribution of geographical areas, using distance-based hierarchical clustering
on LGA centroids (implemented using hclust in R), with the constraint that each
new cluster must contain only LGAs from within the same state (to preserve
potentially important state-level differences in surveillance regime). Weekly and
annual suspected and confirmed LF case totals were then calculated for each
aggregated district. We used these spatially aggregated districts to test for the effects
of scale on spatial drivers of LF occurrence and incidence.

Statistical analysis. We analysed the full case time series (Fig. 1) to characterise
the spatiotemporal incidence and drivers of LF in Nigeria, while controlling for
year-on-year increases and expansions of surveillance effort. We firstly modelled
annual LF occurrence and incidence at a country-wide scale, to identify the spatial,
climatic and socio-ecological correlates of disease risk across Nigeria. Secondly, we
modelled seasonal and temporal trends in weekly LF incidence within hyperen-
demic areas in the north and south of Nigeria, to identify the seasonal climatic
conditions associated with LF risk dynamics and evaluate the scope for forecasting.
All data processing and modelling was conducted in R v.3.4.1 with the packages
R-INLA v.20.03.1737, raster v.3.4.1338 and velox v0.2.039. Statistical modelling was
conducted using hierarchical regression in a Bayesian inference framework (inte-
grated nested Laplace approximation (INLA)), which provides fast, stable and
accurate posterior approximation for complex, spatially and temporally-structured
regression models37,40, and has been shown to outperform alternative methods for
modelling environmental phenomena with evidence of spatially biased reporting41.

Processing climatic and socio-ecological covariates. We collated geospatial data on
socio-ecological and climatic factors that are hypothesised to influence either M.
natalensis distribution and population ecology (rainfall, temperature and vegeta-
tion patterns), frequency and mode of human–rodent contact (poverty and
improved housing prevalence), both of the above (agricultural and urban land
cover) or likelihood of LF reporting (travel time to nearest laboratory with LF
diagnostic capacity and travel time to nearest hospital). For each LGA we extracted
the mean value for each covariate across the LGA polygon. The full suite of
covariates tested across all analyses, data sources and associated hypotheses are
described in Supplementary Table 5.

We collated climate data spanning the full monitoring period and up until the
date of analysis (July 2011 to January 2021). We obtained daily precipitation rasters
for Africa42 from the Climate Hazards Infrared Precipitation with Stations
(CHIRPS) project; this dataset is based on combining sparse weather station data
with satellite observations and interpolation techniques, and is designed to support
hydrologic forecasts in areas with poor weather station coverage (such as tropical
West Africa)42. A recent study ground-truthing against weather station data
showed that CHIRPS provides greater overall accuracy than other gridded
precipitation products in Nigeria43. Air temperature daily minimum and
maximum rasters were obtained from NOAA and were also averaged to calculate
daily mean temperature. EVI, a measure of vegetation quality, was obtained from
processing 16-day composite layers from NASA (National Aeronautics and Space
Administration) (excluding all grid cells with unreliable observations due to cloud
cover and linearly interpolating between observations to give daily values;
Supplementary Table 5).

We derived several spatial bioclimatic variables to capture conditions across the
full monitoring period (Jan 2012 to Dec 2019): mean precipitation of the driest
annual month, mean precipitation of the wettest annual month, precipitation
seasonality (coefficient of variation), annual mean air temperature, air temperature
seasonality, annual mean EVI and EVI seasonality. We also calculated monthly
total precipitation, 3-month SPI44, average daily mean (Tmean), minimum (Tmin)
and maximum (Tmax) temperature and EVI variables at sequential time lags prior
to reporting week for seasonal modelling (described below in Temporal drivers).
SPI is a standardised measure of drought or wetness conditions relative to the
historical average conditions for a given period of the year. SPI was calculated
within a rolling 3-month window across the full 40-year historical CHIRPS rainfall
time series (1981–2020) using the R package SPEI v.1.744.

We accessed annual human population rasters at 100 m resolution from
WorldPop. We accessed the proportion of the population living in poverty in 2010
(<$1.25 threshold) from WorldPop, to proxy for ability to access risk prophylaxis
schemes (e.g. food storage boxes) and for potential susceptibility to disease as a
consequence of lower nutrition and co-infection. We accessed modelled proportion
of the population living in improved housing in 201545, to proxy for the potential
for homes to be infested with rodents. We accessed data on agricultural and urban
land cover (population-weighted proportion of LGA area) for 2015 from
processing ESA-CCI rasters.
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Finally, we used a global travel friction surface and a least-cost path algorithm46

to calculate LGA-level mean travel time to the nearest LF diagnostic laboratory (as
a proxy for likelihood of sample testing for LASV) and nearest hospital47 (to proxy
for the probability of patients accessing healthcare when unwell). Such distance-
based metrics are coarse approximations of complex processes and are subject to
limitations. For example, differences in access to transport infrastructure and
political unrest will have different effects on reporting in different areas of Nigeria,
regardless of proximity to medical facilities, and clinical suspicion for LF will also
be influenced by staff training and sensitisation. Furthermore, diagnostic centres
are often established in areas where the disease is already recognised to occur (e.g.
in Owo in 2019; Fig. 2), so the direction of causality is unclear. The ongoing rollout
of electronic reporting systems should in the coming years provide extra
information on the role of reporting in determining LF case patterns.

Evaluating the geographical distribution and correlates of LF occurrence and inci-
dence. We modelled annual LF occurrence and incidence at a country-wide scale to
determine the spatial, socio-ecological correlates of disease across Nigeria. We used
annual confirmed case counts per-LGA across the last 4 years of surveillance (2016
to 2019) as a measure of LF incidence, since these years followed the establishment
of updated systematic surveillance protocols and the associated geographical
expansion of suspected case reports (Fig. 2), and so are likely to more fully
represent the true underlying distribution of LF across Nigeria. In total, 161 LGAs
reported confirmed LF cases from 2016 to 2019, with the majority of cases reported
from a much smaller subset (75% from 18 LGAs), and 613 LGAs reported no
confirmed LF cases (total= 774 LGAs; median 0 cases, mean 2.21, range 0–321).
This overdispersed and zero-inflated distribution presents a challenge for fitting to
incidence counts, so we instead adopt a two-stage, hurdle model-based approach,
and separately model LF occurrence in all LGAs using logistic regression, and
incidence using a zero-inflated Poisson likelihood (which models zero observations
as a mixture of true and false negatives). Previous iterations of these analyses had
used a zero-truncated negative binomial model for incidence; instead using a zero-
inflated model provided the benefit of retaining all the data, as well as improving
goodness of fit. This both ensures that fitted models adhere to distributional
assumptions, and also enables a clearer separation of the contributions of different
socio-ecological factors to disease occurrence (i.e. the presence of LF) and to total
case numbers in endemic areas.

We model the annual occurrence of LF (n= 774 LGAs over 4 years) where Y i;t

is the binary presence (1) or absence (0) of LF in LGA i during year t, and pi;t
denotes the probability of LF occurrence, such that:

Y i;t � Bern pi;t

� �

ð1Þ

We model annual LF case counts (Ci;t) as a zero-inflated Poisson process, where

z is a parameter describing the probability of observing a zero count and μi;t is the

expected number of cases in LGA i during year t, such that:

P Ci;t ¼ c
� �

¼ z � 1 c¼0½ � þ 1� zð Þ
μi;t

ce�μi;t

c!
ð2Þ

Both pi;t and μi;t are separately modelled as functions of socio-ecological

covariates and random effects based on the general linear predictor:

logit pi;t

� �

¼ αþ∑
j
βjX j;i þ∑

k
δk;i þ ui;t þ vi;t ð3Þ

log μi;t

� �

¼ αþ Pi;t þ∑
j
βjXj;i þ∑

k
δk;i þ ui;t þ vi;t ð4Þ

where, for each model, α is the intercept; X is a matrix of climatic and socio-
ecological covariates with linear coefficients given by β; δk;i are nonlinear effects for

climatic predictors (specified as second-order random walks); and spatiotemporal
reporting trends at LGA level are accounted for using annual spatially structured
(conditional autoregressive; vi;t) and unstructured i.i.d. (independent and

identically distributed) (ui;t) random effects jointly specified as a

Besag–York–Mollie model. The incidence model additionally includes log human
population in each year (Pi;t) as an offset. We set penalised complexity priors for all

random effects hyperparameters, and uninformative Gaussian priors for fixed
effects.

For both models we considered linear coefficients (β) for the following
covariates: mean precipitation of the driest month, mean precipitation of the
wettest month, precipitation seasonality, annual mean air temperature,
temperature seasonality, annual mean EVI, EVI seasonality, proportion agricultural
land cover, proportion urban land cover, the proportion of the population living in
poverty (<$1.25 per day), the proportion of the population living in improved
housing and two distance-based covariates to account for reporting effort: mean
travel time to the laboratory with LF diagnostic capacity and mean travel time to
the nearest hospital. We also considered nonlinear (random walk) terms for
temperature and rainfall covariates because past studies of M. natalensis
distribution suggest that these responses may be nonlinear12,13. Prior to modelling
we removed covariates that were highly collinear with one or more other others
(Pearson correlation coefficient >0.8). Continuous covariates not log-transformed
were scaled (to mean 0, s.d. 1) prior to fitting linear fixed effects.

We conducted model inference and selection in R-INLA, and evaluated model
fit for both occurrence and incidence models using DIC48,49. We conducted model
selection on fixed effects by comparing to a random effects-only spatiotemporal
baseline model. For temperature and precipitation variables, we first decided
whether to consider linear or nonlinear effects by sequentially fitting each covariate
as either linear or nonlinear, and selecting the variable that minimised DIC. We
then conducted full selection on all covariates by removing each in turn from a full
model (including all covariates), and excluding any that did not improve fit by a
threshold of at least six DIC units. The best-fitting models with socio-ecological
covariates explained substantially more of the variation in the data relative to
baseline models (occurrence ΔDIC=−161.1; incidence ΔDIC=−195.2;
Supplementary Table 2). All posterior parameter distributions and residuals were
examined for adherence to distributional assumptions. We evaluated the
contribution of socio-ecological effects to predicted LF occurrence and incidence by
examining the difference in LGA-level random effects between baseline and full
models50 (Supplementary Fig. 2) and by spatially projecting fixed effects across
Nigeria (Supplementary Fig. 5).

We evaluated the sensitivity of spatial model results to geographically-
structured cross-validation, in turn fitting separate models holding out all LGAs
from each of 12 states that have either high (Bauchi, Ebonyi, Edo, Nasarawa, Ondo,
Plateau and Taraba) or low (Kogi, Delta, Kano, Enugu and Imo) documented
incidence. Fixed and nonlinear effects direction and magnitude were robust in all
holdout models, indicating that results were not overly driven by data from any one
locality (Supplementary Fig. 3). We also tested for sensitivity to aggregation scale
(i.e. MAUP) by refitting the final occurrence and incidence models to the data
aggregated into 130 approximately equal-sized districts (as described above).
Confirmed LF case totals were calculated for each district, socio-ecological
covariates were extracted and models were fitted as described above
(Supplementary Fig. 4 and Supplementary Table 3).

Climatic predictors of seasonal LF peaks and the scope for forecasting. A growing
body of data from clinical records6,19,21, ethnographic and social science
research10,51 and rodent population and serological monitoring9,52 suggests that LF
risk may be climate-sensitive. Temporal trends in human and rodent infection are
hypothesised to be associated with seasonal cycles in rodent population ecology,
human land use and food storage practices4. We, therefore, developed spatio-
temporal models to quantify the lagged climatic and environmental conditions that
predict LF incidence (weekly case counts) across the full duration of surveillance
(2012 to 2019). Low and/or variable surveillance effort outside known endemic
areas could confound inference of temporal environmental drivers, so here we
focus our analyses on states with case reporting records that span the entire
monitoring period. These occur in two foci in the south (Edo, Ondo and Ebonyi
states) and north regions of Nigeria (Bauchi, Plateau and Taraba states), which in
total account for 87% of the total confirmed cases since 2012 (Fig. 3). These regions
(north and south) are distinct in terms of agro-ecologies and climate (Supple-
mentary Fig. 6)53, so models included spatially structured and region-specific
temporally-structured random effects to account for these differences.

We fitted models to state-level LF time series from these six states
(Supplementary Table 4). Although our source data are at fine (LGA) resolution,
modelling seasonal climate associations at coarser state-level scale better
harmonises the resolution of disease data with climatic data, and reduces potential
noise associated with uncertain attribution of the true LGA of origin for cases in
the early part of the time series (especially in Southern states; see Fig. 2). We model
weekly case counts Zi;t (n= 6 states over 8 years, so total of 2820 observations) as a

Poisson process:

Zi;t � Pois μi;t

� �

ð5Þ

where μi;t is the expected number of cases for state i during week t, modelled as a

log-link function of a linear combination of spatially and temporally-structured
random effects and climate covariates:

log μi;t

� �

¼ αþ Pi;t þ γr ið Þ;t þ ρr ið Þ;t þ ui;t þ vi;t þ∑
j
βjXj;i þ∑

k
δk;i ð6Þ

Here, α is the intercept, Pi;t is log human population included as an offset

(thereby modelling incidence), and several random effects are included to account
for space and time: γrðiÞ;t is a region-specific temporally-structured effect of the year

(first-order random walk fitted separately for north and south, to account for
ongoing changes in reporting effort and other interannual differences), ρrðiÞ;t is a

region-specific seasonal effect of the epidemiological week to account for
seasonality (second-order random walk to capture dependency between weeks,
fitted separately for north and south), and ui;t and vi;t are state-level spatially

structured and unstructured (i.i.d.) random effects jointly specified as a BYM
model, as above. Additionally, X is a matrix of covariates (including travel time to
diagnostic laboratory) with linear coefficients given by β, and δk;i are nonlinear

effects of climatic predictor variables (specified as second-order random walks). We
set penalised complexity priors for all hyperparameters and uninformative
Gaussian priors for fixed effects. A Poisson model with seasonal random effects was
sufficient to account for seasonal overdispersion in the data without using a
negative binomial likelihood.
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We conducted model selection to identify the model that minimised OOS
predictive error on sequential holdout windows across the study time series. This
involved fitting 16 sub-models for each candidate model, each holding out all
observations in a 6-month window at a time (January–June or July–December of
each year), and extracting OOS predicted case counts for the holdout window. A
model predictive error was calculated as RMSE of the difference between observed
and OOS predicted case counts across the whole time series (2012–2019). We first
conducted this procedure for a baseline model containing only random (state,
season and year) and reporting effects (travel time to laboratory), which was used
as a benchmark to compare against climate-driven model performance (Table 1).

To identify the combination of climate variables that minimised predictive
error, we then conducted the same procedure for candidate models containing all
combinations of four climate predictors at five different time lags: mean daily
precipitation, SPI, EVI and mean daily air temperature, calculated across a 60-day
window at time lags beginning from 0 days to 120 days prior to reporting week (i.e.
0–60, 30–90, 60–120, 90–150 and 120–180 days; spanning 0 to 6 months before
reporting). We considered lagged climate variables to account for, firstly, delayed
effects of seasonal environmental cycles on M. natalensis population ecology,
behaviour and LASV prevalence that are hypothesised to influence the force of
infection to humans9, and secondly, delays between LASV infection event, disease
incubation period (which can be up to 10 days4) and patient presentation at a
medical facility. We included both precipitation and SPI as these reflect different,
biologically relevant hydrometeorological phenomena: precipitation is a raw
measure of rainfall, whereas SPI measures drought or wetness relative to historical
trends at the same location and period of the year (and thus reflects deviations
from average expected rainfall)44. We did not include the temporally-invariant
covariates included in the spatial models, since the smaller number of states
provides low comparative power to detect any spatial effects on incidence.

We then examined the calibration of the best climate-driven model through
posterior predictive simulation, again using 6-month sequential holdout windows.
Each sub-model was fitted, 2500 parameter samples were drawn from the
approximated joint posterior distribution, and these were used to (1) calculate OOS
posterior mean and intervals and (2) simulate the OOS Poisson predictive
distribution (i.e. the range of plausible expected case counts given the model). We
calculated the proportion of observed case counts falling within 67 and 95% OOS
predictive intervals, overall and over time (Supplementary Fig. 8).

Finally, to evaluate the scope for model-based prospective forecasting, we used the
baseline and climate-driven model to make prospective predictions of posterior mean
case counts and predictive intervals for the whole of 2020 (using climate data up to
December 2020) from the model fitted to the full time series. We compared these
predictions to 2020 preliminary state-wide confirmed case counts compiled for the
NCDC Situation Reports, holding yearly random effects (γr;t) at the same level as 2019

(i.e. predictions for 2020 assume the same level of effort; Fig. 4 and Supplementary Fig.
9). Because these are preliminary data they are unsuitable for model fitting but provide
a useful future OOS test for prospective forecasting ability.

Reporting Summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All data used for these analyses are provided at the accompanying repository https://

doi.org/10.6084/m9.figshare.9777656. Social and environmental covariate datasets are

openly available online, and links are provided in Supplementary Table 5.

Code availability
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