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ABSTRACT

This paper studies the problem of discovering and comparing
geographical topics from GPS-associated documents. GPS-
associated documents become popular with the pervasive-
ness of location-acquisition technologies. For example, in
Flickr, the geo-tagged photos are associated with tags and
GPS locations. In Twitter, the locations of the tweets can be
identified by the GPS locations from smart phones. Many
interesting concepts, including cultures, scenes, and product
sales, correspond to specialized geographical distributions.
In this paper, we are interested in two questions: (1) how to
discover different topics of interests that are coherent in geo-
graphical regions? (2) how to compare several topics across
different geographical locations? To answer these questions,
this paper proposes and compares three ways of modeling ge-
ographical topics: location-driven model, text-driven model,
and a novel joint model called LGTA (Latent Geographical
Topic Analysis) that combines location and text. To make
a fair comparison, we collect several representative datasets
from Flickr website including Landscape, Activity, Manhat-
tan, National park, Festival, Car, and Food. The results
show that the first two methods work in some datasets but
fail in others. LGTA works well in all these datasets at
not only finding regions of interests but also providing ef-
fective comparisons of the topics across different locations.
The results confirm our hypothesis that the geographical
distributions can help modeling topics, while topics provide
important cues to group different geographical regions.
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H.2.8 [Database applications]: Data mining

General Terms

Algorithms
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1. INTRODUCTION
With the popularity of low-cost GPS chips and smart

phones, geographical records have become prevalent on the
Web. A geographical record is usually denoted by a two
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dimensional vector, latitude and longitude, representing a
unique location on the Earth. There are several popular
ways to obtain geographical records on the Web:

1. Advanced cameras with GPS receivers could record
GPS locations when the photos were taken. When
users upload these photos on the Web, we can get the
geographical records from the digital photo files.

2. Some applications including Google Earth and Flickr
provide interfaces for users to specify a location on
the world map. Such a location can be treated as a
geographical record in a reasonable resolution.

3. People can record their locations by GPS functions
in their smart phones. Popular social networking web-
sites, including Facebook, Twitter, Foursquare and Dopplr,
provide services for their users to publish such geo-
graphical information.

In the above three scenarios, GPS records are provided to-
gether with different documents including tags, user posts,
etc. We name those documents with GPS records as GPS-
associated documents. The amount of GPS-associated docu-
ments is increasing dramatically. For example, Flickr hosts
more than 100 million photos associated with tags and GPS
locations. The large amount of GPS-associated documents
makes it possible to analyze the geographical characteristics
of different subjects. For example, by analyzing the geo-
graphical distribution of food and festivals, we can compare
the cultural differences around the world. We can also ex-
plore the hot topics regarding the candidates in presidential
election in different places. Moreover, we can compare the
popularity of specific products in different regions and help
make the marketing strategy. The geographical characteris-
tics of these topics call for effective approaches to study the
GPS-associated documents on the Web.

In recent years, some studies have been conducted on
GPS-associated documents including organizing geo-tagged
photos [4] and searching large geographical datasets [7]. How-
ever, none of them addressed the following two needs in an-
alyzing GPS-associated documents.

• Discovering different topics of interests those are co-
herent in geographical regions. Administrative divi-
sions such as countries and states can be used as re-
gions to discover topics. However, we are more inter-
ested in different region segmentations corresponding
to different topics. For example, a city can be grouped
into different sub-regions in terms of architecture or
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entertainment characteristics; a country might be sep-
arated into regions according to landscapes like desert,
beach and mountain. Unfortunately, existing studies
either overlook the differences across geographical re-
gions or employ country/state as the fixed configura-
tion.

• Comparing several topics across different geographical
locations. It is often more interesting to compare sev-
eral topics than to analyze a single topic. For example,
people would like to know which products are more
popular in different regions, and sociologists may want
to know the cultural differences across different areas.
With the help of GPS-associated documents, we can
map topics of interests into their geographical distri-
butions. None of the previous work addressed this
problem and we aim to develop an effective method
to compute such comparison.

In this paper, we propose three different models for ge-
ographical topic discovery and comparison. First, we in-
troduce a location-driven model, where we cluster GPS-
associated documents based on their locations and make
each document cluster as one topic. The location-driven
model works if there exist apparent location clusters. Sec-
ond, we introduce a text-driven model, which discovers top-
ics based on topic modeling with regularization by spatial
information. The text-driven model can discover geograph-
ical topics if the regularizer is carefully selected. However,
it cannot get the topic distribution in different locations for
topic comparison, since locations are only used for regu-
larization instead of being incorporated into the generative
process. Third, considering the facts that a good geograph-
ical configuration benefits the estimation of topics, and that
a good topic model helps identify the meaningful geograph-
ical segmentation, we build a unified model for both topic
discovery and comparison. We propose a novel location-
text joint model called LGTA (Latent Geographical Topic
Analysis), which combines geographical clustering and topic
modeling into one framework. Not only can we discover the
geographical topics of high quality, but also can estimate
the topic distribution in different geographical locations for
topic comparison.

The rest of the paper is organized as follows. We formulate
the problem of geographical topic discovery and comparison
in Section 2. We introduce the location-driven model in Sec-
tion 3 and the text-driven model in Section 4. In Section 5,
we propose the Latent Geographical Topic Analysis model.
We compare the performance of different methods in Sec-
tion 6. We summarize the related work in Section 7 and
conclude the paper in Section 8.

2. PROBLEM FORMULATION
In this section, we define the problem of geographical topic

discovery and comparison. The notations used in this paper
are listed in Table 1.

Definition 1. A GPS-associated document is a text
document associated with a GPS location. Formally, docu-
ment d contains a set of words wd, where the words are from
vocabulary set V . ld = (xd, yd) is the location of document
d where xd and yd are longitude and latitude respectively.
One example of a GPS-associated document can be a set
of tags for a geo-tagged photo in Flickr, where the location

Table 1: Notations used in the paper.
Description

V Vocabulary (word set), w is a word in V

D Document collection
d A document d that consists of words and GPS location
wd The text of document d

ld The GPS location of document d

Z The topic set, z is a topic in Z

θ The word distribution set for Z, i.e., {θz}z∈Z

is the GPS location where the photo was taken. Another
example can be a tweet in Twitter, where the location is the
GPS location from the smart phone.

Definition 2. A geographical topic is a spatially co-
herent meaningful theme. In other words, the words that
are often close in space are clustered in a topic. We give two
geographical topic examples as follows.

Example 1. Given a collection of geo-tagged photos re-
lated to festival with tags and locations in Flickr, the de-
sired geographical topics are the festivals in different areas,
such as Cherry Blossom Festival in Washington DC and
South by Southwest Festival in Austin, etc.

Example 2. Given a collection of geo-tagged photos re-
lated to landscape with tags and locations in Flickr, the
desired geographical topics are landscape categories that are
spatially coherent, such as coast, desert, mountain, etc.

In this paper, we study the problem of geographical topic
discovery and comparison. Given a collection of GPS-associated
documents, we would like to discover the geographical top-
ics. We would also like to compare the topics in different
geographical locations. Here we give an example of geo-
graphical topic discovery and comparison.

Example 3. Given a collection of geo-tagged photos re-
lated to food with tags and locations in Flickr, we would
like to discover the geographical topics, i.e., what people eat
in different areas. After we discover the food preferences,
we would like to compare the food preference distributions
in different geographical locations.

To support topic comparison in different locations, we de-
fine the topic distribution in geographical location as follows.

Definition 3. A topic distribution in geographical
location is the conditional distribution of topics given a
specific location. Formally, p(z|l) is the probability of topic
z given location l = (x, y) where x is longitude and y is
latitude, s.t.,

∑
z∈Z p(z|l) = 1. From p(z|l), we can know

which topics are popular in location l.

The problem of geographical topic discovery and com-
parison is formulated as follows. Given a collection of
GPS-associated documents D and the number of topics K,
we would like to discover K geographical topics, i.e., θ =
{θz}z∈Z where Z is the topic set and a geographical topic
z is represented by a word distribution θz = {p(w|z)}w∈V

s.t.
∑

w∈V p(w|z) = 1. Along with the discovered geograph-
ical topics, we also would like to know the topic distribution
in different geographical locations for topic comparison, i.e.,
p(z|l) for all z ∈ Z in location l as in Definition 3. In the next
sections, we will present three different models for solving
this problem.
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3. LOCATION-DRIVEN MODEL
In the location-driven model, we simply cluster the doc-

uments based on their locations. Each document cluster
corresponds to one topic. p(z|d) is the probability of topic
z given document d from the location clustering result. We
then estimate the word distribution θz for topic z by p(w|z) ∝∑

d∈D p(w|d)p(d|z), where p(d|z) is obtained from p(z|d) by
Bayes’ theorem. In Festival dataset in Example 1, after we
cluster the photos according to their locations, those photos
close to each other are merged into the same cluster. And
then we can generate the geographical topics (i.e., festival
descriptions for each region) based on tags in each cluster.

To cluster objects in 2-D space, we can use partition-based
clustering like KMeans, density-based clustering like Mean-
shift [3] and DBScan [5], and mixture model based cluster-
ing. After we get the word distribution θz for topic z ∈ Z

based on the clustering result, we would like to know the
topic distribution in geographical location p(z|l) for topic
comparison. Therefore, we prefer a generative model for lo-
cation clustering because we can get the estimation of p(l|z).
p(z|l) can be obtained by Bayes’ theorem from p(l|z). A pop-
ular generative model is Gaussian Mixture Model (GMM).
In GMM, we assume that each cluster is mathematically
represented by a Gaussian distribution and the entire data
set is modeled by a mixture of Gaussian distributions.

Although the location-driven model is straightforward, it
is likely to fail if the document locations do not have good
cluster patterns. A geographical topic may be from several
different areas and these areas may not be close to each
other. For example, in Landscape dataset in Example 2,
there are no apparent location clusters; mountains exist in
different areas and some are distant from each other. There-
fore, the location-driven model fails in Landscape dataset as
shown in the experiment in Section 6.2.1.

4. TEXT-DRIVEN MODEL
In the text-driven model, we discover the geographical

topics based on topic modeling. To incorporate location in-
formation, we can use the idea of NetPLSA [8] to regularize
topic modeling. PLSA [6] models the probability of each
co-occurrence of words and documents as a mixture of con-
ditionally independent multinomial distributions. NetPLSA
regularizes PLSA with a harmonic regularizer based on a
graph structure in the data. In our case, the nodes of the
graph are documents and the edge weights are defined as
the closeness in location between two documents. There-
fore, documents that are close in location would be assumed
to have similar topic distributions.

The objective function that NetPLSA aims to minimize is
as follows.

L(D) = −(1 − λ)
∑

d∈D

∑

w∈V

c(w, d) log
∑

z∈Z

p(w|z)p(z|d)

+
λ

2

∑

(u,v)∈E

w(u, v)
∑

z∈Z

(p(z|du) − p(z|dv))2 (1)

where c(w, d) is the count of word w in document d and
w(u, v) is the closeness of document du and dv. p(w|z) is the
word distribution of topic z and p(z|d) is the topic distribu-
tion of document d. λ controls the regularization strength.

With the guidance of text information, the text-driven
model may discover geographical topics that are missed by
the location-driven model. However, there are still several

Table 2: Notations used in LGTA framework.
Description

R The region set, r is a region in R

φ The topic distribution set for R, i.e., {φr}r∈R

µ The mean vector set for R, i.e., {µr}r∈R

Σ The covariance matrix set for R, i.e., {Σr}r∈R

α The region importance weights

problems in the text-driven model. First, we can only get the
word distribution of geographical topics θz for z ∈ Z, but we
cannot get the topic distribution of geographical locations
in Definition 3, which is important for geographical topic
comparison. In text-driven model we cannot know p(z|l)
because location is only used for regularization instead of
being modeled in the topic generative process. Second, it is
difficult to define the document closeness measure used in
regularization. For example, in Food data set in Example 3,
some food preferences exist only in some small regions, while
some others exist throughout the continent. It is difficult to
choose the closeness measure in this case.

5. LOCATION-TEXT JOINT MODEL
In this section, we propose a novel location-text joint

model called LGTA (Latent Geographical Topic Analysis),
which combines geographical clustering and topic modeling
into one framework.

5.1 General Idea
To discover geographical topics, we need a model to en-

code the spatial structure of words. The words that are close
in space are likely to be clustered into the same geographi-
cal topic. In order to capture this property, we assume there
are a set of regions. The topics are generated from regions
instead of documents. If two words are close to each other
in space, they are more likely to belong to the same region.
If two words are from the same region, they are more likely
to be clustered into the same topic. In Festival dataset in
Example 1, the regions can be the areas in different cities,
so the discovered geographical topics are different festivals.
In Landscape data set in Example 2, the regions can be dif-
ferent areas such as the long strips along the coast and the
areas in the mountains, so the discovered geographical top-
ics are different landscapes. In Food data set in Example 3,
the regions can be different areas that people live together,
so the discovered geographical topics are different food pref-
erences. We would like to design a model that can identify
these regions as well as discover the geographical topics.

5.2 Latent Geographical Topic Analysis
In this section, we introduce our LGTA framework for

geographical topic discovery and comparison. The notations
used in the framework are listed in Table 2.

5.2.1 Discovering geographical topics

We would like to discover K geographical topics. The
word distribution set of all the topics is denoted as θ, i.e.,
{θz}z∈Z . Let us assume there are N regions and denote the
region set as R. We assume that the geographical distribu-
tion of each region is Gaussian, parameterized as (µ, Σ) =
{(µr, Σr)}r∈R where µr and Σr are the mean vector and co-
variance matrix of region r. α is a weight distribution over
all the regions. p(r|α) indicates the weight of region r and
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∑
r∈R p(r|α) = 1. Since topics are generated from regions,

we use φ = {φr}r∈R to indicate topic distributions for all the
regions. φr = {p(z|r)}z∈Z where p(z|r) is the probability of
topic z given region r.

∑
z∈Z p(z|r) = 1 for each r.

In our model, topics are generated from regions instead of
documents and the geographical distribution of each region
follows a Gaussian distribution. The words that are close in
space are more likely to belong to the same region, so they
are more likely to be clustered into the same topic. The
generative procedure of the model is described as follows.

To generate a geographical document d in collection D:

1. Sample a region r from the discrete distribution of re-
gion importance α, r ∼ Discrete(α).

2. Sample location ld from Gaussian distribution of µr

and Σr.

p(ld|µr, Σr) =
1

2π
√

|Σr|
exp(

−(ld − µr)T Σ−1
r (ld − µr)

2
)

(2)

3. To generate each word in document d:

(a) Sample a topic z from multinomial φr.

(b) Sample a word w from multinomial θz.

Instead of aligning each topic with a single region, each
topic in our model can be related to several regions. There-
fore, our model can handle topics with complex shapes. Our
model identifies the regions considering both location and
text information. Meanwhile, it discovers the geographi-
cal topics according to the identified geographical regions.
Let us denote all parameters by Ψ = {θ, α, φ, µ, Σ}. Given
the data collection {(wd, ld)}d∈D where wd is the text of
document d and ld is the location of document d, the log-
likelihood of the collection given Ψ is as follows.

L(Ψ; D) = log p(D|Ψ)

= log
∏

d∈D

p(wd, ld|Ψ) (3)

In Section 5.3, we show how to estimate all the parameters
using an EM algorithm.

5.2.2 Comparing geographical topics

To compare the topics in different geographical locations,
we need to get p(z|l) in Definition 3 for all topics z ∈ Z

given location l = (x, y) where x is longitude and y is lati-
tude. Given the estimated Ψ, we first estimate the density
of location l given topic z.

p(l|z, Ψ) =
∑

r∈R

p(l|r, Ψ)p(r|z, Ψ)

=
∑

r∈R

p(l|µr, Σr)
p(z|r)p(r|α)

p(z|Ψ)
(4)

where p(z|Ψ) =
∑

r∈R p(z|r)p(r|α) and p(l|µr, Σr) is based
on Equation 2.

After we get p(l|z, Ψ), we can get p(z|l, Ψ) according to
Bayes’ theorem.

p(z|l, Ψ) ∝ p(l|z, Ψ)p(z|Ψ)

∝
∑

r∈R

p(l|µr, Σr)p(z|r)p(r|α) (5)

5.3 Parameter Estimation
In order to estimate parameters Ψ = {θ, α, φ, µ, Σ} in

Equation 3, we use maximum likelihood estimation. Specif-
ically, we use Expectation Maximization(EM) algorithm to
solve the problem, which iteratively computes a local maxi-
mum of likelihood. Let us denote rd as the region of docu-
ment d. We introduce the hidden variable p(r|d, Ψ), which
is the probability of rd = r given document d and Ψ. In the
E-step, it computes the expectation of the complete likeli-
hood Q(Ψ|Ψ(t)), where Ψ(t) is the value of Ψ estimated in

iteration t. In the M-step, it finds the estimation Ψ(t+1) that
maximizes the expectation of the complete likelihood. The
derivation detail is listed in Appendix A.

In the E-step, p(r|d, Ψ(t)) is updated according to Bayes
formulas as in Equation 6.

p(r|d, Ψ(t)) =
p(t)(r|α)p(wd, ld|r, Ψ

(t))∑
r′∈R p(t)(r′|α)p(wd, ld|r′, Ψ(t))

(6)

where p(wd, ld|r, Ψ
(t)) is calculated as follows.

p(wd, ld|r, Ψ
(t)) = p(wd|r, Ψ

(t))p(ld|r, Ψ
(t)) (7)

where p(ld|r, Ψ
(t)) = p(ld|µ

(t)
r , Σ

(t)
r ) is defined as Gaussian

distribution in Equation 2 and p(wd|r, Ψ
(t)) is multinomial

distribution for the words in document d in terms of proba-
bility p(w|r, Ψ(t)).

p(wd|r, Ψ
(t)) ∝

∏

w∈wd

p(w|r, Ψ(t))c(w,d) (8)

where c(d, w) is the count of word w in document d.
We assume that the words in each region are generated

from a mixture of a background model and the region-based
topic models. The purpose of using a background model is to
make the topics concentrated more on more discriminative
words, which leads to more informative models [16].

p(w|r, Ψ(t)) = λBp(w|B) + (1 − λB)
∑

z∈Z

p
(t)(w|z)p(t)(z|r)

(9)

p(t)(w|z) is from θ(t), and p(t)(z|r) is from φ(t). p(w|B) is
the background model, which we set as follows.

p(w|B) =

∑
d∈D c(w, d)∑

w∈V

∑
d∈D c(w, d)

(10)

In the M-step, we find the estimation Ψ(t+1) that maxi-
mizes the expectation of the complete likelihood Q(Ψ|Ψ(t))
using the following updating formulas.

p
(t+1)(r|α) =

∑
d∈D p(r|d, Ψ(t))

|D|
(11)

µ
(t+1)
r =

∑
d∈D p(r|d, Ψ(t))ld∑
d∈D p(r|d, Ψ(t))

(12)

Σ(t+1)
r =

∑
d∈D p(r|d, Ψ(t))(ld − µ

(t)
r )(ld − µ

(t)
r )T

∑
d∈D p(r|d, Ψ(t))

(13)

In order to get updated θ(t+1) and φ(t+1) in the M-step, we
use another EM algorithm to estimate them. We define the
hidden variable ϕ(w, r, z), which corresponds to the events
that word w in region r is from topic z. The relevant EM
updating process is as follows.
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ϕ(w, r, z) ←
(1 − λB)p(w|z)p(z|r)

λBp(w|B) + (1 − λB)
∑

r∈R p(w|z)p(z|r)
(14)

p(z|r) ←

∑
w∈V c(w, d)p(r|d, Ψ(t))ϕ(w, r, z)∑

z′∈Z

∑
w∈V c(w, d)p(r|d, Ψ(t))ϕ(w, r, z′)

(15)

p(w|z) ←

∑
d∈D c(w, d)p(r|d, Ψ(t))ϕ(w, r, z)∑

w′∈V

∑
d∈D c(w′, d)p(r|d, Ψ(t))ϕ(w′, r, z)

(16)

θ and φ obtained from the above EM steps are considered
as θ(t+1) and φ(t+1).

5.4 Discussion

5.4.1 Complexity analysis

We analyze the complexity of parameter estimation pro-
cess in Section 5.3. In the E-step, it needs O(KN |V |) to cal-

culate p(w|r, Ψ(t)) in Equation 9 for all (w, r) pairs, where K

is the number of topics, N is the number of regions and |V |

is the vocabulary size. To calculate p(wd|r, Ψ
(t)) in Equa-

tion 8 for all (d, r) pairs, it needs O(N |W |) where |W | is
the total counts of the words in all the documents. It also
needs O(|D|) to calculate p(ld|r, Ψ

(t)) for all the documents.

Therefore, the complexity of getting p(r|d, Ψ(t)) for all (r, d)
pairs is O(KN |V |+N |W |). In the M-step, it needs O(N |D|)

to get the updated p(t+1)(r|α), µ
(t+1)
r and Σ

(t+1)
r as in Equa-

tions 11, 12 and 13 for all the regions. To get updated θ(t+1)

and φ(t+1), it needs O(T2KN |V |) where T2 is the number of
iterations for Equations 14, 15 and 16. Therefore, the com-
plexity of M-step is O(N |D| + T2KN |V |). The complexity
of the whole framework is O(T1(KN |V | + N |W | + N |D| +
T2KN |V |)), where T1 is the number of iterations in the EM
algorithm.

5.4.2 Parameter setting

In our model, we have three parameters, i.e., the mixing
weight of the background model λB , the number of topics K

and the number of regions N . A large λB can exclude the
common words from the topics. In this paper λB is fixed
as 0.9 following the empirical studies [16, 9]. K is the de-
sired number of geographical topics. Users can specify the
value of K according to their needs. N is the number of the
regions used in our model for generating the topics, which
provides the flexility for users to adjust the granularity of
regions. The larger N is, the more fine-grained the regions
are. For example, in Landscape dataset in Example 2, a
large N is preferred, since we would like to use fine-grained
regions to handle complex shapes of different landscape cat-
egories. In Festival dataset in Example 1, N is preferred
to be close to K, since we would like to discover the topics
in different areas. In our experiment, small changes of N

yield similar results. When the parameters are unknown,
Schwarz’s Bayesian information criterion (BIC) provides an
efficient way to select the parameters. The BIC measure
includes two parts: the log-likelihood and the model com-
plexity. The first part characterizes the fitness over the ob-
servations, while the second is determined by the number of
parameters. In practice we can train models with different
parameters, and compare their BIC values. The model with
the lowest value will be selected as the final model.

5.4.3 Topic guidance in comparison

We can add some guidance in the framework to make
the discovered geographical topics aligned with our needs
for topic comparison. For example, in Food data set, we
would like to compare the geographical distribution of Chi-
nese food and Italian food, we can add some prior knowledge
in two topics and guide one topic to be related to Chinese
food and the other to be related to Italian food. Specifically,
we define a conjugate prior (i.e., Dirichlet prior) on each
multinomial topic distribution. Let us denote the Dirichlet
prior σz for topic z. σz(w) can be interpreted as the corre-
sponding pseudo counts for word w when we estimate the
topic distribution p(w|z). With this conjugate prior, we can
use the Maximum a Posteriori (MAP) estimator for param-
eter estimation, which can be computed using the same EM
algorithm except that we would replace Equation 16 with
the following formula:

p(w|z) ←

∑
d∈D c(w, d)p(r|d, Ψ(t))ϕ(w, r, z) + σz(w)∑

w′∈V

∑
d∈D(c(w′, d)p(r|d, Ψ(t))ϕ(w′, r, z) + σz(w′))

(17)

5.4.4 Comparison with GeoFolk

In [13], Sizov proposed a novel model named GeoFolk to
combine the semantics of text feature and spatial knowl-
edge. Sizov shows that GeoFolk works better than text-only
analysis in tag recommendation, content classification and
clustering. However, GeoFolk is not suitable for region clus-
tering due to two facts: First, GeoFolk models each region as
an isolated topic and thus fails to find the common topics in
different geographical sites. Second, GeoFolk assumes the
geographical distribution of each topic is Gaussian, which
makes its results similar to the results of the location-driven
model using GMM. As a result, it would fail to discover the
meaningful topics with non-Gaussian geographical distribu-
tions. For example, in the Landscape dataset in Example 2,
the coast topic is along the coastline, GeoFolk fails to dis-
cover it. For the mountain topic, GeoFolk cannot discover it
because the mountain topic is located in different areas. In
contrast, our LGTA model separates the concepts of topics
and regions, and the coordinates are generated from regions
instead of topics. Therefore, we can discover the meaningful
geographical topics properly.

6. EXPERIMENT

6.1 Data Set
We evaluate the proposed models on Flickr dataset. We

crawl the images with GPS locations through Flickr API 1.
Flickr API supports search criteria including tag, time, GPS
range, etc.. We select several representative topics including
Landscape, Activity, Manhattan, National Park, Festival,
Car and Food. The statistics of the datasets are listed in Ta-
ble 3. For Landscape dataset, we crawl the images contain-
ing tag landscape and keep the images containing tags moun-
tains, mountain, beach, ocean, coast, desert around US. For
Activity data set, we crawl the images containing tags hiking
and surfing around US. For Manhattan dataset, we crawl
the images containing tag manhattan in New York City.
For National Park dataset, we crawl the images containing

1http://www.flickr.com/services/api/
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Table 3: The statistics of the datasets.
Data set Time span # image # words

Landscape 09/01/09 - 09/01/10 5791 1143
Activity 09/01/09 - 09/01/10 1931 408
Manhattan 09/01/09 - 09/01/10 28922 868
Festival 09/01/09 - 09/01/10 1751 421
National Park 09/01/09 - 09/01/10 2384 351
Car 01/01/06 - 09/01/10 34707 12
Food 01/01/06 - 09/01/10 151747 278

tag nationalpark and keep the images with tags rockymoun-
tain, yellowstone, olympic, grandcanyon, everglades, smoky-
mountain, yosemite, acadia. For Festival dataset, we crawl
the images containing tag festival in New York, Los An-
geles, Chicago, Washington DC, San Francisco and Austin
area. For Car data set, we crawl the images containing tags
chevrolet, pontiac, cadillac, gmc, buick, audi, bmw, mer-
cedesbenz, fiat, peugeot, citroen, renault. We remove the im-
ages with tags autoshow, show, race, racing and only keep
car brand names in the dataset. For Food dataset, we crawl
the images containing tags cuisine, food, gourmet, restau-
rant, restaurants, breakfast, lunch, dinner, appetizer, entree,
dessert and keep 278 related food tags including dish names
and food style names.

We compare the following methods in the experiment.

• LDM: Location-driven model in Section 3.

• TDM: Text-driven model in Section 4. We set regu-
larization factor λ as 0.5 and add one edge between
two documents if their distance is within threshold ε.
ε varies according to different settings in the datasets
as shown in Section 6.2.

• GeoFolk: The topic modeling method proposed in [13],
which uses both text and spatial information (see Sec-
tion 5.4.4).

• LGTA: Latent Geographical Topic Analysis framework
in Section 5.

6.2 Geographical Topic Discovery
In this section, we compare the discovered geographical

topics by different methods in several representative datasets.

6.2.1 Topic discovery for Landscape dataset

In Landscape dataset, we intend to discover 3 topics, i.e.,
different landscapes. We set ε in TDM as 0.1(∼10km), since
we assume that two locations within 10km should have sim-
ilar landscapes. In LGTA, we set the number of regions N

as 30, since we would like to use 10 regions in average to
cover each landscape topic. We list the topics discovered by
different methods in Table 4, and we also plot the document
locations for different topics on the map in Figure 1. Since
there are no apparent location clusters for the topics, LDM
and GeoFolk fail to discover meaningful geographical topics
due to their inappropriate assumption that each topic has
a location distribution like Gaussian. TDM performs better
than LDM and GeoFolk. Topic 1 of TDM is related to coast,
but Topic 2 and Topic 3 are not distinguishable. In LGTA,
we assume that the topics are generated from a set of re-
gions, so we can clearly identify three clusters coast, desert
and mountain in Table 4. From the LGTA topics in Fig-
ure 1, we can see that Topic 1(coast) is along the coastline,
Topic 2(desert) is aligned with the desert areas in US and
Topic 3(mountain) maps to the mountain areas in US.

6.2.2 Topic discovery for Activity dataset

In Activity dataset, we intend to discover 2 topics, i.e.,
hiking and surfing. We set ε in TDM as 0.1(∼10km), since
we assume that two locations within 10km should have sim-
ilar activities. In LGTA, we set the number of regions N as
20, since we would like to use 10 regions in average to cover
each activity topic. Similar to Landscape dataset, LDM and
GeoFolk fail to discover meaningful geographical topics be-
cause there are no apparent location clusters for the topics.
The result of LDM is similar to GeoFolk, while the result of
TDM is similar to LGTA. Both TDM and LGTA can iden-
tify two topics, i.e., hiking and surfing. We list the topics
discovered by GeoFolk and LGTA in Table 5.

Table 5: Topics discovered for Activity dataset.
GeoFolk LGTA

Topic 1 Topic 2 Topic 1(surfing) Topic 2(hiking)

hiking 0.077 hiking 0.095 surfing 0.070 hiking 0.109

mountains 0.037 mountains 0.050 beach 0.065 mountains 0.059

mountain 0.027 mountain 0.041 california 0.059 mountain 0.042

california 0.027 surfing 0.032 ocean 0.053 nature 0.027

surfing 0.024 beach 0.030 surf 0.031 trail 0.019

beach 0.023 [nh] 0.029 hiking 0.031 hike 0.017

nature 0.020 white[mtn]s 0.022 waves 0.028 desert 0.017

ocean 0.019 trail 0.021 water 0.025 washington 0.014

trail 0.015 ocean 0.021 surfer 0.022 lake 0.013

hike 0.015 nature 0.019 pacific 0.018 camping 0.013

*[mtn] is mountain. [nh] is newhampshire.

6.2.3 Topic discovery for Manhattan dataset

In Manhattan dataset, we intend to discover 5 topics,
i.e., different regions in Manhattan. We set ε in TDM
as 0.001(∼0.1km), since the photos in Manhattan are very
dense. In LGTA, we make the number of regions close to
the number of topics, since we would like to discover large
regions in Manhattan. We set the number of regions N as
10. Overall, LDM, GeoFolk and LGTA can identify dif-
ferent regions in Manhattan because meaningful topics can
be obtained by clustering based on location, such as topic
lowermanhattan and topic midtown. Although we have the
regularization based on spatial information in TDM, it can
only guarantee the smoothness of topics in the neighbor-
hood. TDM is likely to mix the words from distant ar-
eas in the same topic. For example, TDM mix timessquare
0.060, upperwestside 0.051, chinatown 0.033, greenwichvil-
lage 0.031 and unionsquare 0.017 into one topic, and these
words are distant from each other.

6.2.4 Topic discovery for Festival dataset

In Festival dataset, we intend to discover 10 topics, i.e.,
festivals in different cities. We set ε in TDM as 0.01(∼1km),
since 1km is a reasonable range in cities. In LGTA, we
set the number of regions N as 20. Similar to Manhattan
dataset, LDM, GeoFolk and LGTA can discover meaningful
geographical topics, because the cities are distant from each
other in space. TDM is possible to mix the festivals from dif-
ferent areas into the same topic. We list the topics related to
southbysouthwest festival discovered by TDM, GeoFolk and
LGTA in Table 6. The result of LDM is similar to GeoFolk.
From Table 6, we can find that GeoFolk and LGTA discover
pure topics related to southbysouthwest festival in Austin,
but TDM mix southbysouthwest in Austin and atlanticantic
streetfair in New York together.

6.2.5 Topic discovery for National Park dataset

In National Park dataset, we intend to discover 8 top-
ics, i.e., different national parks. We set ε in TDM as
0.01(∼1km), since 1km is a reasonable range in national park
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Table 4: Topics discovered for Landscape dataset.
LDM TDM GeoFolk LGTA

Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3

california mountains beach ocean mountains mountains california desert beach beach desert mountains

ocean desert ocean beach desert water ocean mountains ocean ocean california mountain

mountains mountain water california mountain mountain water mountain water water mountains lake

water utah mountains water california trees beach california mountains california mountain trees

beach arizona sea sea utah coast mountains water sea sea arizona water

desert lake sunset sunset nationalpark lake coast utah sunset coast utah snow

mountain snow mountain seascape snow reflection mountain arizona mountain sunset rock scenery

sunset southwest blue sand rock oregon sea sunset blue seascape southwest hiking

coast rock seascape arizona park scenery sunset rock seascape pacific park washington

sea water lake blue lake washington pacific snow lake sand sunset reflection

LDM(Topic 1) LDM(Topic 2) LDM(Topic 3) TDM(Topic 1) TDM(Topic 2) TDM(Topic 3)

GeoFolk(Topic 1) GeoFolk(Topic 2) GeoFolk(Topic 3) LGTA(Topic 1(coast)) LGTA(Topic 2(desert)) LGTA(Topic 3(mountain))

Figure 1: The document locations of different topics for Landscape dataset.

Table 6: Topic southbysouthwest for Festival dataset.
TDM GeoFolk LGTA

sxsw 0.124 sxsw 0.173 sxsw 0.163

brooklyn 0.082 austin 0.136 austin 0.149

southbysouthwest 0.061 southbysouthwest 0.127 texas 0.142

south 0.055 texas 0.125 southbysouthwest 0.085

streetfestival 0.050 south 0.121 south 0.070

southwest 0.049 southwest 0.103 funfunfunfest 0.061

funfunfunfest 0.044 downtown 0.093 southwest 0.060

atlanticavenue 0.044 musicfestival 0.074 musicfestival 0.057

atlanticantic 0.041 live 0.034 downtown 0.040

streetfair 0.040 stage 0.010 music 0.034

areas. In LGTA, we set the number of regions N as 20. We
show that even if there are apparent location clusters, LDM
and GeoFolk may obtain misleading results. As shown in
Table 7, GeoFolk merges acadia, everglades and greatsmoky-
mountain together into topic acadia, because these three
national parks have fewer photos than other parks and are
all located on the east coast of US. GeoFolk, similar to LDM,
uses one Gaussian distribution to cover all these three parks,
so the words from these parks are mixed into a single topic.
In TDM, topic acadia is mixed with rockymountain. In
LGTA, we use the fine-grained regions to generate the top-
ics, so all the words in LGTA are related to acadia, where
mountdesertisland is home to acadia and barharbor is a town
on mountdesertisland.

Table 7: Topic acadia for National park dataset.
TDM GeoFolk LGTA

acadia[npk] 0.088 acadia[npk] 0.108 acadia[npk] 0.208

maine 0.087 maine 0.107 maine 0.205

acadia 0.087 acadia 0.107 acadia 0.205

colorado 0.081 everglades 0.079 barharbor 0.084

rocky[mtn][npk] 0.071 florida 0.058 newengland 0.084

northrim 0.050 tennessee 0.050 mountdesert[isl] 0.070

rockymountain 0.036 barharbor 0.043 beach 0.025

newengland 0.036 newengland 0.043 outdoor 0.016

barharbor 0.036 greatsmoky[mtn][npk] 0.043 flowers 0.015

rockymountains 0.034 mountdesert[isl] 0.036 wood 0.012

*[mtn] is mountain. [npk] is nationalpark. [isl] is island.

6.2.6 Topic discovery for Car dataset.

In Car dataset, we intend to discover 3 topics. We set ε in
TDM as 0.1(∼10km), since 10km is a reasonable range in the
world scale. In LGTA, we would like to use the fine-grained
regions to discover the possible topics, so we set the number
of regions N as 50. In Car dataset, there are no appar-
ent location clusters or good text indications. As shown in
Table 8, LDM, TDM and GeoFolk all fail to discover mean-

ingful topics. However, LGTA can get the interesting geo-
graphical topics. In LGTA, Topic 1 is about American cars
including chevrolet, pontiac, cadillac, gmc and buick. Topic
2 is related to German cars including audi, mercedesbenz
and bmw. Topic 3 is about those European cars excluding
German brands, including fiat, peugeot, citroen and renault.
These interesting patterns can be discovered because these
car brands in the same topic have similar geographical dis-
tributions.

6.2.7 Summary

With the experiments on these representative datasets, we
can summarize the results as follows. If there are apparent
location cluster patterns such as Manhattan and Festival
datasets, LDM and GeoFolk are able to work, so is LGTA.
If there are no apparent location clusters but good text in-
dications in the datasets such as Landscape and Activity
datasets, LDM and GeoFolk fail, TDM may work and LGTA
works well. Even if there are location cluster patterns, LDM
and GeoFolk may fail, while LGTA is still robust, such as in
National Park dataset. In the difficult datasets such as Car
dataset, only LGTA can discover meaningful geographical
topics. Overall, LGTA is the best and most robust method
for geographical topic discovery.

6.3 Quantitative Measures
In this section, we use some quantitative measures to eval-

uate the performances of different methods.
We use perplexity to evaluate the performance of topic

modeling [1]. We keep 80% of the data collection as the
train set and use the remaining collection as the held-out
test set. We train the models on the train set and compute
the perplexity of the test set to evaluate the models. A lower
perplexity score indicates better generalization performance
of the model. Specifically, we use text perplexity to mea-
sure the topic qualities and use location/text perplexity to
measure the performance of geographical topics.

perplexitytext(Dtest) = exp{−

∑
d∈Dtest

log p(wd)
∑

d∈Dtest
Nd

}

perplexitylocation/text(Dtest) = exp{−

∑
d∈Dtest

log p(wd, ld)
∑

d∈Dtest
Nd

}
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Table 8: Topics discovered for Car dataset
LDM TDM GeoFolk LGTA

Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3

chevrolet chevrolet fiat bmw renault cadillac fiat peugeot chevrolet fiat bmw chevrolet

gmc pontiac renault chevrolet peugeot audi renault chevrolet pontiac renault audi pontiac

cadillac cadillac citroen fiat mercedesbenz pontiac citroen bmw cadillac citroen mercedesbenz cadillac

buick buick peugeot citroen buick gmc peugeot fiat gmc peugeot - gmc

pontiac gmc audi buick - buick mercedesbenz renault buick - - buick

*If the probability of a word in a topic is less than 1e-4, output as ‘-’.

where Dtest is the test collection and Nd is document length
of document d.

We list the results of text perplexity for different meth-
ods in Table 9 and the results of location/text perplexity for
LDM, GeoFolk and LGTA in Table 10. TDM is not avail-
able in Table 10 because we cannot estimate the location
probabilities using TDM. From Table 9 and 10, we can see
both text perplexity and location/text perplexity of LGTA
are the lowest in all the datasets. Especially, in Landscape,
Activity and Car datasets, neither LDM nor GeoFolk can
discover meaningful geographical topics, so the perplexities
of LDM and GeoFolk in these data sets are much larger than
those of LGTA.

Table 9: Text perplexity in datasets.
Data set LDM TDM GeoFolk LGTA

Landscape 394.680 444.676 384.411 366.546

Activity 184.970 176.234 184.979 157.775

Manhattan 193.823 201.042 193.001 192.010

National Park 118.159 120.100 117.238 117.077

Festival 177.978 214.975 173.621 170.033

Car 9.936 9.926 9.937 9.924

Table 10: Location/text perplexity in datasets.
Data set LDM GeoFolk LGTA

Landscape 688.628 672.967 569.047

Activity 358.559 358.577 257.086

Manhattan 109.103 107.620 105.684

National Park 136.435 112.973 103.853

Festival 99.308 94.604 91.230

Car 40242.767 40348.974 8718.927

In Table 11, we show the average distance of word dis-
tributions of all pairs of topics measured by KL-divergence.
The larger the average KL-divergence is, the more distinct
the topics are. In Landscape and Activity datasets, LDM
and GeoFolk fail to discover meaningful topics, so the aver-
age KL-divergence of TDM and LGTA is much larger than
those of LDM and GeoFolk. In Manhattan, National Park
and Festival datasets, the average KL-divergence of differ-
ent methods are similar. In Car datasets, the average KL-
divergence of TDM and LGTA are much larger than LDM
and GeoFolk. Although the words from different topics of
TDM in Car dataset are distinct, the topics are not mean-
ingful as shown in Section 6.2.6.

Table 11: Average KL-divergence between topics in
datasets.

Data set LDM TDM GeoFolk LGTA

Landscape 0.159 0.311 0.141 0.281
Activity 0.164 0.402 0.164 0.491

Manhattan 0.908 1.091 0.965 1.020
National Park 2.576 2.325 2.474 2.598

Festival 2.206 2.109 2.080 2.258

Car 2.518 3.745 2.365 3.731

6.4 Geographical Topic Comparison
In this section, we show the results of topic comparison

for Car and Food datasets.

6.4.1 Topic comparison for Car dataset

In Figure 2, we plot the topic distribution in different
locations for Car dataset according to the discovered top-
ics from LGTA in Section 6.2.6. Compared with European
cars, American cars are mainly in North America. European
excluding German cars dominate most of European areas.
German cars, as luxury brands, are popular in Germany and
other areas such as East Asia and Australia.

6.4.2 Topic comparison for Food dataset

In Food dataset, we set the number of topics K as 10.
To derive the topics that we are interested in, we set the
priors according to Equation 17. We use the words chinese,
japanese, italian, french, spanish and mexican as priors for
six topics and leave the remaining four topics to other pos-
sible food preferences. We set the number of regions N as
100, since we would like to use more find-grained regions to
discover the food preferences. As shown in Table 12, each of
the six topics consists of the typical food related to the pref-
erences. We plot the comparison of the topics on the maps
in Figure 3. From Figure 3, we can find that Chinese food
is popular in China and Southeast Asia. In US and West
Europe, Chinese food also has certain popularity. Japanese
food is dominant in Japan, and it is welcome on the west
coast of US. Italian food is very popular in Mediterranean
area, and it is popular in US too. French food is popular in
France and US. Spanish food is popular in Spain, US and
part of South America. Mexican food is the main food in
Mexico, and it highly influences the Southwestern area of
US. From all these figures, we can find that each food pref-
erence has its main area. In the metropolitan areas in US,
different kinds of food co-exist.

7. RELATED WORK
In this section we discuss some work related to our study,

including geo-tagged social media mining, topic modeling
and image processing using spatial coherence.

Geo-tagged social media mining With the development
of GPS technology, several studies have been done in geo-
tagged social media mining. Rattenbury et al. [11] use Scale-
structure Identification method to extract place and event
semantics for tags based on the GPS metadata of the im-
ages in Flickr. Crandall et al. [4] combine content analysis
based on text tags and image data with structural analysis
based on geospatial data to estimate the photo locations.
In [7], Kennedy et al. use location, tags and visual features
of the images to generate diverse and representative images
for the landmarks. All these studies are related to the in-
terplay between tags and locations in different applications,
but they do not touch the problem of geographical topics
discussed in this paper. Sizov [13] proposed a framework
called GeoFolk to combine text and spatial information to-
gether to construct better algorithms for content manage-
ment, retrieval, and sharing in social media. To make use of
spatial information, GeoFolk assumes that each topic gener-
ates latitude and longitude from two topic-specific Gaussian
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American Car European(excluding German) Car German Car

Figure 2: Topic comparison for Car dataset. For topic z, we plot p(z|l) for all the locations. The larger p(z|l)
is, the darker the location is. We only plot the locations with p(l|z) > 1e−4.

Table 12: Topic discovered for Food dataset.
Chinese Food Japanese Food Italian Food French Food Spanish Food Mexican Food

chinese 0.552 japanese 0.519 italian 0.848 french 0.564 spanish 0.488 mexican 0.484

noodles 0.067 ramen 0.104 cappuccino 0.067 bistro 0.070 tapas 0.269 tacos 0.069

dimsum 0.064 soba 0.066 latte 0.048 patisserie 0.056 paella 0.076 taco 0.059

hotpot 0.039 noodle 0.065 gelato 0.030 bakery 0.049 pescado 0.059 salsa 0.036

rice 0.038 sashimi 0.039 pizza 0.002 resto 0.044 olives 0.032 cajun 0.031

noodle 0.035 yakitori 0.030 pizzeria 0.002 pastry 0.033 stickyrice 0.017 burrito 0.027

tofu 0.020 okonomiyaki 0.026 mozzarella 0.001 tarte 0.026 tortilla 0.013 crawfish 0.023

dumpling 0.018 udon 0.026 pasta 0.001 croissant 0.021 mediterranean 0.010 guacamole 0.022

duck 0.018 tempura 0.020 ravioli 0.000 baguette 0.019 mussels 0.008 margarita 0.020

prawn 0.017 curry 0.016 pesto 0.000 mediterranean 0.018 octopus 0.008 cocktails 0.020

distributions. However, geographical topics may not be like
Gaussian distributions, such as topics “hiking” and “surf-
ing”. In our model, we distinguish the concepts of topics
and regions and provide a more systematic way to discover
geographical topics and we also provide geographical topic
comparison which is not available in the existing models.

Topic modeling Topic modeling is a classic problem in text
mining. The most representative models include PLSA [6]
and LDA [1]. Wang et al. [15] use an LDA-style topic model
to capture both the topic structure and the changes over
time. In these studies, they do not consider the location
information of the documents, so they do not focus on ge-
ographical topics. In [14], Wang et al. propose a Loca-
tion Aware Topic Model to explicitly model the relation-
ships between locations and words, where the locations are
represented by predefined location terms in the documents.
Mei et al.[9] proposed a probabilistic approach to model the
subtopic themes and spatiotemporal theme patterns simul-
taneously in weblogs, where the locations need to be prede-
fined. However, in geographical topic discovery, we do not
know the locations or regions of interest beforehand. If we
directly use the administrative region partitions, it would
be difficult to discover topics whose corresponding regions
are not aligned well with the pre-segmented regions. In [8],
Mei et al. proposed a model called NetPLSA to combine
PLSA with a graph-based regularizer, where adjacent nodes
in document similarity graph should have similar topic dis-
tribution. We use NetPLSA in the text-driven model. How-
ever, NetPLSA cannot provide the geographical distribution
of the topics. As shown in experiment, our LGTA model not
only is more robust but also can provide interesting topic
comparison results.

Spatial coherence inside images Our work is also partially
motivated by the recent work in computer vision [2, 10, 12,
14] which try to simultaneously do object classification and
segmentation in images. However, these studies are funda-
mentally different from this paper in three aspects. First, a
spatial coherent segment is part of a image, while our geo-
graphical region contains multiple documents. This funda-
mental difference leads to different generative models. Sec-
ond, segmentations in one image are usually clearly sepa-
rated by contours and boundaries, which makes it possible
to rely on superpixels [2, 12] to merge into an object of
interests. However, there are no contours in geographical

distribution. At last, the computer vision community focus
on image classification instead of topic comparison, while
the latter is important in Web mining.

8. CONCLUSION
The emerging trend of GPS-associated document opens

up a wide variety of novel applications. In this paper, we
introduce the problem of geographical topic discovery and
comparison. We propose and compare three strategies of
modeling geographical topics including location-driven model,
text-driven model, and a novel joint model called LGTA
(Latent Geographical Topic Analysis) that combines both
location and text information. To test our approaches, we
collect several representative datasets from Flickr website
including Landscape, Activity, Manhattan, National park,
Festival, Car, and Food. Evaluation results show that the
new LGTA model works well for not only finding regions of
interests but also providing effective comparisons of different
topics across locations.

Our work opens up several interesting future directions.
First, we can apply our models on other interesting data
sources. For example, we can mine interesting geographi-
cal topics from the tweets associated with user locations in
Twitter. Second, other than topic discovery and compari-
son, we would like to extend our model to other text mining
tasks. For example, we can do geographical sentiment anal-
ysis for different subjects.
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Figure 3: Topic comparison for Food dataset. For topic z, we plot p(z|l) for all the locations. The larger
p(z|l) is, the darker the location is. We only plot the locations with p(l|z) > 1e−4.
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APPENDIX

A. EM ALGORITHM DERIVATION
The expectation of the complete likelihood Q(Ψ|Ψ(t)) is.

Q(Ψ|Ψ(t)) = E[log
∏

d∈D

p(rd|α)p(wd, ld|rd, Ψ)|D, Ψ(t)]

=
∑

d∈D

∑

r∈R

p(r|d, Ψ(t)) log p(r|α) +

∑

d∈D

∑

r∈R

p(r|d, Ψ(t)) log p(ld|r, Ψ) +

∑

d∈D

∑

r∈R

p(r|d, Ψ(t)) log p(wd|r, Ψ) (18)

In the E-step, p(r|d, Ψ(t)) is updated according to Bayes’
rule as in Equation 6. In the M-step, it find the estimation
Ψ(t+1) that maximize the complete likelihood Q(Ψ|Ψ(t)).
Since θ, α, φ, µ and Σ are in three different summands in
Equation 18, we can optimize each summand separately to
find Ψ(t+1) that maximize the complete likelihood Q(Ψ|Ψ(t))
as in Equation 11, 12 and 13.

We use EM algorithm to find the optimal parameters θ

and φ which maximize the last summand in Equation 18.
The corresponding log-likelihood that we would like to max-
imize is as follows.

L(θ, φ; D) =
∑

d∈D

∑

r∈R

∑

w∈V

c(w, d)p(r|d, Ψ(t))

log(λBp(w|B) + (1 − λB)
∑

z∈Z

p(w|z)p(z|r))

Equations 14, 15 and 16 correspond to the EM steps to up-
date θ(t+1) and φ(t+1).
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