
University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

Public Health Resources Public Health Resources

2014

Geographical variation in Plasmodium vivax relapse
Katherine E. Battle
University of Oxford

Markku S. Karhunen
University of Oxford

Samir Bhatt
University of Oxford

Peter W. Gething
University of Oxford

Rosalind E. Howes
University of Oxford

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/publichealthresources

This Article is brought to you for free and open access by the Public Health Resources at DigitalCommons@University of Nebraska - Lincoln. It has

been accepted for inclusion in Public Health Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Battle, Katherine E.; Karhunen, Markku S.; Bhatt, Samir; Gething, Peter W.; Howes, Rosalind E.; Golding, Nick; van Boeckel, Thomas
P.; Messina, Jane P.; Shanks, G. Dennis; Smith, David L.; Baird, J. Kevin; and Hay, Simon I., "Geographical variation in Plasmodium

vivax relapse" (2014). Public Health Resources. 400.
http://digitalcommons.unl.edu/publichealthresources/400

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fpublichealthresources%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/publichealthresources?utm_source=digitalcommons.unl.edu%2Fpublichealthresources%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/publichealth?utm_source=digitalcommons.unl.edu%2Fpublichealthresources%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/publichealthresources?utm_source=digitalcommons.unl.edu%2Fpublichealthresources%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/publichealthresources/400?utm_source=digitalcommons.unl.edu%2Fpublichealthresources%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors

Katherine E. Battle, Markku S. Karhunen, Samir Bhatt, Peter W. Gething, Rosalind E. Howes, Nick Golding,
Thomas P. van Boeckel, Jane P. Messina, G. Dennis Shanks, David L. Smith, J. Kevin Baird, and Simon I. Hay

This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/
publichealthresources/400

http://digitalcommons.unl.edu/publichealthresources/400?utm_source=digitalcommons.unl.edu%2Fpublichealthresources%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/publichealthresources/400?utm_source=digitalcommons.unl.edu%2Fpublichealthresources%2F400&utm_medium=PDF&utm_campaign=PDFCoverPages


RESEARCH Open Access

Geographical variation in Plasmodium vivax relapse
Katherine E Battle1*, Markku S Karhunen1, Samir Bhatt1, Peter W Gething1, Rosalind E Howes1, Nick Golding1,

Thomas P Van Boeckel2, Jane P Messina1, G Dennis Shanks3, David L Smith4,5, J Kevin Baird6,7 and Simon I Hay1,5*

Abstract

Background: Plasmodium vivax has the widest geographic distribution of the human malaria parasites and nearly

2.5 billion people live at risk of infection. The control of P. vivax in individuals and populations is complicated by its

ability to relapse weeks to months after initial infection. Strains of P. vivax from different geographical areas are

thought to exhibit varied relapse timings. In tropical regions strains relapse quickly (three to six weeks), whereas

those in temperate regions do so more slowly (six to twelve months), but no comprehensive assessment of

evidence has been conducted. Here observed patterns of relapse periodicity are used to generate predictions of

relapse incidence within geographic regions representative of varying parasite transmission.

Methods: A global review of reports of P. vivax relapse in patients not treated with a radical cure was conducted.

Records of time to first P. vivax relapse were positioned by geographic origin relative to expert opinion regions of

relapse behaviour and epidemiological zones. Mixed-effects meta-analysis was conducted to determine which

geographic classification best described the data, such that a description of the pattern of relapse periodicity within

each region could be described. Model outputs of incidence and mean time to relapse were mapped to illustrate

the global variation in relapse.

Results: Differences in relapse periodicity were best described by a historical geographic classification system used

to describe malaria transmission zones based on areas sharing zoological and ecological features. Maps of incidence

and time to relapse showed high relapse frequency to be predominant in tropical regions and prolonged relapse in

temperate areas.

Conclusions: The results indicate that relapse periodicity varies systematically by geographic region and are categorized

by nine global regions characterized by similar malaria transmission dynamics. This indicates that relapse may be an

adaptation evolved to exploit seasonal changes in vector survival and therefore optimize transmission. Geographic

patterns in P. vivax relapse are important to clinicians treating individual infections, epidemiologists trying to infer

P. vivax burden, and public health officials trying to control and eliminate the disease in human populations.
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Background
Malaria is a significant global public health problem and

the greatest burden of disease is found in the world’s

poorest countries [1]. The majority of malaria morbidity

and mortality is caused by two of the five species of

Plasmodium that naturally infect humans, Plasmodium

falciparum and Plasmodium vivax. The broader global

distribution of P. vivax relative to P. falciparum puts an

estimated 2.5 billion people at risk for endemic vivax

malaria [2,3]. An increasing body of evidence has shown

that P. vivax should no longer be thought of as a benign

and rarely fatal disease [4-9], but instead as being cap-

able of causing severe disease and death, particularly in

pregnant women and small children [9-12].

Plasmodium vivax is epidemiologically and biologically

different to P. falciparum and it is not, therefore, appro-

priate to assume that control methods developed for

falciparum malaria are directly transferable to P. vivax

[13-16]. Biological features of P. vivax that distinguish it

from P. falciparum also present unique challenges to

the control of the parasite [17-19]; in elimination set-

tings, P. vivax is often the “last parasite standing” following
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P. falciparum elimination [20,21]. Plasmodium vivax ga-

metocytes are present earlier in the progression of a pri-

mary or recrudescent infection compared to P. falciparum

[17,22], such that the majority of patients have sufficient

gametocytaemia to allow for transmission before diagnosis

or treatment may occur [23-25]. In addition, P. vivax ga-

metocytes are transmitted more efficiently to Anopheles

mosquito vectors than those of P. falciparum and are

transmissible at lower parasite densities [18,26,27]. Within

the mosquito, P. vivax sporozoites develop faster than P.

falciparum at equivalent temperatures, which contributes

to its exploitation of a wider geographic range [28].

Perhaps the most epidemiologically important feature

of P. vivax biology is its ability to relapse in the weeks

and months following a primary parasitaemia via a dor-

mant liver stage known as the hypnozoite [29-31]. This

potential for long-term latency provides the obvious ad-

vantage of safe harbour during cold winter months when

circulation in blood creates potential host immune sys-

tem dangers without the benefit or opportunity for on-

ward transmission. Therefore the term “infection” has

various meanings for P. vivax. Infection may refer to the

introduction and presence of parasites in the body, but

with P. vivax, unlike P. falciparum, this can also refer to

a symptom-less latent infection. The origin of renewed

parasitaemia following a primary vivax infection or a

“recurrence” is also ambiguous; it could be due to a

hypnozoite-triggered relapse, a resurgence of erythro-

cytic parasites as a recrudescence, or an entirely new re-

infection. See Figure 1 and Table 1 for a description of

the pathways between types of infection and attack, and

distinctions in terminology. The hypnozoite fundamen-

tally distinguishes P. vivax from P. falciparum in almost

every important biological, epidemiological, clinical, and

public health respect.

The hypnozoite stage in the life cycle of P. vivax and

the potential for relapse makes chemical therapies that

target only the blood stage of infection ineffective as a

radical cure. The 8-aminoquinolines are the only class of

drugs known to have activity on the hypnozoite parasite

[32-34]. Primaquine therapy, the only currently licensed

radical cure, comes with caveats that add to the chal-

lenge of controlling the parasite to the point of elimin-

ation. Primaquine is associated with potentially fatal

haemolysis in individuals with glucose-6-phosphate de-

hydrogenase (G6PD) deficiency [32,35,36] and is contra-

indicated in pregnant women because of the risk of

acute haemolytic anaemia in the foetus of unknown

G6PD status [37]. The hypnozoite stage and the paucity

of therapy for safe and effective treatment render vivax

malaria an exceedingly difficult challenge for clinicians

and those responsible for the control of endemic mal-

aria. Relapse also has critical implications for under-

standing epidemiological metrics such as the basic

reproduction number and force of infection, obtained

from prevalence rates derived from malariometric sur-

veys and cartographic studies that form a central part in

elimination scenario planning [38,39].

It has long been known that there is significant

geographical variation in the rate at which a “strain” of

P. vivax relapses [40-42]. Temperate and subtropical

strains often exhibit either a long incubation or latent

period (Figure 1) of around eight to ten months. Trop-

ical strains are characterized by short incubation times

and short latency (approximately three to six weeks) [43].

Incubation period refers to the time from sporozoite

Figure 1 Pathways to infection of blood and clinical attacks in Plasmodium vivax malaria.
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inoculation (the mosquito bite) to the primary blood-stage

infection. The latent period describes the time from the

primary attack to relapse. How hypnozoite relapse is trig-

gered, and the source of this phenotypic variation, is unre-

solved [44]. One theory is that the mechanism is an

adaptive trait of the parasite to sequester or “hibernate”

during times when climatic conditions would be inhospit-

able to the parasite’s anopheline mosquito vectors [45-47].

Another is that latent hypnozoites are activated by a sys-

temic febrile illness, explaining the large number of P.

vivax relapses that follow P. falciparum infections [47-49].

These hypotheses need not be mutually exclusive.

Regardless of the triggering mechanism and aetiology

of relapse, evidence from both controlled experimental

and natural settings indicate considerable geographical

variation in the timing of relapse. Although the historical

perception has been that frequent relapsing strains ori-

ginate from the tropics and long-latency strains from

temperate regions [31], it does not sufficiently describe

the observed variation in relapsing phenotypes. This bin-

ary classification conflicts with evidence of long-latency

strains in tropical regions in the Americas, for instance.

Coatney et al. [43] described in 1971 that there were

three patterns of relapse. These included the Chesson

strain of New Guinea-South Pacific which exhibits a

short incubation period (seven to fourteen days), fol-

lowed by regular re-invasions of the bloodstream within

approximately three weeks after the primary infection

and may continue to relapse for more than 18 months

without a radical cure of the hypnozoite stage. The St

Elizabeth strain from southern USA has a similar incu-

bation period to the Chesson strain, but hypnozoites re-

main quiescent for several months following the primary

infection before relapsing at regular intervals of three to

four weeks for up to two years [43]. A third variety, such

as the strain once found in the Netherlands [42], has a

long period of incubation (around eight months) before

the primary clinical episode followed by frequent re-

lapses (the lower arm of Figure 1). This three-type classi-

fication likely oversimplifies the degree of variation in P.

vivax relapse periodicity and offers limited information

regarding the geographic origin of the described pheno-

types. Furthermore, the majority of P. vivax strains have

short incubation periods and the greatest difference lies

in the latency period from primary attack to first relapse.

Geographic zones have been proposed for distinguish-

ing areas with similar timing and frequency of P. vivax

relapse following sporozoite inoculation. Figure 2A,

adapted from White [47], and modified by the boundar-

ies of the malaria endemicity map proposed by Lysenko

and Semashko (for the maximum range of malaria circa

1900) [50], illustrates a proposed distribution of relapse

phenotypes. White noted the historical perception that

strains that relapse quickly originate from Southeast

Asia. Temperate and subtropical areas are characterized

by long-latency strains. The Indian subcontinent and

South America are thought to contain both long-latency

and frequent relapsing strains. A second geographic de-

scription of variation in time to relapse is described in a

recent study by Lover and Coker [51]. The authors ana-

lysed the time to relapse in experimentally infected indi-

viduals relative to the geographic origin of the strain.

They found that, overall, temperate strains relapse more

slowly than tropical ones. However, they also found that

New World tropical strains relapse more slowly than

Old World tropical strains, and Eurasian temperate

strains relapse more slowly than temperate strains from

the Western Hemisphere [51]. Figure 2B illustrates this

implied classification system.

While the maps in Figure 2 were derived from obser-

vations of relapse phenotype, others have grouped re-

gions based on similar ecological and epidemiological

Table 1 Glossary of terms relevant to Plasmodium vivax relapse

Term Definition

Infection Presence of parasites in any of its forms of incubation, prepatency, patency, subpatency or latency.

Incubation The period between inoculation of sporozoites and release of merozoites into the blood stream (primary exo-erythrocytic cycle).

Prepatency The period prior to a primary attack where asexual parasites in the blood are both not detectable and asymptomatic, though present.

Patency The period of clinical attack with demonstration of asexual parasites in blood as the cause of illness.

Subpatency The period following a primary attack where asexual parasites are both not detectable and asymptomatic, though present.

Recrudescence An event following sub-patency when parasites are both demonstrated to be present and the cause of another clinical attack
or asymptomatic patency.

Latency The period between a primary attack and a relapse; in some strains also the period between inoculation of sporozoites and the
occurrence of a patent primary attack, typically six months or more.

Relapse Patent asexual parasitaemia originating from activation of latent hypnozoites.

Re-infection Patency by asexual blood stage parasites deriving from a new inoculation of sporozoites.

Recurrence A newly patent parasitaemia occurring at any point after clearance of sub-patency of a primary parasitaemia where the origin is
not known with certainty as being a reinfection, recrudescence or relapse.

Definitions are presented in chronological order of events.
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characteristics in the absence of relapse observations.

These regions may reveal patterns of relapse and help

elucidate determinants of the periodicity observed. The

zones proposed by Macdonald [52] are shown in

Figure 3. They are described by Macdonald as “zoogeo-

graphical” malaria regions and share commonalities with

many historical biogeographical zonations [53-55]. The

approximate boundaries of the zones are delineated by

climatic variables that influence malaria transmission

rates, such as temperature and rainfall, the intensity of

transmission observed, as well as the abundance and be-

haviours of the locally dominant vector species [52].

A systematic review of P. vivax relapse events was

conducted with the aim of revealing systematic geo-

graphical patterns of relapse frequency and a quantita-

tive description of the potential time to relapse in

different regions of the P. vivax-endemic world.

Methods
Data assembly

A formal literature search for data was conducted on

PubMed [56] with the keywords: “vivax AND relapse”

on 15 November, 2012 and updated on 24 October,

2013. The search returned 449 references. This list was

Figure 2 Proposed distributions of Plasmodium vivax relapse latency phenotypes. Panel A, adapted from White [47], shows the historical

distribution of frequent relapsing and long-latency relapse strains. The geographic limits were modified using a historical malaria endemicity map

from Lysenko and Shemashko [50]. Tropical frequent relapsing strains are in pink and long-latency strains in grey. Much of Africa is shown with

grey hatching because the influence of Duffy negativity and its effect on vivax transmission in this part of the world is not yet understood. Purple

areas are thought to have both long-latency and frequent relapsing strains. Panel B shows the Old and New World classification system based on

the analysis and findings from Lover and Coker [51]. Tropical zones (red and pink) harbour strains that relapse more quickly than those in temperate

zones (light and dark blue). New World tropical strains (pink) relapse more slowly than Old World tropical strains (red) and Old World temperate strains

(dark blue) relapse slower than New World temperate strains (light blue). The dotted lines indicate the ±23.5° latitude lines to delineate temperate and

tropical areas. Old World refers to Africa, Eurasia and the Pacific and New World to the Americas and Caribbean regions.
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augmented with the reports of P. vivax relapse cited by

Baird and Hoffman [32] and from the reference list of

two recent reviews of variation in relapse periodicity

[47,51]. Additional studies were obtained by correspond-

ence with colleagues active in this research area. Malaria

in the military was also examined using references from

the US Army and medical records from British soldiers

who contracted malaria during duty in World War II.

Medical records were obtained from contacts and the

Malaria Research Library, now the Malaria Reference

Library, kept at the London School of Hygiene and

Tropical Medicine. The aim was to obtain as much data

as possible regarding P. vivax recurrence in all regions

where vivax malaria is or has been endemic. The litera-

ture sources ostensibly refer to the recurrence events as

relapses; however treatment trials and studies conducted

in endemic areas may include recrudescences and rein-

fections in measures of relapse. Because much of the

data on P. vivax relapse in patients not treated with

primaquine originated before use of the drug became

common following World War II [57], no restrictions

were applied on study dates.

The exclusion criteria for the studies were minimal.

Data were not used from patients who had been treated

with a sufficient dose (15 mg per kg for 7 or 14 days) of

primaquine, or any 8-aminoquinoline drug (pamaquine,

plasmochin or pentaquine), due to the effect of the drug

on hypnozoites, and therefore patterns of relapse. For

example, a series of clinical trials demonstrated that 8-

aminoquinoline drug failures (relapses) occurred 60–

90 days post-patency, whereas untreated relapses almost

always occurred between day 17 and day 35 post-

patency [58]. Studies that had treated patients with a

five-day course of 15 mg base of primaquine or less,

which was shown to be ineffective in preventing relapse

[59], were permitted. Relapse in patients treated with a

seven-day course of primaquine in South America,

where the treatment schedule has been shown to be in-

adequate [60], were also considered. Blood-stage treat-

ments were not exclusion criteria, but were noted for

analysis purposes. Mefloquine prophylaxis and treatments

such as mepacrine (quinacrine, atabrine) or chloroquine

may cause a delay in relapse because the drugs retain

suppressive levels in the patient for long periods after

treatment [61,62], making it difficult to distinguish the ob-

served relapse as a first or second relapse. A 14-day cut-

off was applied to data abstracted from drug treatment

trials. Any re-appearance of infection before the 14th day

was categorized as a treatment failure, while infection after

day 14 was listed as a relapse. This conservative cut-off

was applied to maximize sensitivity. A primary relapse is

unlikely to occur before two weeks, even in fast relapsing

strains [63]. However, a 14-day cut-off may result in some

recrudescence events being classed as a relapse.

When possible, data on time to recurrence from the

start of treatment of the primary infection were ab-

stracted to the individual level. Start of treatment was

almost invariably the first day of patency, and we consid-

ered it most probable that the vast majority of recur-

rences represented relapses. The majority of studies

reported by the day, but those that reported the week or

month of relapse were also included (with the last day of

the month or week given as the time to relapse). Studies

that aggregated months together were excluded. The

period of follow-up was recorded for all individuals in

each study, including those that did not experience a re-

lapse. Data on the type of patient (prison volunteer, mal-

aria therapy patients, soldiers, etc.) were also collected

Figure 3 Zoogeographical zones of malaria transmission. Zones defined by Macdonald (1957) based on regions with similar ecological and

epidemiological characteristics [52].
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as it is likely that this would have influenced the time to

first relapse. Data on duration of prepatent period from

studies performed in experimental settings were re-

corded where this information was available.

Georeferencing

Geopositioning of relapse studies was implemented using

established methods [64] for those references that did not

provide specific coordinates for the study site. The latitude

and longitude of entries that provided cities or towns were

located as points (<10 sq km) using Google Maps [65].

The centroid of small and large polygons (>25 to <100 sq

km and >100 sq km, respectively), such as islands, regions

or countries were obtained using ArcMAP 10.0 [66] to de-

termine the latitude and longitude of those areas. The lati-

tude and longitude values recorded corresponded to the

origin of infection. Therefore, infections in returning trav-

ellers were geopositioned to the place of travel and malaria

therapy or experimental trials were positioned to the ori-

gin of the strain used.

Statistical analysis

The number of cases, total person time observed, and

mean and standard deviation of time to first relapse were

calculated among individuals who experienced at least one

relapse in each study. The incidence rate of relapse was

calculated from the number of relapse events and total

person time. The factors affecting this rate were modelled

using mixed-effects meta-analysis in the package metafor

[67,68] within the statistical programming language R

[69]. As data must be normalized for use in metafor, how

to best accomplish this was tested by applying different

transformations to the data from each study and assessing

deviation from normality by the Shapiro-Wilk test.

The geographic zones described above (Figures 2 and 3)

were included in the meta-analysis of relapse rate as cat-

egorical moderators. These included the three phenotypic

zones shown in White (hereafter referred to as the White-

3 system), which were also shown differentiated by Old

World and New World (White-5), the four zones de-

scribed by Lover and Coker, and lastly the 12 zoogeo-

graphical regions as described by Macdonald [47,51,52].

Model choice was performed between these geographic

systems using information criteria given by metafor (see

Table 2). For the best geographic system obtained from

this, a meta-analysis of mean time to first relapse among

patients with observed relapse events was performed. See

Additional file 1 for more information regarding model

choice and the meta-analysis. Kaplan-Meier survival

curves were generated from pooled individual data from

each zone. These curves are intended to illustrate the ob-

served qualitative patterns of relapse in each zone.

Relapse maps

To visualize geographic variation in relapse, maps were

generated by plotting points of median time to relapse

in individuals who experienced a relapse from each

study included in the final dataset. Regional maps were

produced to illustrate the relapse incidence and mean

time to relapse modelled within the geographic system

chosen in the meta-analysis.

Results
Data assembly

Following the literature search and collection of unpub-

lished sources, 121 references were found to contain data

on time to first recurrence in patients not treated with a

sufficient radical cure. Further details regarding the results

of the literature review are found in Additional file 1. De-

tails and summary statistics for the 121 references show-

ing time to first recurrence are shown in Additional file 2.

Of those, 87 references reported data at the individual

level with time to relapse reported in days or values less

than or equal to one month (Figure 4). The resulting data-

set contained information on 30,049 individuals, of whom

5,731 experienced at least one recurrence. These data are

provided in Additional file 3. The observed recurrences

are most likely to be relapses, but, in probably rare in-

stances, recrudescences may also be represented among

data classified as early relapse (<60 days). The list of ref-

erences included in the final database is available in

Additional file 4.

Relapse rate data were available from 29 different

countries and regions. The vast majority of the data were

from India (78%, 23537/30049); although of the patients

to experience a relapse, only one third (34%, 1931/5731)

originated from the subcontinent (Additional file 1).

There were data from 23 known strains in experimental

infections, but the majority of individuals contracted

wild P. vivax (94%, 28149/30049). Many of the subjects

were not residents of endemic areas. For example, over

one third of the patients to relapse (37%, 2731/5731) were

Table 2 Comparison of geographic classification systems

System τ
2 I2 H2 R2 AIC AICc

White-3 1.3 97.1 34.0 33.6% 707.7 707.9

Lover 1.6 97.5 40.8 19.4% 728.4 729.0

White-5 0.9 95.4 21.8 57.3% 623.6 624.0

Macdonald 0.8 95.0 20.0 59.9% 612.7 614.1

Modified Macdonald 0.8 95.0 19.9 60.1% 612.9 614.0

Mixed-effects meta-analysis has been performed for 214 different studies or

study arms by using the R package metafor [68]. The statistics are: τ2, amount

of residual heterogeneity; I2, residual heterogeneity/unaccounted variability;

H2, unaccounted variability/sampling variability; R2, calculated from the residual

heterogeneity (τ2) and the residual heterogeneity of an empty model as

suggested by Raudenbush [70]; AIC, Akaike information criterion; and AICc,

corrected AIC. The values of AIC, BIC and AICc are based on the restricted

maximum likelihood, as this corresponds to the REML (restricted maximum

likelihood) estimator recommended by experts [67].
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military personnel deployed from non-endemic regions. A

summary of key aspects of the dataset, such as treatment

and patient type, is available in Additional file 1.

Statistical analysis

Regardless of the transformation applied to the raw data

for each study (identity, log, square root or Freeman-

Tukey [71]), the time to first relapse deviated significantly

from normal (plots shown in Additional file 1). The devi-

ation was smallest under the log-transformation, which is

common for incidence-rate data [72]. The model choice

analysis was therefore carried out using log-transformed

data. The Macdonald classification system yielded the best

description of the data, judging by pseudo-R2, the Akaike

information criterion (AIC) and corrected AIC (AICc,

which accounts for small sample sizes, see Table 2). Pos-

sible ways to simplify the Macdonald system such that

geographically contiguous zones with similar transmission

suitability would be combined were assessed. Further de-

tails are provided in Additional file 1. Combining zones 4

and 11 slightly improved the model fit. Zones 5 and 6, and

9 and 10, respectively, were also combined as there were

no relapse data available from zones 6 and 9. The revised

zones are shown in Figure 5A.

Table 3 presents two estimates of relapse incidence

rate for the modified Macdonald system as the number

of first relapses per 100,000 person days. One is the

crude estimate based on raw data, and the other is the

Figure 4 Schematic overview of the literature review procedure and results to obtain individual records of relapse and follow-up.

Battle et al. Malaria Journal 2014, 13:144 Page 7 of 16

http://www.malariajournal.com/content/13/1/144



Figure 5 (See legend on next page.)

Battle et al. Malaria Journal 2014, 13:144 Page 8 of 16

http://www.malariajournal.com/content/13/1/144



result obtained from the meta-analysis. The highest ob-

served and predicted incidence values are found in zones

9 + 10 and 12, corresponding to Southeast Asia and

Papua New Guinea (PNG) plus the Solomon Islands

(Melanesia). It is predicted that there will be approxi-

mately 800–1,200 relapses per 100,000 person days in

this part of the world, compared with the estimated 130

relapses in northern Asia and Europe (zones 4 and 11).

The crude and predicted estimates are very different for

some zones (namely 3 and 8). This is because the

mixed-effect meta-analysis attributes unusually low and

high case numbers to inter-study variation and these do

not contribute substantively to the rate estimate. A rele-

vant incidence measure could not be calculated for zone

8 (India) because the observed data included several

large studies (>2,000 patients) in which the majority of

patients did not experience a relapse (Additional file 1).

Table 4 shows the raw and modelled estimates of mean

relapse time for each of the geographic zones in the modi-

fied Macdonald system. These were obtained by running a

meta-analysis for mean time to relapse and its standard

deviation within each study (in a separate analysis from

the original run for the incidence rates), and these are cal-

culated from only the observed relapse events. This pro-

duces a modelled estimate of relapse time that is based on

the least variable data sources. The Indian zone figures are

therefore more plausible in these results. The modelled

results show the fastest times to relapse are found in

Southeast Asia (zone 9 + 10) and Melanesia (zone 12),

around 45 days. South America (zone 3) also had a rapid

time to relapse (65 days). However, there were relatively

few records from zone 3 (Figure 5B) and some of the het-

erogeneity in relapse patterns may have been missed. Zone

1, North America, is predicted to have relapse times of

about six months. Central America, zone 2, is estimated to

have a relapse time of five to six months, driven by a few

studies with long relapse intervals observed in Mexico [74].

The Mediterranean zone (5 + 6), a region of seasonal trans-

mission, has a modelled mean time to relapse of five

months. Based on the raw data, the mean time to relapse

from the few data points in the sub-Saharan Africa zone (7)

was only one month. Finally, the northern Europe and Asia

zone (11 + 4) has by far the longest modelled mean time to

relapse of ten months.

Finally, Figure 6 presents the survival curves for the

modified Macdonald system. Note that the meta-analysis

models described above do not yield survival curves. The

curves in Figure 6 are based on the Kaplan-Meier survival

function estimator, and they are calculated from pooled

raw data within the geographic zones to provide a quantita-

tive comparison of relapse patterns among zones. For

(See figure on previous page.)

Figure 5 Revised zoogeographical zones and observed time to first relapse. Panel A illustrates the revised zoogeographical zones used to

describe the time to first relapse. Panel B shows the median observed time to relapse in each study used to obtain individual data. The size of

each point varies by sample size and the time to first relapse is shown on a spectrum of red (less than one month) to dark blue (>12 months).

Violin plots in Panel C show the observed time to first relapse in individuals from each zone in Panels A and B. The coloured areas correspond to

each zone and to a smoothed approximation of the frequency distribution (a kernel density plot) of the time relapse within each geographic

region. The black central bar represents the interquartile range and the white circles indicate the median values. Note that the maximum value

for zone 2 extends beyond the plot.

Table 3 Relapse incidence rates for the modified Macdonald

system

Ecological zone Based on raw data,
ML with 95% CI

Model-based,
REML with 95% CI

1 357 (CI: 318–400) 455 (CI: 313–662)

2 217 (CI: 198–238) 259 (CI: 120–557)

3 419 (CI: 328–528) 1093 (CI: 535–2,233)

5 + 6 214 (CI: 186–245) 262 (CI: 82–839)

7 221 (CI: 191–255) 213 (CI: 95–477)

8 25 (CI: 24–26) 62 (CI: 33–116)

9 + 10 975 (CI: 811–1163) 836 (CI: 351–1,995)

11 + 4 138 (CI: 120–159) 134 (CI: 64–278)

12 1023 (CI: 981–1,067) 1224 (CI: 689–2,174)

The numbers are presented as first relapses per 100,000 person days. The

estimate based on raw data is obtained by dividing the number of relapses by

follow-up time and using Ulm’s exact formula [73] for confidence intervals. The

model-based estimates are calculated from the results obtained from meta-

analysis performed by the R package metafor. ML refers to the maximum

likelihood and REML to restricted maximum likelihood.

Table 4 Mean time to relapse among geographic zones

Ecological zone Based on raw data,
ML with 95% CI

Model-based,
REML with 95% CI

1 100 (CI: 99–101) 185 (CI: 162–208)

2 239 (CI: 239–240) 164 (CI: 117–212)

3 53 (CI: 53–53) 65 (CI: 18–113)

5 + 6 153 (CI: 153–153) 151 (CI: 80–221)

7 31 (CI: 30–31) 107 (CI: 57–158)

8 181 (CI: 180–181) 120 (CI: 82–159)

9 + 10 289 (CI: 288–290) 41 (CI: −11–92)

11 + 4 89 (CI: 87–90) 299 (CI: 254–345)

12 122 (CI: 121–123) 47 (CI: 12–81)

The model-based estimates have been calculated by using the R package

metafor, which acknowledges interstudy variation. Thus the numbers differ

from raw means calculated from the data. ML refers to the maximum likelihood

and REML to restricted maximum likelihood. Please note that sample means by

the very definition concern only observed events, and consequently this table

ignores person time from censored observations.
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example, in zone 1, the majority of the patients observed

had relapsed by day 300, whereas in zone 12, most patients

had relapsed before day 100. The curve in zone 8 does not

reveal much regarding the time to relapse because of the

small number of relapsing patients.

Relapse maps

The revised zoogeographical zones used in the analyses

described above are shown in Figure 5A. In Figure 5B

the median time to relapse for study locations is speci-

fied with points inside the geographic zones. The map il-

lustrates a concentration of fast-relapsing strains in

Southeast Asia and Melanesia. The heterogeneity in re-

lapse periodicity observed in zone 8 is also apparent in

this map. The variation in the North American zone is

due to the behaviour of strains occasionally relapsing

quickly after a long incubation period between inoculation

and primary attack (data available from experimental

Figure 6 Survival curves for the modified Macdonald system. Shown are the Kaplan-Meier estimates (solid lines) with 95% confidence intervals

(dotted lines). For each curve, all individual-level data from the respective zone have been pooled. The curves terminate at the longest follow-up day

in each zone. The ticks indicate censoring events, i.e., losses to follow-up or the completion of a study without relapse. Zone 1: North America, zone 2:

Central America, zone 3: South America, zone 5: Mediterranean and North Africa, zone 7: sub-Saharan Africa, zone 8: Monsoon Asia, zone 10: Southeast

Asia, zone 11: northern Europe and Asia, zone 12: Melanesia.
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inoculations only), but for the most part relapses followed

a long period of latency after a short incubation period.

Summary statistics of the time to relapse by zone are

shown in Additional file 1. Panel C in Figure 5 is a violin

plot of observed time to relapse in each zone. This illus-

trates that those shorter relapses in North America are

fairly rare. The violin plots also show that the longer pe-

riods to relapse in Central America and Southeast Asia

are rare. Heterogeneity in other zones, such as 8 and 11 +

4, is also demonstrated by the violin plots. Figure 7 illus-

trates the results of the predicted relapse incidence and

mean time to relapse by region. In Figure 7A, zone 8 is

hatched out as the resulting estimate is biologically im-

plausible and is most likely caused by the handful of stud-

ies with large numbers of patients not reporting relapse

during the observation period.

Discussion
The aims of this paper were to review the timing and

frequency of P. vivax relapse of known origin in patients

not treated with a hypnozoitocide to characterize vari-

ance in these patterns within geographic dimension, to

identify a system to classify the variation in relapse ob-

served and to describe the pattern of relapse in each

area. A modified classification of the zoogeographical

zones of malaria transmission outlined by Macdonald

[52] was found to best describe the observed variation in

relapse incidence. The rate of relapse and mean time

from primary infection to relapse was predicted in each

of the nine zones. These quantitative estimates of the

contribution of relapses to P. vivax case incidence are

crucial in informing estimates of disease burden and the

origin of acute attack, i.e., from biting mosquitoes or

Figure 7 Modelled relapse incidence and mean time to relapse. Panel A illustrates the relapse incidence per 100,000 person days on a

spectrum of blue to red, with red being the highest incidence of relapse. Zone 8 is hatched to indicate that the predication is particularly

uncertain. Panel B illustrates the predicted mean time to relapse on a spectrum from blue to red, with red being most frequent relapse. The

numbers of the zones correspond to those shown in Figure 5A.
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emergent hypnozoites. This understanding, in turn, in-

forms critical decision-making in control strategies that

effectively weigh the benefit of anti-mosquito versus hyp-

nozoitocidal interventions. They also help identify re-

gions in which strains have long-term latency and are

therefore undetectable to standard diagnostic methods

(rapid diagnostic tests and microscopy) for long periods

of time.

The results presented here further refine historical in-

terpretations and recent analyses of the geographic vari-

ation in relapse periodicity. As shown in Figure 2,

tropical strains relapse more rapidly than temperate

strains and New World strains vary from those in the

Old World. White’s illustration of the variation in re-

lapse phenotype shown in Figure 2A shows that South-

east Asia and Asia-Pacific is the only region having

exclusively frequent relapse behaviour. The results also

showed infections from this region to relapse quickly,

with a few rare exceptions. White showed that both fre-

quent relapsing and long-latency strains are present in

India and South America. The data from India appear to

affirm this, with relapse patterns from the subcontinent

and surrounding areas so heterogeneous that it was im-

possible to generate logical model predictions of relapse

incidence for the region. The low incidence in region 8

shown in Table 3 is not believed to be a reflection of the

presence of long relapsing strains, but rather a result of

natural infections that either did not result in a relapse

or the resulting parasitaemia was too low to be detected

by the study. There is not presently an explanation for

the lack of relapses, but this phenomenon has also been

observed in recent tafenoquine trials in India [75]. The

variation in relapse timing in the raw data observed in

India (Figure 5B) is likely a result of the wide variation

in transmission settings found within this zone. There

are tropical forest areas, similar to zone 12, dry habitats

like those in zone 5 and highland areas that border zone

11. In addition, the presence of Anopheles stephensi,

adapted to breeding in artificial water collections [76,77],

has extended transmission into urban areas. Therefore,

in addition to issues of data availability and study design,

the range of ecological settings in the zone, and likely

some of the other zones, may also contribute to the vari-

ance in relapse behaviours observed.

The results presented for South America were differ-

ent from what was shown in White’s phenotype map

(Figure 2A). South America was predicted to have a high

relapse incidence, comparable to Southeast Asia, and a

two-month mean time from primary attack to relapse.

The data available from this region were limited and de-

termining the cause for the observed difference is there-

fore difficult. There has been renewed interest in the

origin of the American strains of P. vivax, whether they

originate from somewhere in Asia or were sent west from

Africa by migration and the slave trade, as has been pro-

posed for P. falciparum [78]. This could influence the

nature of the relapse periodicity observed. Improved un-

derstanding of the phylogeny of P. vivax may reveal infor-

mation about the pattern of relapse in this region.

The analysis by Lover and Coker [51] revealed that

tropical regions relapse more quickly than temperate

strains. However, Central America and sub-Saharan

Africa had relapse patterns similar to the Mediterranean

with moderate relapse incidence (around 250 relapses

per 100,000 person days) and five to six months between

primary infection and relapse. These regions seem to be

better described as an “intermediate” relapsing pheno-

type between the frequent relapsing strains in Southeast

Asia and South America and the long-latency temperate

strains in North America and Europe/Asia.

The results of the northern temperate regions concur

with the findings of Lover and Coker [51]. The authors

noted that while in general, temperate strains relapse

more slowly than tropical strains and that New World

tropical strains were slower than Old World strains, the

opposite was true of the temperate strains. Based on this

analysis, the New World temperate strains relapsed

more rapidly than the Old World temperate strains

(Figure 7). The modelled results showed that the relapse

incidence was 455 per 100,000 person days and mean time

to relapse was six months in North America. However,

again, this high incidence compared to that in northern

Asia and Europe (134 relapses per 100,000 person days)

could be due to a few exceptional experimental subjects

who received large sporozoite inoculations [79-81].

The utility of the predictions made is limited by the

nature of the data available. There are few contemporary

data on P. vivax infections in patients not treated with a

hypnozoitocide. Therefore, much of the data used were

from drug trials on adult workers, military personnel

and prison “volunteers”, as well as data from when mal-

aria was used to treat neurosyphilis patients. The age

and immunity of the patients would perhaps not be rep-

resentative of relapse as it would occur among residents

of the strain region of origin. This could be important

because the children in many endemic settings likely

carry the greatest burden of relapsing infections [82].

Some experimental challenge subjects were inoculated

with relatively heavy sporozoite dosages, a factor that

greatly influences the time from primary attack to re-

lapse [47] and is likely to differ from relapses following

more modest numbers of sporozoites acquired from wild

anophelines. It is straightforward to attribute an infec-

tion as a relapse or re-infection in experimental settings,

but this could not be distinguished for P. vivax infec-

tions acquired in the wild. Effort was made to obtain

studies where the follow-up period was conducted in a

non-endemic area (for example, in a hospital in a city).
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Of the 5731 records of relapse 88% (n = 5030) were ob-

tained from experimental or non-local populations (such

as military personnel). Lastly, the strains used in therapy

and drug trials in the first half of the twentieth century

were of “known” origin and infections were geopositioned

to those sites. However, it is not certain if the strains used

were of their named origin. For example, the “Madagascar”

strain was obtained from an Indian seaman whose last

port of call was in Madagascar [83] and may conceivably,

therefore, originate from elsewhere.

A principal limitation of this work is the inability to

conclusively identify a recurrent infection as a relapse,

recrudesence or reinfection. This is particularly an issue

given the rising rate of resistance to standard treatments

such as chloroquine [84]. In cases of chloroquine failure,

recurrence can occur one to two months after initial

treatment [63], making differentiation between relapse and

recrudescence a challenge. Chloroquine and chloroquine-

combination therapies were by far the most common

treatment regimens (82%, 24787/30049). Of those patients

to receive chloroquine, 2519 patients experienced a re-

lapse or recurrence, 523 of which occurred before 60 days.

This is equivalent to 9% (523/5731) of the relapse records.

In addition, the effect of resistance on recurrence is likely

abated by the historical nature of the dataset. The first

cases of chloroquine-resistant P. vivax were reported in

1989 [85]. Of the 5731 records of relapse, 2080 occurred

before 60 days and 82% of those (n = 1701) were observed

before 1989. Therefore, increased resistance is unlikely to

have a large effect on the results and instances of recrude-

sence being classed as a relapse would have been rare.

While the relapse signal represented in these data cer-

tainly contains some noise due to reinfection or recrudes-

cence, we considered these other sources of recurrences

improbable relative to relapse. Figures 5C and 6 seem con-

sistent with this assumption because recurrence due to re-

infection or recrudescence would have been far more

stochastic than relapse, obscuring or effacing the patterns

shown by the randomness of timing of those events rela-

tive to primary parasitaemia.

There are aspects of the data that were not incorpo-

rated into the analysis performed here that could be ad-

dressed in future work. First, it was difficult to account

for strains with long incubation periods before primary

infection (information only available for a subset of data

from experimental settings) followed by relatively short

time to relapse. This was occasionally exhibited by the

North American St Elizabeth strain and P. vivax multi-

nucleatum from China (see Additional file 3). The link

between the sporozoite dose and latency, mentioned

above, was shown in the literature to be an important fac-

tor in determining relapse patterns [46,86,87], but was not

incorporated into the analysis as it cannot be known for

wild infections. This may be a possible explanation why

the incidence of relapse in North America was greater

than that predicted for Central America. However, this

was likely not a common problem with the experimental

studies used. The majority of studies aimed to induce pa-

tency and the sporozoite inoculations were large, but not

extreme. There were only a handful of studies included

that used particularly large inoculations in order to study

the effect of dosage on relapse pattern [79-81].

The type of patient varied among studies (prison volun-

teers, military personnel, malaria therapy patients, outpa-

tients in an endemic area, etc.) and the drug type and

dosage varied within and among studies. In some studies,

primary attacks were treated with insufficient doses of 8-

aminoquinolines or drugs that have long half-lives. Mepa-

crine has a half-life of up to a month and can delay

relapses by about 30 days [88,89] and chloroquine, the

most common drug in the dataset, can delay parasite re-

appearance by anywhere from two to six weeks [47]. In-

clusion of the subject-type and treatment as explanatory

variables was tested; however, the results were similar to

the simpler model used (see Additional file 1). Finally, the

analysis only addressed the periodicity between primary

attack and first observed recurrence (relapse). The mod-

elled estimates of incidence do not account for multiple

relapses. Both the frequency and number of relapses will

vary based on a variety of factors including inoculums, age

Table 5 Strategies for modelling survival data obtained from many dissimilar sources

Statistical method Accounts for individual-level variation Accounts for
between-study
variation

R packages

Fixed-effects meta-analysis No; operates on summary statistics No Many software packages, e.g., meta and metafor

Mixed-effects meta-analysis No; operates on summary statistics Yes Many packages, e.g., meta and metafor;
also general-purpose software such as
lme4 may be used

Survival analysis for
pooled data

Yes No A number of packages, e.g., survival, eha and flexsurv

Survival analysis with
mixed effects

Yes Yes Most notably R/coxme; flexible software seems to
be hard to find

Data were analysed using mixed-effects meta-analysis, which is common for this type of study. All of the methods have strengths and weaknesses.
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of patient and origin of infection. While many studies did

not follow patients long enough to report multiple re-

lapses, further work in this area will be essential to obtain

measures of the P. vivax force of infection.

In addition to the limitations posed by the data and

survey study designs, the analysis is limited by the types

of statistical methods available for this kind of task (see

Table 5). It would be preferable to use a statistical model

that is both hierarchical (to account for between-study

variation) and employs a suitable survival-analysis likeli-

hood. Unfortunately, software used to fit this type of

model was numerically unstable and hence the mixed-

effects meta-analysis was employed.

The mechanism of hypnozoite activation to cause an

acute attack (relapse) remains unknown. There is clearly

variation in relapse “phenotype”. Based on the results

presented here, timing of relapse appears to vary geo-

graphically in conjunction with areas of similar ecology

and malaria transmission patterns. However, it is difficult

to determine whether long latency occurs in regions of

frequent relapse (tropical areas such as zones 9 + 10 and

12). A long-latency relapse may be thought to be another

short-term relapse in a succession of rapid relapses, and

the genotype cannot reveal if it is in fact a separate relapse

“event” [47]. Nonetheless, understanding broad patterns

of relapse is of use epidemiologically. There tends to be

fewer overall relapses in the long-latency strains because

hepatocytes that host the hypnozoites may die before the

relapse event occurs. The resulting burden of hypnozoites

from different strains or regions has implications for sen-

sitivity to primaquine and therefore the dosage of prima-

quine that should be used [47]. This was observed in

treatment of soldiers returning from Korea (fewer hypno-

zoites) [90] relative to those returning from the Pacific

(high hypnozoite burden) [58] and will have implications

for future control strategies.

Conclusions
Frequency of relapse varies geographically. The associ-

ation between relapse rate and the geographic regions

does not clarify causation. Geographic variation does not

directly imply environmental cues as triggers for relapse,

even if the revised Macdonald system resembles the distri-

bution of transmission suitability. Relapse frequency may

result from evolved responses to average transmission

season duration or arise from proximate cues, such as

triggers from other infections, correlated with P. vivax

transmission and/or vector suitability periods. There is

likely an interaction between activation of latent hypno-

zoites from infection and an evolved trait for strains from

areas of seasonal transmission to remain dormant during

periods of low mosquito abundance. Regardless of the

cause, these patterns are important for the treatment of

individual infections, measures of P. vivax burden and the

prospects for control and eventual elimination of the dis-

ease from endemic areas.
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