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Abstract

A network approach, which simplifies geographic settings as a form of nodes and links,

emphasizes the connectivity and relationships of spatial features. Topological networks of

spatial features are used to explore geographical connectivity and structures. The PageR-

ank algorithm, a network metric, is often used to help identify important locations where peo-

ple or automobiles concentrate in the geographical literature. However, geographic

considerations, including proximity and location attractiveness, are ignored in most network

metrics. The objective of the present study is to propose two geographically modified

PageRank algorithms—Distance-Decay PageRank (DDPR) and Geographical PageRank

(GPR)—that incorporate geographic considerations into PageRank algorithms to identify

the spatial concentration of human movement in a geospatial network. Our findings indicate

that in both intercity and within-city settings the proposed algorithms more effectively cap-

ture the spatial locations where people reside than traditional commonly-used network met-

rics. In comparing location attractiveness and distance decay, we conclude that the

concentration of human movement is largely determined by the distance decay. This

implies that geographic proximity remains a key factor in human mobility.

Introduction

Background

The real world contains extensive connections. Ecologists believe that there is one ecosphere for

all living organisms, that what affects one affects all, and that everything is connected to every-

thing else [1]. Geographers extend this fundamental concept to connected spatial features located

in finite geo-spaces [2]. The elements of a terrestrial system are connected, and their spatial rela-

tionships should not be ignored. A network approach, which simplifies geographic settings into

combinations of nodes and links, emphasizes the connectivity and relationships among spatial
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features [3]. The nodes represent spatial features that can be indicated as points (e.g., ports, air-

ports, or buildings) or areas (e.g., countries, cities, or regions). The links are formed by connec-

tions or volumes of flow between locations, for example, commuting volumes between regions or

volumes of air traffic between airports. Analysis of the structure of a flow network can be used to

elucidate interactions among these features. To explore and understand spatial features and the

structures within them, recent studies have adapted network topological analysis frameworks to

geography. Alderson and Beckfield [4] created a world-city network in which the nodes were

world cities and the links were formed by interactions among multinational enterprises and their

subsidiaries in different cities; they explored the economic status and position of each city within

the network. El-Geneidy and Levinson [5] and Reggiani et al. [6] created a commuting network

to determine accessibility. Jiang [7], Jiang et al. [8], and Jiang and Jia [9] created a street-to-street

topological network to elucidate human movement on streets. Wang et al. [10] created a street

network and used this network to explain the relative importance of different locations with

respect to land-use. Ducruet et al. [11] created an inter-port network to measure the vulnerability

of each port. Guimera et al. [12], Reggiani et al. [13], Ducruet et al. [14], and Scholz [15] used air-

line networks to explore the concentration of air transportation and find hubs or hot spots. In

summary, these studies created topological networks of spatial features and used them to explore

geographical connectivity and structures. These studies have focused on the network positions of

connected spatial features and on the vulnerabilities and strengths of locations within networks.

Previous studies have used network metrics to retrieve information from the real world. The

concept of network centrality has often been used to explore locational characteristics in connec-

tion with interactions within the network [12] [13] [14] [15]. Alderson and Beckfield [4] exam-

ined interactions among multinational enterprises and their subsidiaries across cities, using out-

degree centrality to show the influence of each city on the world economy, in-degree centrality to

show each city’s ability to attract investment from other cities, closeness centrality to show each

city’s independence, and betweenness centrality to show the potential of each city to act as a

bridge, brokering interactions (investment flow) among cities or subgroups of cities. However,

network centrality does not capture the transitive effect of network topology and thus could

underestimate or overestimate the importance of nodes. PageRank [16], an algorithm used by the

Google Search Engine, is another useful network metric used to identify important web-pages.

The PageRank (PR) algorithm uses an iterative calculating process involving simulation of the

movement of random surfers within a web-page network linked by hyperlinks. The algorithm is

used to identify highly recommended locations where people may tend to gather. In other words,

PageRank could quantify the accessibility of locations potentially reached by people. As a result,

the PageRank algorithm has been used to help identify important places visited by people or auto-

mobiles in the geographic literature [5] [7].

Geographic proximity and location characteristics are important factors in measuring the

importance of locations [3] [17] [18]. However, the PageRank algorithm focuses on network

topological relationships, such as connectivity and transitivity, while neglecting geospatial

structures in networks, including geographical proximity. Geographic studies emphasize the

intensity of spatial interactions, where intensity is viewed, in most geographic models, as a

function of geographic distance and the attractiveness of locations [17]. These concepts are

also used to measure geographic accessibility and population mobility [19] [20] [21]. However,

most of these geographic models ignore the effects of spatial network topology [3]. Therefore,

the objective of this study is to propose geographically modified PageRank algorithms, which

are based on distance-decay characteristics and gravity function, to integrate geographic factors

into network metrics used to identify important locations in geospatial networks. We also

attempt to examine the robustness of the algorithms in both national-scale intercity network

and city-scale connections, with different model functions and parameter settings.
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PageRank algorithm: Basic concepts and its extensions

The PageRank algorithm can be regarded as a procedure for simulating the movement of ran-

dom surfers within a web-page network connected by hyperlinks [16]. Analysis of the move-

ment of random surfers based on the probability of transfer from one web-page to another (Fig

1) indicates the distribution of random surfers among web-pages.

PageRank analyzes the movement of random surfers by measuring the probabilities of

movement between nodes. At the beginning, all nodes are assigned an equal PR score. The

score is then transferred between nodes based on iterations within the links structure of the

network. After a sufficient number of iterations in the movement, the PR score attains an equi-

librium value, and the distribution of the PageRank score indicates the distribution of random

surfers as a static result. One of the main procedures is to measure the proportion of PR scores

that flow on each link, as determined by the link structure. The proportion of PageRank scores

that move on each link is calculated by dividing the PageRank score of the source node by the

number of out-links of the source node (Fig 1). That is, if a node has three out-links (node B),

the PR score for movement on each out-link of the node would be 0.33 of its PR score. The PR

score for movement on each link would also become equilibrium while the nodes attained

equilibrium PR scores.

Besides moving along the network connection, a surfer might also stop browsing a page and

start visiting a random page, which is a moving behaviour outside of the hyperlink connection.

However, in a geospatial network, people move physically between spaces. Thus, the movement

outside of the network can be assumed to not take place in a geospatial network study [5]. In

other words, in the calculation of PR algorithm, we could assume that all of the people move

along the network connections.

Attractiveness, an internal factor of nodes, is a way of quantifying the power of each target

node to draw random surfers from its incoming links. To weight the nodes with attractiveness,

Xing and Ghorbani [22] proposed a Weighted PageRank (WPR) algorithm, which uses the in-

degree of each node to determine its attractiveness and compared the attractiveness of the

Fig 1. An illustration of PageRank algorithm. The probabilities of a random surfer browsing from each web-page to the outgoing web-pages are assumed
to be equal.

doi:10.1371/journal.pone.0139509.g001

Geographically Modified PageRank Algorithms

PLOSONE | DOI:10.1371/journal.pone.0139509 October 5, 2015 3 / 23



target nodes for each source node. The PR score sent to each target nodes is then proportional

to its relative attractiveness. Therefore, a node with a low attractiveness value could be compar-

atively less attractive than a comparing node with a higher attractiveness value.

Some studies used population flow properties to extend PR algorithms for identifying the

attractiveness of a location, such as flows of workers [5] or flows of migrations among areas

[23]. El-Geneidy and Levinson developed the PlaceRank algorithm [5] incorporating the num-

bers of workers to measure the cumulative opportunity of each location in terms of job seeking.

Zhong and Liu [23] used proportions of migrations and distances between origin and destina-

tion cities to measure the attraction score of each city for long-term living. To measure the

potential flows and the spatial concentration of human movement, origin-destination flow

data (e.g. ridership or inter-townships mobility statistics), is required for these extended PR

algorithms. These data could be collected and obtained in some well-developed cities, such as

RATP’s Paris transport system [24] or oyster data from the London transport system [25] [26].

However, in developing countries, flow data is often difficult to collect comprehensively. The

intention of our proposed algorithms is to capture the spatial concentration of population

movement by only considering the topology of the network and geographic factors rather than

origin-destination network flow.

Methods

Distance-Decay PageRank (DDPR): Incorporating the effect of
geographic proximity

One major geographic consideration in approaching a location is the travel cost. Because each

terrestrial location has a fixed coordinate, approaching a destination from a point of origin

would require a corresponding travel cost associated with the journey. The intensity of spatial

interactions between locations decreases as travel cost increases. This is the distance-decay

effect [3] [18]. The geographic distance between nodes can be regarded as one of the forms of

travel cost in a geospatial network. It could be an internal factor of the links or an external fac-

tor of the nodes and thus be determined by the locations of both nodes.

We incorporated geographic distance between nodes as a travel cost in the PageRank algo-

rithm, specifically, in the Distance-Decay PageRank (DDPR) algorithm. To capture the dis-

tance-decay effect, we used the inverse distance between target nodes and the source node and

sent the PR score from the source node to its target nodes proportional to the inverse distance

(see Eqs (1) and (2)). For each node a, which has several incoming links that come from a set

of nodes b (b 2 Ia); for each node b, which has several outgoing links that target a set of nodes c

(c 2 Ob, and a 2 Ob).

DDPRtðaÞ ¼
X

b2Ia

DDPRðt�1ÞðbÞ �
FDDðb; aÞP
c2Ob

FDDðb; cÞ
ð1Þ

FDDði; jÞ ¼
1

distanceði; jÞ
b

ð2Þ

where DDPRt(a) is the PR score for node a at the iteration t, β is the distance factor, and dis-

tance(i, j) is the distance between the pair of node i and node j.

The distance factor, β in Eq (2), determines the scale of the distance-decay effect. The larger

the distance factor, the steeper the distance-decay curve and the more significant the distance-

decay effect will be. A distance factor of 0 implies that the distance-decay effect does not exist,

and the result would be similar to the one obtained from the original PageRank algorithm. The
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distance-decay relationship was formulated as a power-law decay (inverse-distance) function in

Eq (2). Sensitivity analysis for measuring the effect of distance factor in Eq (2) on the model per-

formance was further assessed. Moreover, some studies suggested to use exponential functions

for modeling distance-decay relationship [27] [28] [29] [30]. We also compared the power-law

distance-decay function with the exponential-decay functions on model performance.

Geographic PageRank (GPR): Incorporating effects of geographic
proximity and attractiveness of locations

Geographic considerations often consist of attractiveness and impedance among locations. The

intensity of the spatial interactions between locations is assumed to be proportional to their

attractiveness to one another and inversely proportional to their impedance [17] [18]. In geo-

graphical science, attractiveness refers to the force that pulls people to a target destination

whereas impedance refers to the movement resistance that are required to be overcome [31]. In

a geospatial network, attractiveness and impedance affect people’s movements among the nodes,

and these effects could be captured by calculating the probability of movement through each

link. We propose a modified PageRank algorithm, the Geographical PageRank (GPR) algorithm,

which includes the concepts of attractiveness and impedance. Similar to the concept of gravity

modeling, we assume that the probability people choose nearer and more attractive locations to

be higher. In other words, people may wander around linked nodes that are close to one another,

but they may also be willing to travel to more distant but more attractive nodes. Xing and Ghor-

bani [22] suggested that the incoming links could represent the direct popularity of each node,

which were used as the weights of comparison inWPR [7]. Therefore, in GPR, we establish a

function of spatial interactions that consists of the in-degree of each target node (a), which rep-

resents attractiveness, and distance from its source node b, which represents impedance (see Eq

(3)). We then use this score, FG, as a basis for comparing the target node with its comparing

nodes (Ob) (see Eq (4)). Thus, a higher PR score would be sent to a nearer and/or a very attrac-

tive node. Because GPR combines the attractiveness function and the distance-decay function,

the target node’s attractiveness and the distance between the target node and the source node are

considered simultaneously, implying that spatial interactions between nodes decay with distance

and increase with attractiveness. The mathematical explanation of GPR is as follows.

FGði; jÞ ¼
indegreeðjÞ

a

distanceði; jÞ
b

ð3Þ

GPRtðaÞ ¼
X

b2Ia

GPRðt�1ÞðbÞ �
FGðb; aÞP
c2Ob

FGðb; cÞ
ð4Þ

where GPRt(a) is the GPR score of the target node a at the iteration t, indegree(j) is the in-degree

of the target node j, α is the exponent of the in-degree. distance(i, j) is the distance between pair

of node i and node j, and β is the distance factor. Similar to the DDPR, a sensitivity test on the

distance factor and a comparison between the distance-decay curve was studied in the following

section.

In summary, the proposed algorithms of both DDPR and GPR consist of four components

(see Fig 2). These include (1) Initialization: at the beginning, all nodes in the geospatial network

are assigned an initial score; (2) Sending score procedure: for each source node (b), the distance

to each of its target nodes c and the attractiveness of each target node are used to calculate the

function of the distance-decay effect (for DDPR) and the spatial interaction effect (for GPR);

then its score is divided and sent to each of its target nodes, according to the proportion

Geographically Modified PageRank Algorithms
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Fig 2. The framework of DDPR and GPR algorithms.

doi:10.1371/journal.pone.0139509.g002
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calculated using the two functions; (3) Receiving score procedure: when all nodes have sent out

their previous iteration score, each node a also receives scores from its linked nodes b, which

are summed and used as its current score; (4) Equilibrium checking: if all of the nodes’ current

scores are same as their previous scores, the system has reached a state of equilibrium, and the

current score is then the output, i.e., the final PR score; if not, the system would return to the

sending score procedure and start the next iteration.

Sensitivity of choosing distance-decay functions

Distance-decay relationship is often formulated as power-law or exponential functions in geo-

graphical literatures [3]. With an exponential-decaying function, the strength of interaction

between nodes would decrease more dramatically with increasing distance [27] [28] [29] [30].

There are two major components that influence distance-decay relationship: the shape of dis-

tance-decay curves (power-law vs. exponential functions), and the parameters of the distance-

decay functions. The different settings of these components may affect the distribution of

DDPR and GPR scores, therefore, we established three experiments to assess the sensitivity of

choosing distance-decay functions and their parameters.

First, we performed an experiment of setting different values of the β between a range from

0.0 to 3.0 with 0.1 increment in Eqs (2) and (3). These results were compared by their correla-

tion coefficient (rho) with the index of concentration of human movement to assess the robust-

ness of the model results. Second, we performed another experiment on the exponential form

of distance-decay functions in DDPR and GPR (Eqs (5) and (6)). We defined a distance-con-

trol factor (dγ) to assess the shape of exponential-decay function. The range of dγ is between

the shortest (dmin) and longest (dmax) distance between two connected nodes. We created a

subscripted variable γ with range from 0 to 1 Eq (7). The parameter settings of γ were used for

sensitivity analysis to investigate the impact of the distance-control factor on the correlation

between spatial concentration of human movement and the modified PR scores (DDPR and

GPR) with exponential decay function. The values of γ were in range from 0.00 to 1.00 with

0.05 increment. The higher dγ would lead to a higher value of F
0
DD or F

0
G, and it means the dis-

tance-decay effect is less significant. Third, the two distance-decay functions in DDPR and

GPR were compared. Eqs (2) and (3) are the power-law distance-decay functions for DDPR

and GPR, respectively. Eqs (5) and (6) are the exponential distance-decay functions for DDPR

and GPR, respectively.

F 0
DDði; jÞ ¼

1

edistanceði;jÞ=dg
ð5Þ

F 0
Gði; jÞ ¼

indegreeðjÞ
a

edistanceði;jÞ=dg
ð6Þ

g ¼
dg � dmin

dmax � dmin

ð7Þ

Results

Case Study 1: national-scale intercity network

The national-scale case study area was the Taiwan Island, which has a population of approxi-

mately 22.6 million. We transformed the Taiwan Island transportation layers into a geospatial

link-node network of national-scale intercity relationships. The network consists of nodes,
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which are defined as population centers where people reside, and links between nodes are

defined as connections between settlements. Links represent the possibility of moving between

settlements in one hour of travel time. The national-scale transportation system includes all

levels of street and railway networks [32]. We used k-means clustering procedure to group the

streets’ junctions (a total of 391,588 junctions) to identify the centroid nodes where people

agglomerate. The k-value (number of node) is selected based on the total population of Taiwan.

In this study, we chose one node to represent around 50 thousand people. Because Taiwan’s

total population is around 22.6 million, the k-value was set to 500 (Fig 3). The travel time

between each node through the street and railway networks was then calculated, and a link was

established if two nodes were reachable from both directions within one hour [33]. The mini-

mum and maximum distance between two nodes are 2.95 km and 83.26 km, respectively. The

intercity network was then used for the calculations of the PR algorthms.

To evaluate the performance of the proposed network metrics in capturing important nodes

in a geospatial network, we used township-level indices, including population density, the den-

sities of total and incoming daily automobile flow for each township, as surrogates for the con-

centration of population movement. We also compared the performance between three

urbanization status [34]. The urbanization status was divided into three classes, including

urbanized area, general area (newly developed and ordinary area), rural area (aging, agro-

Fig 3. Transformation from transportation system to geospatial network. Spatial distribution of (A) national-scale population centers and urbanization
status, (B) junctions of the streets, and (C) the centroid nodes where people gathering together. Data souce: Institute of Transportation, MOTC (Taiwan).

doi:10.1371/journal.pone.0139509.g003

Geographically Modified PageRank Algorithms

PLOSONE | DOI:10.1371/journal.pone.0139509 October 5, 2015 8 / 23



township and remote area). Population data was obtained from the Monthly Statistics of the

Ministry of the Interior, Taiwan [35]. Daily automobile flow data was obtained from the Insti-

tute of Transportation of the Ministry of Transportation and Communication [36], which has

studied inter-township human flow for the year 2005. Township-level population density indi-

cates where people reside, capturing the spatial concentration of population. Inter-township

total automobile flow (total incoming and outgoing) shows the moving intensity (or busyness)

of each township, and the proportion of incoming automobile flow shows which townships are

most attractive to people. The correlations between the three township-level indices were

shown in Table 1.

The parameters, α and β, in GPR/DDPR algorithms were both set to 1 for initially assessing

their performance in the national scale. The spatial distributions of the DDPR and GPR with

urbanization status are shown in Fig 4. The nodes with larger symbols are higher-ranking

Table 1. The correlation between the population density and the densities of total and incoming daily
automobile flow for each township.

Population Total − flow In − flow

Population 1.000

Total − flow 0.881*** 1.000

In − flow 0.878*** 0.999*** 1.000

*** significant at 0.001 level.

doi:10.1371/journal.pone.0139509.t001

Fig 4. Spatial distributions of the: (A) DDPR and (B) GPR, and (C) urbanization status.

doi:10.1371/journal.pone.0139509.g004
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nodes, implying that such nodes may be characterized by a higher concentration of human

movement than lower-ranking nodes. The maps of the DDPR and GPR show similar spatial

patterns. Higher-ranking nodes are located in more heavily urbanized areas. Spatial patterns of

DDPR and GPR also indicate hierarchal structures in which lower-ranking nodes are sur-

rounded by higher-ranking nodes. The lowest-ranking nodes are located around agricultural,

aging, and remote town areas.

We then compared the correlations between the rankings of nodes for DDPR, GPR, degree

centrality and the concentration of human movement, as shown in Table 2. The results indicate

that among all the network metrics, DDPR has the highest correlation with the indices of con-

centration of human movement (rho = 0.67–0.71), followed by GPR, which has the second

highest correlation (rho = 0.60–0.63). The correlation results of PR are similar to the degree.

This is because the geospatial network is established as an undirected network [37].

Fig 5 shows the ranks of DDPR and GPR and the corresponding ranks of concentration of

human movement. Comparing the differences between the ranks of DDPR with the three indi-

ces of human movement concentration, we calculated the average rank difference between

DDPR and each of the three indices, finding range between 47 to 53. When comparing the

GPR with the three human movement concentration indices, the average rank differences

ranges between 56 and 60. In Fig 5(a)–5(c), more than half of the nodes have DDPR ranks with

patterns similar to those of the human movement concentration indices. In Fig 5(d)–5(f), more

than half of the nodes are shown to have GPR rankings similar in pattern with human move-

ment concentration indices.

We defined the mis-rated townships as those whose rank-differences is higher than +100

(overrated) or lower than -100 (underrated) (Fig 5). The ranks-differences of a township were

calculated by subtracting its human movement indices ranks by its DDPR/GPR ranks. Points

that fall on the upper-left side of the blue line in Fig 5 represented the underrated townships.

Points that fall on the bottom-right side of the red line represented the overrated townships.

Among the three classes of urbanization status, rural areas have the lowest mis-rated perentage

(5.1% to 9,3% for DDPR and 15.3% to 18.6% for GPR); urbanized areas have the second lowest

(15.7% to 17.6% for both DDPR and GPR); general areas have the highest mis-rated percentage

(17.5% to 20.0% for DDPR and 19.2% for GPR). Since general areas are the transition region

between urbanized areas and rural areas, their high mis-rated percentage suggested that transi-

tion areas might have other factors that are not captured by topological and spatial structure,

such as local resources and developments. However, most of the mis-rated urbanized areas fall

outside of the blue line, meaning they were mostly underrated rather than overrated. In con-

trast, PR and WPR have higher mis-rated percentage (15.7% to 19.6% for urbanized area,

22.5% to 33.3 for general area, and 20.3% to 21.2% for rural area) than DDPR and GPR. The

mis-rated percentage in urbanized areas for PR andWPR are similar to the DDPR and GPR.

This demonstrate that the topological structure acted as the dominant factor in urbanized

areas, and lead to similar failure at capturing the concentration of human movement. However,

Table 2. The spearman rank’s correlation between the PR algorithms, degree centrality and the concentration of humanmovement.

Degree PR WPR DDPR GPR

Population 0.566*** 0.567*** 0.573*** 0.713*** 0.627***

Total − flow 0.508*** 0.510*** 0.530*** 0.671*** 0.605***

In − flow 0.507*** 0.510*** 0.529*** 0.669*** 0.604***

*** significant at 0.001 level.

doi:10.1371/journal.pone.0139509.t002
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Fig 5. Association between DDPR (a-c) and GPR (d-f) ranks with humanmovement concentration ranks. (a) DDPR: population density; (b) DDPR: in-
flow density; (c) DDPR: total flow density; (d) GPR: population density; (e) GPR: in-flow density; (f) GPR: total flow density. Most urban areas are clustered in
the upper-right area of each plot in the figure, indicating that they are rated as having high DDPR and GPR rankings and as areas with high-concentration of
humanmovement. On the other hand, most rural area nodes are clustered in the bottom-left areas of the plots, indicating that such areas are rated as having
low DDPR and GPR rankings and as areas with low-concentration of humanmovement. Most nodes in the upper-left area of the plot are urbanized areas,
which suggests that the ranks of high-level urbanized areas could be underrated by the DDPR and GPR scores.

doi:10.1371/journal.pone.0139509.g005
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the mis-rated percentage of PR andWPR are higher than DDPR and GPR in general areas and

rural areas, suggesting that, with consideration to their spatial structure, the DDPR and GPR

would better associate with the concentration of human movement indices in these areas.

Case Study 2: city-scale urban network

Three major Taiwanese cities, with different geospatial characteristics, were used to analyze the

usefulness of the city-scale urban network in identifying important locations with high concen-

trations of human movement. Taipei City is the capital and the political and economic center

of Taiwan; it has a population of about 2.6 million. Taichung City is a polycentric city that con-

sists of coastal and inner core areas; it has a population of about 2.6 million. Kaohsiung City

has the largest harbor in Taiwan; it has a population of about 2.8 million, and its major eco-

nomic activities are concentrated near coastal areas. By using one centroid node to represent

around 50 thousands people, we located 60 nodes from the junctions found in each city (there

are 9,244 junctions in Taipei City, 18,728 junctions in Taichung City, and 16,877 junctions in

Kaohsiung City). In each city-scale network, the time-threshold for a link relationship within a

city was set to 30 minutes, which represents one-way commuting time. The village-level popu-

lation data in each city used to represent the human movement concentration in city scale were

villages level population data was obtained and organized from the districts’Household Regis-

tration Offices website [38].

To compare the network complexity of the three major city networks, network density was

used to differentiate the degrees of connectivity of the different cities. Network density is

defined as the ratio of existing links to the maximum possible number of links in a city. Table 3

shows the size of the study area, the number of junctions, the number of nodes, the number of

links, and the network density of the three cities. Fig 6(a)–6(c) shows the node distribution and

street distribution of the three study areas. Because the links were constructed based on same

time-threshold, the differences in network density between the three cities (Table 3 and Fig 6)

would influence the connectivity structure of the spatial network. Although the nodes were

identified from the streets inside the boundaries of the cities, we included the surrounding

areas in calculating the travel times between nodes.

The parameters, α and β, in GPR/DDPR algorithms were both set to 1 for initially assessing

their performance in the city scales. Fig 6(d)–6(i) shows the results of DDPR (d-f) and GPR (g-

i) for the three cities. The patterns of spatial distribution for DDPR and GPR are similar. The

distribution of nodes captured the spatial organization of the city’s central-peripheral structure.

Spearman’s rank correlations between each of the metrics and village-level population density

in each of the three cities are shown in Table 4. Both DDPR and GPR have higher correlations

with population density in the three cities than traditional social network metrics. DDPR has a

higher correlation than GPR, indicating that distance-decay properties can capture the spatial

concentration of human movement. This suggested that distance-decay properties would be

sufficient to capture the spatial concentration of human movement.

Table 3. The summarized network statistics of the three cities.

Area (km2) Junctions Settlements Number of links Network density dmin (km) dmax (km)

Taipei 270 9244 60 1621 0.92 0.85 15.03

Taichung 2219 18728 60 689 0.39 1.86 21.09

Kaohsiung 2965 16877 60 421 0.24 2.17 18.94

dmin: minimum distance between two connected nodes;

dmax: maximum distance between two connected nodes.

doi:10.1371/journal.pone.0139509.t003
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Fig 6. The spatial distribution of nodes with underlying network; the DDPR and GPR ranks results. The spatial distribution of nodes with underlying
network for: (a) Taipei city; (b) Taichung city; (c) Kaohsiung city. DDPR ranks result with 0.5 hour transportation network for: (d) Taipei city; (e) Taichung city;
(f) Kaohsiung city; and GPR ranks result for: (g) Taipei city; (h) Taichung city; (i) Kaohsiung city. The size of the nodal circle is proportional to the ranks of
DDPR or GPR scores. The nodes with higher rankings are concentrated in the central area in Taipei City (d,g), in the southern inner area in Taichung City (e,
h), and in the southern coastal area in Kaohsiung City (f,i). These higher-ranking nodes capture the locations of central business district (CBD) among the
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The robustness of methodological framework

1. Number of nodes in the K-means clustering procedure. The settlements were used as

the nodes in a geospatial network and were identified through the K-means clustering proce-

dure. Based on population, at the national scale the parameter K (number of nodes) was set at

500 (case study 1); at the city scale it was set to 60 (case study 2). To assess the impacts of the

chosen k-value on the model performance, we performed a sensitivity analysis setting the k-

value in ranges from 100 to 750 for the national scale network and calculated the rank correla-

tion of these results with population density. The results indicate that correlation of increasing

k-value between the four PR algorithms (Fig 7) were consistent. Among the 4 PR algorithms,

the correlation results between DDPR and population density were higher than the other PR

algorithms, following by GPR. In city-scale network, the k-value was set ranging from 20 to 85.

The results showed similar findings as in the national scale network (Fig 8). In Taipei, the

DDPR and GPR algorithms had similar rank correlation; whereas the rank correlation between

PR and WPR was also similar. This was because the number of links of each node is similar,

which indicated that the attractiveness of each nodes were similar. In other words, attractive-

ness is not a significant factor in Taipei network. In Taichung and Kaohsiung networks, the

rank correlations were similar to the national scale network. The DDPR and GPR algorithms

had the highest correlation with the population density. In summary, the parameter k in the K-

means clustering procedure is insensitive to the rank of DDPR and GPR scores in our study.

2. Distance factor in the power-law function. Fig 9a and the left panel of Fig 10(a), 10(c)

and 10(e) show the rank correlation of using different the values of distance factor in the

power-law function for the national-scale and city-scale networks respectively. These figures

show that the correlation with population density reach the highest Spearman’s rho while β is

set to 1.5 in national scale, β is set to 2.4(for Taichung) and β is set to 2(for Kaohsiung) in city

scale. In both national and city scale, DDPR (which is a special case of GPR with α = 0) is better

correlated with population density than GPR with α> 0 in most β settings, except only while β

� 2.4 in national scale. The associations in Figs 9 and 10 were statistically significant at 0.05.

3. Distance-control factor in the exponential function. Fig 9b and the right panel of Fig

10(b), 10(d) and 10(f) show the rank correlation between population density and the different

value of γ in exponential function for the national-scale and city-scale networks respectively.

The results in all cases show better correlation results with lower dγ settings, especially in city

scale. In all of the three cities, the correlation lines of DDPR start dropping from the beginning,

which is γ = 0 (dγ = dmin). In national scale, the correlation line of DDPR reaches the highest

point on γ = 0.05 (dγ = 6.97km). After that, the correlation line start decreasing until γ = 1. This

three cities. The lower ranking nodes are located in the outer rings of Taipei City. The northern Taichung, with lower rankings, is separated from the CBD by a
river. In Kaohsiung City, the areas with lower rankings are concentrated in the northern underdeveloped regions. Data souce: Institute of Transportation,
MOTC (Taiwan).

doi:10.1371/journal.pone.0139509.g006

Table 4. The Spearman’s rank correlation (rho) between the network metrics and the population density for the three cities.

Degree PR WPR DDPR GPR

Taipei 0.319* 0.311* 0.305* 0.495*** 0.489***

Taichung 0.606*** 0.613*** 0.600*** 0.701*** 0.659***

Kaohsiung 0.659*** 0.652*** 0.662*** 0.699*** 0.666***

*** significant at 0.001 level,

* significant at 0.05 level.

doi:10.1371/journal.pone.0139509.t004
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pattern is similar to the correlation lines in the three cities. The correlation lines have similar

trend between different settings of α, suggesting that α is not a sensitive parameter in GPR with

exponential decay function. In the comparison between α, the correlation result with α = 0

(DDPR) holds the best correlation, and the correlation line is lower while α is set to be higher.

4. Distance-decay functions: power-law vs. exponential functions. We compared

power-law and exponential functions to assess the influence of distance-decay functions on the

model performance. Similar to the previous tests, the experiment on distance-decay functions

was also performed in both national and city-scale networks. We compared the distance decay

functions between their optimal parameter settings in Tables 5 and 6. In overall cases, the

Fig 7. The rank correlation (rho) between different number of nodes (k-value) in range from 100 to 750 and the population density in national scale.

doi:10.1371/journal.pone.0139509.g007
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DDPR score is better correlated with the population density than GPR one. In comparison

between power-law decay and exponential decay functions, the modified PR scores (DDPR

and GPR) with power-law decay functions showed better correlation with the spatial concen-

tration of human movement in their optimal parameter settings.

Fig 8. The rank correlation (rho) between different number of nodes (k-value) in range from 20 to 85 and the population density in city scale. (a)
Taipei City; (b) Taichung City; (c) Kaohsiung City.

doi:10.1371/journal.pone.0139509.g008
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Discussion

With only relied on simplified transportation network (streets and railways) as a geometric

graph to represent urban connections, our study captured the spatial distribution of population

and mobility flows. Our results showed that the topological structure of connectivity and acces-

sibility between places could reflect the locations where people tend to agglomerate. It implies

that spatial constraints are one of the important factors for understanding routine population

movement [2], and extending the PR algorithms with the distance-decay properties and attrac-

tion properties is necessary for assessing the connectivity and critical nodes of a geospatial net-

work. In case of the concentration of human movement, the geographical proximity is an

important factors [17] [18]. On the other hand, PR and WPR were designed to identify the net-

work important nodes from a pure topological network, which were lack of the consideration

of the spatial proximity effect and thus not suitable for suitable for exploring the population

movement network.

This study proposes two algorithms—the Distance-Decay PageRank (DDPR) and the Geo-

graphical PageRank (GPR)—to capture the concentration of human movement in a geospatial

network, abstracting from a transportation network. Our results show that the concentration

of human movement are better correlated with DDPR and GPR scores in comparison with tra-

ditional network metrics. This finding suggests that the DDPR and GPR algorithms can effec-

tively capture the spatial locations where people reside. In addition to network connectivity,

geographic considerations, including distance-decay properties and location attraction, also

help to determine the spatial concentration of human movement in a geospatial network [7]

[10]. Previous studies have shown that the number of interactions between people, including

message delivery in an online community from ones’ geographic location to a friend’s geo-

graphic location [39] and mobile phone calls between people at different locations [40] [41],

tend to follow distance-decay rules. In this study, we have found that network metrics that

Fig 9. The rank correlation (rho) between the population density and the different (a) β and (b) γ values in national scale.

doi:10.1371/journal.pone.0139509.g009

Geographically Modified PageRank Algorithms

PLOSONE | DOI:10.1371/journal.pone.0139509 October 5, 2015 17 / 23



Fig 10. The rank correlation (rho) between the population density and the different values of β (left) and γ (right) in the three cities.

doi:10.1371/journal.pone.0139509.g010
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incorporate the distance-decay effect can capture spatial demographic patterns between spaces

better than metrics that do not account for distance. Furthermore, in comparison with

national-scale intercity and city-scale connections of geospatial networks, both DDPR and

GPR scores exhibit high correlations with spatial concentration of human movement in differ-

ent spatial scales. This suggests that geographic considerations may have cross-scale influence

on spatial concentration of human movement. Geographic considerations have been used as a

necessary ingredient in exploring relationships within spaces of various scales, for example,

transportation costs, distance, tariffs and economic status in international trade [42] [43],

numbers of immigrants and emigrants, the economic and demographic status of destinations

in international migration [44] [45], sizes of commuting flows between cities [46] [47], and

traveling distances and riderships in movement within a city [48] [49] [50].

The difference between DDPR and GPR is that GPR includes both location attractiveness

and the distance-decay effect, whereas DDPR only consider the distance-decay effect. Nodal

attractiveness represents the potential of a location, i.e., how effectively a node drives people or

resources toward it. WPR is another modified PR algorithm, proposed by Xing and Ghorbani

[22]. This algorithm only considers nodal attractiveness, so that additional PR scores are sent

to nodes that are more attractive. Our results show that with respect to national-scale connec-

tions, WPR is better correlated with human movement concentration than PR is (Table 2).

This result is similar to the findings of Jiang [7], who showed that WPR is a better human

movement predictor than PR scores. However, when nodal attractiveness and the distance-

decay effect are incorporated into GPR, GPR exhibits better statistical performance than WPR

(Table 2). In DDPR, only the distance-decay property affects the distribution of PR score trans-

missions between nodes. Although WPR and GPR are better correlated with spatial concentra-

tion of human movement than traditional PR and other network metrics, our results show that

DDPR exhibits even higher correlations than the WPR and GPR (Table 2). This finding sug-

gests that the distance-decay effect is a more important factor than nodal attractiveness in

Table 5. The optimal parameter settings and correlation results of DDPRwith power-law and exponential decay functions.

case β0 γ0 d0
g
ðkmÞ DDPR

power-law exponential

Taiwan 1.5 0.05 6.97 0.732*** 0.723***

Taipei 3.0 0.00 0.85 0.561*** 0.539***

Taichung 2.4 0.00 1.86 0.726*** 0.714***

Kaohsiung 2.0 0.00 2.17 0.746*** 0.721***

*** significant at 0.001 level.

doi:10.1371/journal.pone.0139509.t005

Table 6. The optimal parameter settings and correlation results of GPRwith power-law and exponential decay functions.

case β@ γ@ d@

g
ðkmÞ GPR(α@)

power-law exponential

Taiwan 3.0 0.00 6.97 0.703***(1) 0.683***(1)

Taipei 3.0 0.00 0.85 0.551***(1) 0.536***(2)

Taichung 3.0 0.00 1.86 0.713***(1) 0.690***(1)

Kaohsiung 2.9 0.00 2.17 0.714***(1) 0.690***(1)

*** significant at 0.001 level.

doi:10.1371/journal.pone.0139509.t006
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determining rankings of concentration of movement. Our findings demonstrate that the effect

of distance remains significant on the commuting network at various scales [39] [50] [51] [52].

The results in Figs 9 and 10 show that DDPR is better correlated with the concentration of

human movement than GPR. These results indicate that the findings in initial settings (α = 1

and β = 1) are consistent in both scales. Therefore, we suggest that DDPR could be sufficient

and desirable for capturing the concentration of human movement.

The correlation results for the three cities consistently show that DDPR has the highest cor-

relation with spatial concentration of human movement, whereas GPR has the second highest

correlation, suggesting that the results at the city scale resemble the results at the national scale

(Table 4 and Fig 6). Among the three cities, the differences of rank correlation were determined

by their attractiveness and distance-decay relationship. The attractiveness was defined by the

in-degree of a node. As a result of Taipei’s well-developed mass rapid transport system, the

population mobility breaks the space-time constraints and it causes the decrease in distance-

decay effect. Therefore, the population density of Taipei is difficult to be captured by only

using topological measures. On the other hand, Taichung and Kaohsiung cover the areas with

mix and heterogeneous development levels. Network structure could reflect the population dis-

tribution in these cities (Table 3). Therefore, topological measures in Taichung and Kaohsiung

showed better performance in terms of rank correlation than Taipei city.

The weighting scheme in PR algorithms was using the weight of target and comparing it to

the other destination originated from the source, to decide the probability of a random surfer

moving from the source to the target (PR could be understand as a special case of WPR that all

node has the same weight). This scheme is also similar to the concept of radiation model,

which is an alternative of the gravity model to understand human movement. Radiation model

is a parameter free spatial model, which suggested that the flow from a source to a target area

depends only on the population of the two areas, and the population of the other areas whose

distance from the source is less than the distance from the source to the target area [53]. The

radiation model compares the target population to the population of other potential destina-

tion originated from the source and the interaction between the population of the potential

destinations, to measure the strength of the links from the source to the target, which were

than used to calculate the probability of a particle (moving agent) to be absorbed by the target

from the source [54]. By using similar weighting scheme, WPR used the attractiveness of the

target and compared it to the other potential destination. This means if there exist another des-

tination whose attractiveness is same as the target, they would share the same probability, even

if the second destination is farther away than the target from the source. Thus, the integration

with the distance-decay function is necessary to capture the proximity differences between the

destinations. Hence, GPR, which considered both attractiveness and distance-decay effects,

could be an alternative to radiation model in a geospatial network analysis. Moreover, regard-

ing the modeling of spatial interactions among areas, moving agents could followed certain

rules to be absorbed by any destination in radiation model; random surfers could only move

within the network through the links in PR-family algorithms, and the probability of moving

on each links depends only on the outgoing links of the source. The outgoing links are the only

options for surfer moving from current location. The PR-family algorithms could reflect more

realistic movement trajectories.

On the other hand, global-wide urban road network data is openly and readily available

from internet database, such as OpenStreetMap project. Our algorithm could be more applica-

ble than past extend models when we incorporated the link-node structures of road network

and railways as a geometric graph to represent urban connections. In our study, geographic

distance is formulated as spatial constraints in terms of distance-decay weighting scheme for

measuring population mobility in national and city scales. Our results showed that the
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extended PR algorithm with the distance-decay properties and attraction properties captured

the spatial patterns of population distribution. Long travel distance could still act as impedance

on population movement causing the decrease of interactions between areas even in the era of

information and communication technology.

This study has several limitations. First, types of nodes and links have been neglected.

Because nodes represent different locations, some nodes may be residential areas with dense

populations, some may be business areas with high volumes of traffic, and some may be indus-

trial areas with massive man-made facilities. Therefore, different types of nodes could function

differently in the geospatial network. Second, we simplified nodal attraction, using the numbers

of connections to each node. Methods of capturing nodes’ attractiveness could be varied based

on the type of location each node represents, for example, major land-use type, nearby facilities

and quantity of employment opportunities [5] [10] [53]. Additional approaches to nodal

attraction may improve the correlation results, but they would also increase the complexity of

the analysis. Third, in addition to node characteristics and nodal attraction, we also simplified

connection types and capacities with bidirectional and unweighted links. Although the algo-

rithm was designed to explore the reachable relationships between spaces, the mode of move-

ment and the number of paths could affect connectivity and the strength of links. Thus, the

algorithm does not differentiate effects related to types and capacities of connections. These

issues warrant further investigation.

Conclusion

Geographic proximity and location attractiveness are important spatial factors in measuring

the importance of locations. Geographically modified PageRank algorithms—Distance-Decay

PageRank (DDPR) and Geographical PageRank (GPR), which incorporate geographic consid-

erations into the PageRank algorithm—have been proposed as methods to identify the spatial

concentration of human movement within a geospatial network. At both the national scale and

city scale, these proposed algorithms are more effective at capturing spatial patterns of human

residence than other commonly-used network metrics. In comparing location attractiveness

with distance-decay effects, we conclude that the spatial concentration of human movement is

dominantly determined by distance-decay effects, which implies that geographic proximity

remains a key influence on human mobility.
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